University of

'Sl Kent Academic Repository

Bhattacherjee, Sanjay and Sarkar, Palash (2023) Voting Games to Model Protocol
Stability and Security of Proof-of-Work Cryptocurrencies. In: Decision and Game
Theory for Security. 13th International Conference, GameSec 2022, Pittsburgh,
PA, USA, October 26-28, 2022, Proceedings. Lecture Notes in Computer Science
. Springer E-ISBN 978-3-031-26369-9.

Downloaded from
https://kar.kent.ac.uk/96909/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-031-26369-9_15

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/96909/
https://doi.org/10.1007/978-3-031-26369-9_15
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Voting Games to Model Protocol Stability and
Security of Proof-of-Work Cryptocurrencies

Sanjay Bhattacherjee![0000—-0002=3367=6192] 41q Palash
Sarkar2[0000—0002—5346—2650]

! Institute of Cyber Security for Society and School of Computing,
Keynes College, University of Kent, CT2 TNP, UK.
s.bhattacherjee@kent.ac.uk
https://www.kent.ac.uk/computing/people/3156 /bhattacherjee-sanjay
2 Applied Statistics Unit, Indian Statistical Institute,

203, B.T. Road, Kolkata 700108, INDIA.
palash@isical.ac.in
https://www.isical.ac.in/~palash/

Abstract. We model the protocol stability and the security of proof-
of-work cryptocurrencies using voting games. The first game, which we
call the Rule Game, pertains to the scenario where the cryptocurrency
miners engage in a voting procedure to accept or reject a proposal for
change of the cryptocurrency protocol. The second game, which we call
the Attack Game, refers to the scenario where a group of miners can form
a coalition to launch a 51% attack on the system and consequently change
a portion of the history of the underlying blockchain, thus defeating its
promise of immutability. For the Attack Game, we define progressively
granular notions of security all of which are based on the key concept of
minimal winning coalitions from voting game theory. For both the Rule
Game and the Attack Game, we show practical applicability of tools
from voting game theory using a snapshot of real world data for Bitcoin.
In particular, this highlights the fragile nature of the security of Bitcoin
with respect to 51% attacks.

Keywords: Voting games - Cryptocurrency - Bitcoin (BTC) - Preven-
tive power - Protocol change - 51% Attack - Security.

1 Introduction

Since the proposal of Bitcoin (BTC) by the eponymous Satoshi Nakamoto [29],
many cryptocurrencies have been proposed. Bitcoin though, remains the most
popular and valuable cryptocurrency. The underlying blockchain technology has
found numerous applications as well. There are multiple dimensions to research
on blockchains. In this work, we model (1) the procedure to change the protocol
and (2) the security of proof-of-work cryptocurrencies using voting games. The
ensuing analysis shows the practical applicability of tools from voting game
theory in the scrutiny of cryptocurrency systems.
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Voting Games

Voting Games are typically used to model and analyse the decision-making pro-
cedure in scenarios that involve several entities or players. Of practical inter-
est are weighted majority voting games. In such games, each player has a pre-
assigned weight. A coalition of players wins if the sum of the weights of all the
players in the coalition is at least a certain pre-specified fraction ¢ of the total
sum of the weights of all the players.

Voting Games in Proof-of-Work Cryptocurrencies

A proof-of-work cryptocurrency has an underlying linear blockchain data struc-
ture. Blocks are added to this structure by individual miners and mining pools
who find the proof-of-work for a new block as a solution to a computational puz-
zle. For simplicity, we use the name miner for any mining entity - an individual or
a pool. The more the computational power or the “hash rate” (explained in [3])
invested by a miner, more are its chances to succeed in mining a new block. This
feature indicates the presence of an implicit voting game in cryptocurrencies.

In this work, we model two key functional aspects of a proof-of-work cryp-
tocurrency system using voting games. By adding new blocks to the system,
a miner participates as a player in both these games. The weight of a miner
in these games is proportional to the fraction of the total network’s hash rate
that it controls. The winning threshold ¢ is fixed depending upon the functional
aspect that is being modelled.

