
Reward Delay Attacks on Deep Reinforcement Learning

Anindya Sarkar, Jiarui Feng, Yevgeniy Vorobeychik, Christopher Gill, and Ning Zhang

Washington University in St. Louis, MO 63130, USA
Department of Computer Science & Engineering

{anindya,feng.jiarui,yvorobeychik,cdgill,zhang.ning}@wustl.edu

Abstract. Most reinforcement learning algorithms implicitly assume strong syn-
chrony. We present novel attacks targeting Q-learning that exploit a vulnerability
entailed by this assumption by delaying the reward signal for a limited time period.
We consider two types of attack goals: targeted attacks, which aim to cause a
target policy to be learned, and untargeted attacks, which simply aim to induce
a policy with a low reward. We evaluate the efficacy of the proposed attacks
through a series of experiments. Our first observation is that reward-delay attacks
are extremely effective when the goal is simply to minimize reward. Indeed, we
find that even naive baseline reward-delay attacks are also highly successful in
minimizing the reward. Targeted attacks, on the other hand, are more challenging,
although we nevertheless demonstrate that the proposed approaches remain highly
effective at achieving the attacker’s targets. In addition, we introduce a second
threat model that captures a minimal mitigation that ensures that rewards cannot
be used out of sequence. We find that this mitigation remains insufficient to ensure
robustness to attacks that delay, but preserve the order, of rewards.

Keywords: Deep Reinforcement Learning · Adversarial Attack · Reward Delay
Attack.

1 Introduction

In recent years, deep reinforcement learning (DRL) has achieved super-human level
performance in a number of applications including game playing [28], clinical decision
support [24], and autonomous driving [18]. However, as we aspire to bring DRL to
safety-critical settings, such as autonomous driving, it is important to ensure that we
can reliably train policies in realistic scenarios, such as on autonomous vehicle testing
tracks [1, 13, 29]. In such settings, reward signals are often not given exogenously, but
derived from sensory information. For example, in lane following, the reward may be
a function of vehicle orientation and position relative to the center of the lane, and
these features are obtained from perception [14, 32]. Since many such settings are also
safety-critical, any adversarial tampering with the training process—particularly, with the
integrity of the reward stream derived from perceptual information—can have disastrous
consequences.

A number of recent efforts demonstrated vulnerability of deep reinforcement learning
algorithms to adversarial manipulation of the reward stream [3, 15, 20, 22]. We consider
an orthogonal attack vector which presumes that the adversary has compromised the
scheduler and is thereby able to manipulate reward timing, but cannot modify rewards
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directly. For example, ROS 2.0 features modular design with few security checks and the
ability to substitute different executors [8, 30, 6, 9, 5]. This means that once adversaries
gain access to the ROS software stack, they can replace its scheduling policy readily,
and as long as the executor behavior is not overtly malicious it can be a long time before
the compromise has been discovered. Additionally, we assume that the adversary can
infer (but not modify) memory contents using side channel attacks. This is a realistic
assumption, since it has been demonstrated that it is feasible to leverage different types of
system or architectural side channels, such as cache-based or proc-fs based side channels
to infer secret information in other ROS modules [25, 10, 19]. However, write access to
memory is often a lot more difficult to obtain due to existing process isolation [12, 11].

Our attack exploits a common assumption of synchrony in reinforcement learning
algorithms. Specifically, we assume that the adversary can delay rewards a bounded
number of time steps (for example, by scheduling tasks computing a reward at time t
after the task computing a reward at time t+k for some integer k ≥ 0). We consider two
variations of such reward delay attacks. In the first, we allow the adversary to arbitrarily
shuffle or drop rewards, assuming effectively that no security mechanisms are in place at
all. Our second model evaluates the efficacy of the most basic security mechanism in
which we can detect any rewards computed out of their arrival sequence, for example,
through secure time stamping. Consequently, we propose the reward shifting attacks,
where in order to remain undetected, the adversary can only drop rewards, or shift these
a bounded number of steps into the future. Efficacy comparison between these two
threat models will then exhibit the extent to which this simple security solution reduces
vulnerability to reward delay attacks. In both attack variants, we consider two adversarial
goals: untargeted attacks, which aim to minimize total reward accumulated at prediction
time (essentially, eroding the efficacy of training), and targeted attacks, the goal of which
is to cause the RL algorithm to learn a policy that takes target actions in specific target
states.

We specifically study attacks on deep Q-learning algorithms. The adversarial model
we introduce is a complex discrete dynamic optimization problem, even in this more
narrow class of DRL algorithms. We propose an algorithmic framework for attacks
that is itself based on deep Q learning, leveraging the fact that the current Q function,
along with the recent sequence of states, actions, and rewards observed at training,
provide sufficient information about system state from the attacker’s perspective. The
key practical challenge is how to design an appropriate reward function, given that the
“true” reward is a property of the final policy resulting from long training, and only truly
possible to evaluate at test time. We address this problem by designing proxy reward
functions for both untargeted and targeted attacks that make use of only the information
immediately available at training time.

We evaluate the proposed approach experimentally using two Atari games in OpenAI
gym: Pong and Breakout. Our experiments demonstrate that the proposed attacks are
highly effective, and remain nearly as effective even with the simple mitigation that
ensures that rewards are not encountered out of order. Altogether, our results demonstrate
the importance of implementing sound security practices, such as hardware and software-
level synchrony assurance [21, 27], in safety-critical applications of reinforcement
learning.
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2 Related Work

There are two closely related literature strands in attacks on reinforcement learning and
multiarmed bandits: attacks that take place at decision time, and poisoning attacks.

Decision-Time attacks on Reinforcement Learning Prior literature on adversarial attacks
against RL has focused mainly on inference time attacks [3, 15, 20, 22], where the
RL policy π is pre-trained and fixed, and the attacker manipulates the perceived state
st of the learner to s′t in order to induce undesired actions, while restricting s′t and st
to be very similar to (or human-indistinguishable from) each other. For example, in
video games the attacker can make small pixel perturbations to a frame to induce an
action π(s′t) 6= π(st). [15] developed the uniform attack mechanism, which generates
adversarial examples by perturbing each image the agent observes to attack a deep RL
agent at every time step in an episode in order to reduce the agent’s reward. [15] also
introduced a decision time targeted attack strategy, i.e. enchanting attack tactic, which
is a planning-based adversarial attack to mislead the agent towards a target state. [22]
proposed a strategically timed attack, which can reach the same effect of the uniform
attack by attacking the agent four times less often on average. [20] leverages the policy’s
value function as a guide for when to inject adversarial perturbations and shows that with
guided injection, the attacker can inject perturbations in a fraction of the frames, and this
is more successful than injecting perturbations with the same frequency but no guidance.
[3] proposes an attack mechanism that exploits the transferability of adversarial examples
to implement policy induction attacks on deep Q networks. Although test-time attacks
can severely affect the performance of a fixed policy π during deployment, they do not
modify the policy π itself.

Reward Poisoning Attacks on Reinforcement Learning Reward poisoning has been
studied in bandits [2, 17, 26, 23], where the authors show that an adversarially perturbed
reward can mislead standard bandit algorithms to suffer large regret. Reward poisoning
has also been studied in batch RL where rewards are stored in a pre-collected batch data
set by some behavior policy, and the attacker modifies the batch data [16, 35, 34, 36].
[16] provides a set of threat models for RL and establishes a framework for studying
strategic manipulation of cost signals in RL. [16] also provides results to understand
how manipulations of cost signals can affect Q-factors and hence the policies learned
by RL agents. [36] proposed an adaptive reward poisoning attack against RL, where the
perturbation at time t not only depends on (st, at, st+1) but also relies on the RL agent’s
Q-value at time t. [35] presents a solution to the problem of finding limited incentives
to induce a particular target policy, and provides tractable methods to elicit the desired
policy after a few interactions. Note that all these previous works directly modify the
value of the reward signal itself, by adding a quantity δt to the true reward r(t), i.e.
r′(t) = rt + δt. In contrast, we focus on delaying the reward signal with the aim to
mislead a learner RL agent, but cannot directly modify the rewards. As such, our key
contribution is the novel threat model that effectively exploits the common synchrony
assumption in reinforcement learning.
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3 Model

Consider a discounted Markov Decision Process (MDP) with a set of states S, set of
actions A, expected reward function r(s, a), transition function Pαss′ = Pr{st+1 =
s′|st = s, at = a}, discount factor γ ∈ [0, 1), and initial state distribution D(s) =
Pr{s0 = s}. Suppose that we only know S and A, but must learn an optimal policy
π(s) from experience using reinforcement learning. To this end, we consider a Deep
Q-Network (DQN) reinforcement learning framework; it is straightforward to extend our
approach to other variants of deep Q learning. Let Q(s, a; θ) be a neural network with
parameters θ representing the Q-function, and let Qt(s, a; θt) denote an approximation
of theQ-function at iteration t of RL (which we also denote byQt when the input is clear,
and Qt(s, a; θ) when we treat θ as a variable). In the DQN, parameters θ are updated
after each iteration using the loss function L(θ) = (rt + γmaxa′ Qt(st+1, a