The first functional aspect that we model is the procedure to change the
rules governing the cryptocurrency described as protocols. The miners and other
participating entities of the system follow the protocols. Being a decentralised
and distributed system, the protocols are not determined or distributed by any
central authority. They are initially agreed upon by the miners at the time of
inception and as part of the specification, there is a well-defined procedure to
change the protocols through consensus of the miners.

In the context of Bitcoin, a protocol modification happens through a Bit-
coin Improvement Proposal (BIP). We show that a BIP [7] can be viewed as a
weighted majority voting game among the miners where the winning threshold
q is 0.95 (although there are instances of lower thresholds being used as well [6]).
More generally, we use the term Rule Game to denote the voting games arising in
the context of protocol change of any cryptocurrency (details in [3]). The purpose
of having a high winning threshold in a Rule Game is to achieve near unanimity
for a protocol change to take place. From the viewpoint of voting games, having
a high winning threshold results in several miners becoming blockers.

The core principles of the Bitcoin blockchain have been emulated to varied
extents by perhaps all cryptocurrencies that have been developed thereafter. Just
like BIP, protocol changes requiring consensus are a very common phenomenon
in Ethereum [I6] and other proof-of-work blockchains [26//30].

It is perhaps natural that a procedure to achieve consensus among multiple
agents gives rise to situations of cooperation and conflict and hence is a topic of
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certain game theoretic interest. When the miners are in agreement over the pro-
tocols, we say that the cryptocurrency is stable. Proposals for protocol change
that lead to conflicts among miners make the system less stable. An extreme
consequence of disagreement between the miners over protocol changes is the
forking of the cryptocurrency into two separate ones. A fork splits the network
and even though some of the miners may continue to mine on both the chains, it
certainly reduces the hash rate invested in both cryptocurrencies as compared to
the original one. This makes both chains more vulnerable to attacks compared
to the original chain. There are of course other socio-economic implications of
rifts between miners over protocol changes leading to reduced stability. Some of
the highly debated cryptocurrency protocol changes include SegWit [B5] that led
to a new cryptocurrency Bitcoin Cash (BCH) forked from the BTC chain, and
the split between Ethereum and Ethereum Classic [37] after the DAO attack.
This shows that protocol stability is a major challenge for proof-of-work cryp-
tocurrencies. We use the Coleman preventive power measure (as argued in [3])
to capture the influence of a miner in a Rule Game for protocol stability.

The second functional aspect that we model is the immutability of the under-
lying blockchain data structure ensured by the miners not attacking the system.
If a coalition of miners acquire at least 51% of the hash rate of the system,
then with non-negligible probability, such a coalition can engage in changing
a substantial part of the blockchain and consequently double spending of the
currency. At any point of time, some of the miners may be attempting to attack
the system while the others are preventing it. We model this as a voting game
between the miners with the winning threshold ¢ = 0.51. We call this an Attack
Game.

There have been several instances of 51% attacks [I] on various cryptocur-
rencies, including Bitcoin [36], Bitcoin Gold [9], Ethereum Classic [13], Bitcoin
SV [8], Verge [10], Litecoin Cash [27], Vertcoin [28], and many more. These
attacks have led to owners of the respective cryptocurrencies suffer huge losses.
The Attack Game and its detailed characterisation and analysis is thus extremely
important for the cryptocurrency space.

Our analysis of the Attack Game is based on questions formulated around
the crucial notion of minimal winning coalitions. For example, one may wish
to know the minimum cardinality of any minimal winning coalition; another
relevant question would be the minimum cardinality of any minimal winning
coalition containing a particular miner. We define related notions of security to
provide concrete answers to such questions.