′; θ) −
Qt(st, at; θ))

2. Below, we omit the explicit dependence on θ. As this update rule makes
evident, without experience replay the DQN training process itself is a Markov decision
process (MDP) in which σt = (Qt, (st, at, rt, st+1)) constitutes state. Let T be the
total number of DQN update iterations. This observation will be useful below. Given a
Q function obtained at the end of T learning iterations, QT (s, a), we assume that the
learner will follow a deterministic policy that is optimal with respect to this function,
i.e., π(s) = argmaxaQT (s, a). For convenience, we abuse this notation slightly, using
π(s, a) as an indicator which is 1 if action a is played in state s, and 0 otherwise.

Suppose that the attacker has compromised the scheduler, which can delay a reward
computed at any time step by a bounded number of time steps δ (for example, to prevent
attacks from appearing too obvious). Attacks of this kind take advantage of the settings
in which reward needs to be computed based on perceptual information. For example,
the goal may be to learn a lane-following policy, with rewards computed based on
vehicle location relative to lane markers inferred from camera and GPS/IMU data. A
compromised scheduler can delay the computation associated with a reward, but cannot
directly modify rewards (contrasting our attacks from prior research on reward poisoning
[16, 35, 34, 36]). As a useful construct, we endow the attacker with a δ-sized disk D in
which the past rewards are stored, and the attacker can utilize D to replace the original
reward used to update the Q-function parameters at time t.

We consider two common attack goals: 1) untargeted attacks which simply aim
to minimize the reward obtained by the learned policy, and 2) targeted attacks, which
attempt to cause the learner to learn a policy that takes particular target actions. To
formalize these attack goals, let rα = {rα0 , . . . , rαT−1} be an adversarial reward stream
induced by our attack, resulting in the learned Q function Q̃T (s, a; rα). On the other
hand, let QT (s, a) be the Q function learned without adversarial reward perturbations.
Let π̃(s; rα) be the policy induced by Q̃T , with π̃(s, a; rα) a binary indicator of which
action is taken in which state. The goal of an untargeted attack is

min
rα

∑
a

π̃(s, a; rα)QT (s, a). (1)

For a targeted attack, we define a target policy as a set-value function f(s) which
maps each state to a set of target actions, i.e., f : S → 2A, where f(s) ⊆ A for each
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state s ∈ S. That is, the attacker aims to cause the learned policy π̃ to take one of a target
actions f(s), that is, π̃(s; rα) ⊆ f(s). A natural special case is when f(s) is a singleton
for each state s. This objective can be equivalently expressed in terms of the learned Q
function Q̃T as the following condition in each state s:

max
a∈f(s)

Q̃T (s, a; r
α) > max

a/∈f(s)
Q̃T (s, a; r

α), ∀s : f(s) 6= π(s). (2)

We assume that the current state σt of the DQN algorithm is observed by the
adversary at each time t. This assumption amounts to the compromised scheduler being
able to read memory. This can be done either because the adversary has gained access to
kernel space, or through a side-channel attack that recovers memory contents [25, 10, 19].

Our key observation is that whichever of the above goals the attacker chooses, since
learning itself can be modeled as an MDP, the attacker’s problem also becomes an
MDP in which the state is ot = (σt,Dt), where Dt is the state of the attacker disk (i.e.,
rewards saved, and their current delay length). The reward in this MDP is defined as
above for both untargeted and targeted attacks. Let O denote the set of possible states
in the attacker MDP. Next, we define two types of reward-delay attacks, which then
determine the action space.

Fig. 1: Reward Delay Attack Model.

We consider two variants of the reward delay attack. The first is a general reward
delay variant in which rewards can be swapped arbitrarily or dropped, with the only
constraint that if a reward is delayed, it is by at most δ time steps. The attacker also has
the option of waiting at time t. In particular, at time t, the attacker can publish (e.g., by
prioritizing the scheduling of) a reward rαt ∈ Dt selected from disk at time t, Dt; the
implied set of attacker actions at time t is denoted by Aαt = Aα(ot) (since it depends on
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the current state ot). As a result, the learner receives the transition tuple (st, at, rαt , st+1)
in place of (st, at, rt, st+1), where the current reward rt is added to disk, obtaining the
diskDt+1 for the next training step. We present an illustrative visualization of the reward
delay attack model in Figure 1.

A minimal level of security that a learner can easily implement is to securely time
stamp incoming sensor data. Our goal is to evaluate how much impact this minimal level
of protection has on the attack efficacy. To this end, we introduce a second significantly
more constrained attack variant that only allows reward shifting: rewards can only be
shifted forward (effectively, dropping some of these), but not arbitrarily swapped. In
reward shifting attacks, since the sequence must be preserved, any time the attacker
selects a reward rαt ∈ Dt to publish, it must be the case that the time stamp on this
reward exceeds that of the reward published at time t− 1. Consequently, the disc Dt+1

is updated with the actual reward rt, but all rewards in Dt with time stamp earlier than
rαt are also removed (effectively, dropped). Additionally, the attacker has the option of
waiting at time t, publishing a reward (or a sequence of rewards) at a later time point
from the disk, which are then aligned in the corresponding temporal sequence with states
and actions used for DQN updates. We present an illustrative visualization of the reward
shifting attack model in Figure 2. We denote the implied action space for the attacker
in reward shifting attacks by Aα,shift

t = Aα,shift(ot). Next, we present our algorithmic

Fig. 2: Reward Shifting Attack Model.

approaches for implementing the attack variants above.
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Fig. 3: Learner’s and Attacker’s Q-network.

4 Algorithmic Approaches for Reward-Delay Attacks

Recall that general reward-delay attacks can be represented by an attacker MDP with
state space O and action sets Aα(o) for the general reward-delay attacks, and Aα,shift(o)
for reward shifting attacks, where o ∈ O is the current state. Since the state space is
in general high-dimensional, it is natural to apply deep Q-learning attacks to learn an
effective attack policy πα(o). In Figure 3 we present both the learner’s and attacker’s
Q-network architecture (as the latter is partly derived from the former). An important
practical challenge, however, is that delay reward signal so long considerably reduces
efficacy of learning. Consequently, our algorithmic approaches to the different types of
attacks involve designing effective proxy-reward signals that can be computed in each
time step t of the learning process.

Since the reward shifting attack involves a considerably stronger constraint on what
the attacker can do (which we model by modifying what information can be stored on
disk Dt at time t above), we further enhance our ability to effectively learn an attack
policy in two ways. First, we heavily leverage the wait option by delaying attack choice
until the disk Dt is full, in the sense that we can no longer wait without having to
drop one of the rewards in the disk (which would otherwise exceed the delay time
constraint δ). We then significantly simplify the attack strategy by selecting a drop index
i (where 0 ≤ i ≤ K) and dropping all the rewards in the disk Dt with index ≤ i from
consideration. Note that, K < d, where d is the size of the attacker’s disk. The residual
temporal sequence of rewards on disk is then published (as depicted in Figure 2) and
used to train the learner’s Q-network, and finally the attacker’s disk is emptied. This
reduces the policy consideration space to only the choice of an index of the reward to
drop given a full disk.

At this point, the only remaining piece of the attack approach is the design of the
proxy reward function, which we turn to next. Armed with appropriate proxy reward
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functions, we can apply any deep Q-network based algorithm for learning an attack
policy for any of the attacks discussed above.

4.1 Proxy Reward Design for Untargeted Attacks

For untargeted attacks, suppose that Qt is the learner’s Q function in iteration t. Since
DQN updates are deterministic, the learner’s Q function Qt+1 can be precomputed for
any reward rαt published by the attacker. Let st be the state observed by the learner at
time t. We propose the following proxy reward for the attacker which is used for the
attacker’s DQN update:

R̃att
t =

∑
a∈A
−(π̃t+1(st, a) ·Qt(st, a)),

where π̃t+1(st, a) =
exp(Q̃t+1(st, a))∑

a′∈A exp(Q̃t+1(st, a′))

(3)

where Qt(st) is the true Q function vector and Q̃t+1(st) is the proxy Q function vector
corresponding to all the learner’s actions in step t and t + 1, respectively. Note that
the learner’s true Qt+1(st) is obtained by updating Qt(st) using randomly sampled
batch data stored in the learner’s replay buffer, whereas, the learner’s proxy Q̃t+1(st) is
obtained by updating Qt(st) using the recent transition tuples published by the attacker.
The intuition for this proxy reward is that it accomplishes two things at once: first,
by minimizing correlation between successive Q functions, the attacker minimizes the
marginal impact of learning updates, thereby causing learning to fail, and second, if the
learner happens to obtain a good estimate of the true Q function in iteration t, the quality
of this function is actively reduced in iteration t+ 1.