The top level security notion that we introduce is that of the cryptocurrency
being c-secure, where ¢ is the maximum integer such that there is no minimal
winning coalition for the Attack Game of size ¢ or lower. In other words, this
means that no coalition of ¢ or lesser number of miners will be able to attack
the cryptocurrency. Starting from this security notion, we define progressively
granular notions of security finally leading to the following security consideration.
Suppose L is a set of ‘large’ miners, i.e., miners who control a significant amount
of the network hash rate. Let (S1,S52) be a partition of L. We consider the
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scenario where the miners in S; are trying to compromise the system, but, the
miners in So are not doing so. Then the question is how much support do the
miners in S7 require from miners outside L to attack the system. We define
the cryptocurrency to be (L, ¢, ¢)-secure if for any subset S; of L of size ¢,
more than ¢ miners outside of L are required to form a coalition with S7 and
successfully attack the system.

To the best of our knowledge, the game theoretic modelling, the definitions
of security and the mechanisms for analysing the stability of a cryptocurrency
that we introduce have not appeared before either in the voting game or in the
cryptocurrency literature.

Snapshot Analysis

To actually compute the power measures and the minimal winning coalitions in
a cryptocurrency game, it is required to obtain the weights of the miners which
are their hash rates. The values of the hash rates are not directly available.
Instead, they need to be estimated. A simple estimate can be obtained based
on the assumption that the hash rate is proportional to the number of blocks
mined by a miner in a given interval of time. This provides a snapshot estimate
of the actual hash rate of the miners.

For Bitcoin, we use such a snapshot estimate and show how to perform a
meaningful analysis of the Rule and the Attack Games. The results for the
Attack Game throw light on the vulnerability of Bitcoin. For example, in the
time interval that we have considered, there were 8 different coalitions each
consisting of 5 known miners such that any of these coalitions could have won
the Attack Game. Given that the Bitcoin market is worth billions of dollars, it
is a disconcerting thought that there can be several coalitions of a small number
of parties who can disrupt the whole system. While a cryptocurrency does not
have any central authority, the power to compromise the system residing in the
hands of a few parties certainly detracts from the purposed goal of a completely
decentralised system.

Related works: An introduction to voting games can be found in [II] and an
extensive overview of the topic is provided in [I§]. The idea of measuring power
in a voting game was introduced in [34I35]. The use of swings to measure voting
power of players was suggested in [332]. Later work by [14] provided alternative
proposals for capturing the notions of preventive and initiative powers of players.
Voting power measures based on the idea of minimal winning coalitions were
suggested in [20021UT5]. We refer to [24I31] for surveys on voting games.

There is a fairly large and growing literature on cryptocurrencies. Some game
theoretic aspects of cryptocurrencies have already been studied [22[25/T9123]. To
the best of our knowledge, the applications of weighted majority voting games
to model protocol stability and security of cryptocurrencies have not been con-
sidered earlier.
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2 Background and Preliminaries

In this section we provide a high level overview of proof-of-work cryptocurrencies
and voting games to help understand how voting games arise in these cryptocur-
rencies. For further details on blockchains, the reader may consult [32/12]. More
details on voting games can be found in [I8/TT].

2.1 Blockchain Basics

A typical blockchain is fundamentally a linear data structure that is built and
maintained by a distributed system of computing nodes connected through peer-
to-peer networking. The data structure is composed of a “chain of blocks” B =
{By, B1,...}. Each block B; is made up of a header h; and a body b;. For
i € {1,2,...}, the header h; of every block B; contains a digest of the body b;
and the hash value H(h;—_1) where H is a cryptographically secure hash function
and h;_1 is the header of the previous block B;_; in the chain. A cryptocurrency
system € is a blockchain where the information on the creation and transfer of
the currency is stored in the body of each block.

In Bitcoin, a key criteria for validity of a new block B, is that the hash of
its header H(h,) should have a certain number of leading zeros also called the
difficulty. The node that produced B, is called the miner of that block. The
Bitcoin protocol allows the miner to include a random number or nonce 7, in
the header h, of B, so that its hash #H(h,) has the required difficulty. The nonce
thus found through mining is called proof-of-work. Finding the proof-of-work
is a computational challenge, and the probability of success is proportional to
the number of hashes that the miner can compute per second (called its hash
rate). Miners may increase their individual hash rates to increase the number of
blocks they are able to mine and thus their profits thereof. Multiple miners may
come together to pool their computing resources and mine blocks together. This
increases the probability of successfully mining the block and results in more
profits within a specified time frame. For the purpose of this paper, we do not
distinguish between miners and mining pools.