4.2 Proxy Reward Design for Targeted Attacks

The intuition for our proposed proxy reward function in the case of targeted attacks is to
maximize similarity between the target policy f(s) and the policy induced by the current
Q function Qt. However, since the policy induced by Qt is not differential, we replace it
with a stochastic policy πt(st) = softmax(Qt(st)), where

πt(st, a) =
exp(Qt(st, a))∑

a′∈A exp(Qt(st, a′))
.

Further, we represent f(s) as a vector f̂(s, a)

f̂(s, a)←−
{

1, if a ∈ f(s, a)
0, o.w. (4)

f̂(s) then denotes the binary vector corresponding to f(s). We then define the proxy
reward for a targeted attack as follows:

R̃att
t = sign{LCE(πt(st), f̂(st))− LCE(π̃t+1(st), f̂(st))}, (5)
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where LCE is the cross-entropy loss. The reward function in (5) suggests that, an attacker
receives a positive reward, only if the performed actions of the attacker (i.e. choosing rαt
from the disk Dt ) steers the learner’s updated proxy Q-value distribution π̃t+1(st) to
be more aligned with the target Q-table distribution corresponds to target policy f(s)
compared to the learner’s previous true Q-value distribution πt(st).

4.3 Rule Based Targeted Reward Delay Attack

In addition to a targeted reward delay attack strategy that requires a proxy reward
computation of the attacker as defined in equation (5), we also propose a simple rule
based strategy in order to feed the attacker a reward at a given state as defined in equation
(6). Note that the attacker’s disk configuration at current time step (t) is represented as
Dt. According to (6), the attacker feeds back a high reward to the learner, if the learner
acts in a way that is preferred by the attacker at any given target state.

R̃att
t ←−

Maximum Reward in Dt, if argmaxa(Qt(St, a)) ∈ aT and St ∈ S′
Minimum Reward in Dt, if argmaxa(Qt(St, a)) /∈ aT and St ∈ S′
Random Reward in Dt, if St /∈ S′

(6)

5 Results

We evaluate the effectiveness of the proposed attack approaches on the Pong and Break-
out Atari-2600 environments in OpenAI Gym [7] on top of the Arcade Learning Envi-
ronment [4]. The states in those environments are high dimensional RGB images with
dimensions (210 * 160 * 3) and discrete actions that control the agent to accomplish
certain tasks. Specifically, we leverage the NoFrameskip-v4 version for all our exper-
iments, where the randomness that influences the environment dynamics can be fully
controlled by fixing the random seed of the environment at the beginning of an episode.
Please note that we used a standard computing server with 3 GeForce GTX 1080 Ti
GPUs each of 12GB for all the experiments in our work. We choose the Double DQN
algorithm [31] with the Duelling style architecture [33] as the reference Q network for
both the learner and attacker agents. Note that our proposed reward-delay attack and
reward-shifting attack strategies can be easily applied to other DQN based learning
algorithms without requiring further modifications. Unless noted otherwise, we set δ (i.e.
the maximum number of time steps a reward can be delayed) to be 8. In the case of a
reward shifting attack, we choose the maximum value of “drop-index”(K) to be 4, and
attacker’s maximum disk size (effectively, maximum wait time before implementing the
attack) to be 8. We also perform experiments to show the impact of the reward delay
attack for different choices of attack hyper-parameters.

We compare our approaches to two baselines: random attack and fixed-delay attack.
In the random attack, an attacker chooses to publish a reward randomly from the disk at
every time-step. In the fixed-delay attack, an attacker delays the reward signal by δ time
steps. In addition, in the reward shifting attack setting, we use a random reward Shift
baseline, where in place of an attacker agent, we randomly select a value for “drop-index”
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(ranging from index 0 toK) to drop the reward. Apart from this step, the random baseline
attack operates exactly as the reward shifting attack.

For untargeted attacks, our measure of effectiveness is the expected total reward at
test time. In the case of targeted attacks, we evaluate the success rate of the attacks,
measured as follows:

SuccessRate(SR) =

∑
s∈S′ I[at ∈ f(s)]

No. of times agent visits target states
, (7)

where I[.] is an indicator function and S′ is a set of target states in which the attacker
has a non-trivial preference over which action is played. Equation (7) yields the fraction
of times the policy learned by the targeted RL agent chooses an action in the attacker’s
target set f(s) in target states s ∈ S′.

In order to generate target policies f(s), and in particular which states constitute
target states S′, we leverage an (approximately) optimal Q-network (learned without
attacks), denoted by Q∗, which gives us a way to decide a subset of states that we target
given the target action sets preferred by the attacker; for the remaining states, f(s) allows
any action, that is, the attacker is indifferent. Next, we define a state-independent set
of target actions aT ; these will be target actions for a subset of target states, which we
choose dynamically using the following rule:

st ←−
{

Is a Target State, if argmaxa(Q
*(St, a)) /∈ aT .

Not a Target State, otherwise. (8)

We describe our choice of the set aT in the concrete experiment domains below. Note
that at every time step in an episode, the learner interacts with the environment, but
instead of receiving the true reward from the environment, the learner receives a poisoned
reward published by the attacker. We train the learner’s Q network with the modified
reward sequence published by the attacker and also update the learner’s Q network
parameter following the Double DQN update rule. In parallel, we train and update the
attacker’s Q network following the Double DQN update rule as described above (see
also Algorithms 1 and 2 in the Supplement). After the completion of each episode, we
evaluate the learner’s performance on test episodes. We report our results (cumulative
rewards, etc) obtained on these test episodes.

5.1 Untargeted Reward-Delay Attacks

We begin by evaluating the efficacy of the proposed approaches for accomplishing the
goals of untargeted attacks. Figure 4 presents the total reward obtained during evaluation
as a function of the number of training episodes in Atari Pong and Breakout, respectively.
We observe that essentially all baselines perform nearly the same as each other and as
our attack, with reward nearly zero in the case of Atari Breakout and nearly -21 in the
case of Atari Pong. This clearly contrasts with normal training, which is highly effective.
Consequently, in the untargeted setting, even if we limit considerably by how much
rewards can be delayed, essentially any reshuffling of rewards entirely prevents effective
learning.
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(a) Reward Comparison on Atari Pong. (b) Reward Comparison on Atari Breakout.

Fig. 4: Effect of Reward Delay Attack on Minimizing Reward.

We further investigate the efficacy of the untargeted reward delay attacks as we
change δ, the maximum delay we can add to a reward (i.e., the maximum we can
shift reward back in time relative to the rest of DQN update information), from 8 (the
default value in experiments) to 16. As Figure 5 shows, we see an improvement in the
attack efficacy as would be expected intuitively; what is surprising, however, is that this
improvement is extremely slight, even though we doubled the amount of time the reward
can be delayed. Our results thus suggest that even a relatively short delay in the reward
signal can lead DQN learning to be entirely ineffective.

(a) Effect of δ on Untargeted Reward Delay At-
tack Strategy on Atari Pong environment.

(b) Effect of δ on Untargeted Reward Delay At-
tack Strategy on Breakout environment.

Fig. 5: Effect of δ.

We also examine the effectiveness of the untargeted reward delay attacks on a
pre-trained Q network. Figure 6 depicts the net reward obtained by the pre-trained Q
network during evaluation as a function of the number of training episodes in Atari Pong
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and Breakout, respectively. Our experimental finding indicates that, the reward decays
exponentially as training progresses. We also notice that even naive baseline untargeted
attacks are as effective as the untargeted reward delay attack in reducing the reward of
the pretrained network. Such observations shows the importance of reward synchrony at
every phase of deep reinforcement learning training.

(a) Effect of Untargeted Reward Delay Attack
Strategy on a Pre-trained Q network on Atari
Pong environment.

(b) Effect of Untargeted Reward Delay Attack
Strategy on a Pre-trained Q network on Breakout
environment.

Fig. 6: Effect of Reward Delay Attack on a Pre-trained Q network.

Next, we evaluate the efficacy of our approach in the context of the far more chal-
lenging targeted attacks.

5.2 Targeted Reward-Delay Attacks

In targeted attacks, we aim to achieve a particular target action (or one of a set of actions)
in a subset of target states, with the attacker indifferent about which action is taken in
the remaining states. In both Pong and Breakout environments, we chose do not move
as the target action for this evaluation. Target states were defined using the condition in
Equation (8).

In Figure 7, we compare the efficacy of our approach for targeted attacks compared
to our baseline approach. Here we can see that the proposed targeted attack approaches
are considerably more effective than the baseline, with success rate significantly higher
than the best baseline in both Pong and Breakout. Interestingly, we can also see that
while the proposed attack improves in efficacy with the number of training episodes, the
baselines either have a constant success rate (essentially due entirely to chance), or the
success rate of these may even decrease (we can see a mild decrease in the case of Pong,
in particular). We also observe that the rule based reward delay targeted attack strategy
is highly effective in achieving the targeted attack objective.
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We further look into the effectiveness of targeted reward delay attacks as we vary δ,
the maximum delay we can add to a reward. We present those results in figure 8. We
observe that the success rate stays the same as we change the δ in both Atari Pong and
Breakout environments.

Next, we assess the effectiveness of reward-shifting attacks, which are more con-
strained than reward delay attacks.

(a) Success Rate comparison on Atari Pong. (b) Success Rate comparison on Atari Breakout.

Fig. 7: Success Rate Comparison of Reward Delay Attack.

(a) Effect of δ on Targeted Reward Delay Attack
Strategy on Atari Pong environment.

(b) Effect of δ on Targeted Reward Delay Attack
Strategy on Breakout environment.

Fig. 8: Effect of δ.

5.3 Reward Shifting Attacks

We now turn to evaluating the effectiveness of a simple defense in which we ensure that
rewards cannot be shuffled out of sequence. To this end, we evaluate the efficacy of the
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proposed reward shifting attacks, and compare that to our observations of the efficacy of
reward delay attacks above.

(a) Reward Comparison on Atari Pong. (b) Reward Comparison on Atari Breakout.

Fig. 9: Effect of Reward Shifting Attack on Minimizing Reward.

In Figure 9, we present the results of the reward shifting attack in the Pong and
Breakout environments. First, we observe that both the baseline and our untargeted
reward shifting attacks are as effective as any of the attacks without the sequence-
preserving constraint. Moreover, the proposed untargeted attack is now tangibly better
than its baseline (random) counterpart, with the gap increasing with the number of
episodes. In addition, Figure 10 shows that the net episodic reward of a pre-trained Q
network drops exponentially when trained with the untargeted reward shifting attack
strategy. We also found that even a random reward shifting attack is highly capable
of reducing the reward of a pre-trained Q network. Such findings indicate the adverse
impact of incorrect reward timing on deep reinforcement learning. So, not only the
ordering of the reward sequence, but the precise timings of the reward sequence are also
very important for efficient deep reinforcement learning.

Nevertheless, the defense is clearly not effective in mitigating the untargeted reward
shifting attacks. In the Pong environment, our proposed untargeted reward shifting attack
yields reward near -20—that is almost what was achieved without any mitigation at all,
but a far cry from the result of nominal training. Similarly, the reward after our attack in
the Breakout environment is still far below what is achievable without attack.

Finally, we investigate the potency of the reward shifting attack in the context of the
targeted attack. We report those results in Figure 11. We observe that the targeted reward
shifting attack actually yields a higher success rate compared to the baseline random
reward shifting attack in both Atari Pong and Breakout environments, with the success
rate gap increasing with the number of episodes.

6 Conclusions

We study the problem of reward delay attacks against reinforcement learning agents. Our
empirical findings suggest that it is possible to induce a sub-optimal policy, or even a
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(a) Effect of Untargeted Reward Shifting Attack
on a Pre-trained Q network on Pong environment.

(b) Effect of Untargeted Reward Shifting Attack
on a Pre-trained Q network on Breakout env.

Fig. 10: Effect of Reward Shifting Attack on a Pre-trained Q network.

(a) Success Rate Comparison on Atari Pong. (b) Success Rate Comparison on Atari Breakout.

Fig. 11: Success Rate of Reward Shifting Attack.

specific target policy by strategically reshuffling the true reward sequence. Indeed, we
find that even randomly shuffling rewards within relatively short time intervals is already
sufficient to cause learning failure. This raises a potentially serious security threat to
different downstream applications that rely on RL. Moreover, we showed that reward
shifting attacks that assure that reward signals are not observed out of order, also have
a disastrous effect on DQN learning. Our finding shows that current deep RL training
strategy falls far short of ensuring adequate robustness to these in many cases.

A natural subject for future work is to develop mitigation techniques that can assure
adequate synchrony in reinforcement learning when it is necessary. Often, mitigations
of this kind must involve hardware support that enables us to assure synchrony of state
and reward information. A natural second open question is whether it is possible to
avoid strong reliance on such hardware support by developing reinforcement learning
approaches that have weaker synchrony requirements.
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7 Appendix

In this section, we present the end-to-end algorithmic approach of reward delay attack
strategy and reward shifting attack strategy in algorithm 1 and 2 respectively.

Algorithm 1 Reward Delay Attack Strategy
Input: Qt(st, at, θ) - learner’s (A) current Q-network parameterized by θ; An attacker agent
A′ with corresponding MDPM′ = (Ξ ′, ρ′, τ ′), Q-network(Q′) parameterized by θ′, disk
D0 to store the rewards and attack constraint parameters {δ, d}; Action set of the A′, i.e.
A∈{1,2,..,d} where d is the disk size; T - No. of time-steps in an episode; B, B′ - Replay
buffer of A and A′;

1: for t=0, 1, ..., T do
2: A interacts with the environment by taking an action at given a state st. Environment

transits according to P (st+1|st, at), and feeds back a reward signal rt and a next state st+1.
3: A′ extracts (st, at, rt, st+1) and push rt into Dt.
4: A′ leverages the following information to act: infot = [st, at, rt,Dt] and learner’s Qt.
5: A′ takes action a′t according to ε-greedy behavior policy

i←−

{
argmaxa∈A Q′

t(infot, a, θ
′), If 1− ε

Randomly select from A, else

}

6: rt (the true reward) is exchanged with rDi (The reward stored at the i’th index in the disk
Dt). Accordingly, t’th transitional tuple data is updated as (st, at, rDi , st+1) and stored into
B.

7: Disk Dt is updated by removing rDi from the disk. We also drop the reward from Dt

whose stored-time (i.e. delay duration) exceeds δ.
8: A performs Q-learning given the poisoned mini-batch transition data sampled from B,

where t’th transition tuple of the mini-batch is represented as (st, at, rDi , st+1):

yj ←−

{
rDi , If st+1 is a Terminal State

rDi +maxa′(Qt(st+1, a
′, θ)), else

Update the learner’s (A) Q-network parameters from Qt to Qt+1 by minimizing the loss
L(θ) = (yj −Qt(st, at, θ))

2 following DQN update rule.
9: A′ computes reward rattacker

t following the methods as described in section 4 and stores
the transition tuple (infot, a

′
t, r

attacker
t , infot+1) into its own replay buffer B′.

10: A′ performs Q-learning given the attacker’s mini-batch transition data sampled from B′,
where t’th transition tuple is denoted as (infot, a

′
t, r

attacker
t , infot+1):

yj ←−

{
rattacker
t , If infot+1 is a Terminal State

rattacker
t +maxa′∈A(Q

′
t(infot+1, a

′, θ′)), else

11: A′ also updates it’s Q-network parameter θ′ by minimizing L(θ) = (yj −
Q′

t(infot, a
′
t, θ

′))2.
12: end for
13: return A and it’s corresponding Q-network parameter θ;
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Algorithm 2 Reward Shifting Attack Strategy
Input: Qt(st, at, θ) - learner’s (A) current Q-network parameterized by θ; An attacker (A′) with

corresponding MDPM′ = (Ξ ′, ρ′, τ ′), Q-network(Q′) parameterized by θ′, diskD0 to store
the rewards and attack constraint parameters {l, d}; Action set of the A′, i.e. A∈{1,2,..,K};
B,B′ - are Learner’s and attacker’s Replay Buffer respectively; T - The no. of time-steps in an
episode.

1: for t=0, 1, ..., T do
2: A interacts with the environment which results a transition tuple (st, at, rt, st+1).
3: A′ Extract (st, at, rt, st+1) and push reward rt into Dt.
4: A′ leverages the following information to act when Dt is full: infot = [st, at, rt,Dt] and
Qt.

5: A′ takes action a′t according to ε-greedy behavior policy when Dt is full.

i←−

{
argmaxa∈A Q′

t(infot, a, θ
′), If 1− ε

Randomly select from A, else

}

6: A′ publishes an updated reward sequence with the following modifications: Firstly, the
rewards stored from index 0 to i are dropped, Secondly, the reward sequence ranging from
index (i+1) to d is published in sequence. We denote the attacker’s published reward sequence
as {rD1 , rD2 , .., rDt , ..}.

7: A performs Q-learning given the poisoned mini-batch transition data sampled from B,
where t’th transition tuple of the mini-batch is represented as (st, at, rDt , st+1):

yj ←−

{
rDt , If st+1 is a Terminal State

rDt +maxa′(Qt(st+1, a
′, θ)), else

Update the learner’s (A) Q-network parameters from Qt to Qt+1 following DQN update
rule.

8: A′ computes reward rattacker
t following the methods as described in section 4 and stores

the transition tuple (infot, a
′
t, r

attacker
t , infot+1) into its own replay buffer B′.

9: A′ performs Q-learning given the attacker’s mini-batch transition data sampled from B′,
where t’th transition tuple is denoted as (infot, a

′
t, r

attacker
t , infot+1):

yj ←−

{
rattacker
t , If infot+1 is a Terminal State

rattacker
t +maxa′∈A(Q

′
t(infot+1, a

′, θ′)), else

10: A′ also updates it’s Q-network parameter θ′ by minimizing L(θ) = (yj −
Q′

t(infot, a
′
t, θ

′))2.
11: end for
12: return A and it’s corresponding Q-network parameter θ;
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