In general for any blockchain system, we use the name miner to denote
an entity that creates a block, and the term weight to denote the amount of
computational resource (hash rate) they have invested in the system. The weight
is their contribution of resources in running and maintaining the system.

Blockchain Security. The primary security promise offered by a blockchain sys-
tem is the immutability of its history. As new blocks are appended to B, the
existing blocks get farther away from the last block of B. If a block B; € B is
altered to B; by an attacker, its header h; and the hash #(h;) will change. The
new hash H(h}) will not tally with the hash value H(h;) stored in the header
hi+1 of Bi+1-

To alter a proof-of-work blockchain, the attacker will have to find a new
proof-of-work n! for this altered block B;. To make the system consistent, H(h})
will then have to be saved in B;i; changing it to Bj ;. So now the attacker
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has to find a new proof-of-work n; ; for B;,; to be saved in the header of B2
and so on. Thus a single change in B; will result in a cascade of changes to
all subsequent blocks in the chain until the last block in the blockchain. If an
attacker controls more than half of the (computational) resources of the network,
it can launch such an attack on B. Such an attack is thus called the “51% attack”.
As mentioned in Section [I}, there are many known instances of such attacks on
cryptocurrencies.

Blockchain Protocol Stability. A decentralised blockchain system is completely
maintained by its miners. The maintainability of a blockchain includes the ability
to change the blockchain protocol itself. Typically, a protocol change is proposed
on some off-chain forum like a common web-portal, mailing list, etc. that is
popularly followed. The block headers contain a set of bits that are mapped
to a change proposal though an off-chain mechanism as well. For every new
block created, its creator denotes their support/opposition to the currently active
protocol change proposals by setting/unsetting the corresponding bits. Only
when an overwhelming majority of the blocks added to B within a predetermined
period of time have support in favour of a change, it is incorporated into the
protocol. As discussed in Section [1} protocol change proposals have resulted in
several debates between contending groups of miners and in the worst case of
disagreements have even led to the forking of blockchains.

2.2 Voting Game Basics

Let N = {A;, Ay, ..., A, } be aset of n players. A subset of N is called a coalition
and the power set of N, i.e., the set of all possible coalitions is denoted by 2.
A voting game G comprising of the players in N is given by its characteristic
function Wg : 2V — {0,1} where a winning coalition is assigned the value 1
and a losing coalition is assigned the value 0. The set of all winning coalitions is
denoted by W(G) and the set of all losing coalitions is denoted by L(G). For a
finite set .S, #S will denote the cardinality of S.

For any S C N, A; € N is called swing in S if A; € S, ¥g(S) = 1 but
Ua(S\ {Ai}) = 0. The number of subsets S C N such that A; is a swing in
S will be denoted by mg(A4;). A coalition S C N is called a minimal winning
coalition if U (S) = 1 and there is no T' C S for which ¥ (T) = 1. A coalition
S C N is called a minimal blocking coalition [4] in G if (N \ S) = 0 and for
any non-empty 7' C S, (N \T) = 1. A player A; is called a blocker if {A;} is
a minimal blocking coalition.

Definition 1. Consider a triplet (N,w,q), where N = {Ay,..., A} is a set
of players, w = (w1, wa,...,wy,) is a vector of non-negative weights with w;
being the weight of A; and q is a real number in (0,1). Let ws = ), cgw;
denote the sum of the weights of all the players in the coalition S C N. Then,
WN = )4 ey wi- A weighted majority voting game G = (N, w,q) is defined by
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the characteristic function Wg : 2V — {0,1} as follows.

@ )0 otherwise.

3 Voting Games Arising from Proof-of-Work
Cryptocurrencies

Proof-of-work cryptocurrencies give rise to at least two weighted majority voting
games. We first describe the common features of both the games.

The players, their weights and the winning threshold: The miners and
the mining pools are the players in the game. We will simply write miner to
mean either an individual miner or a mining pool. Intuitively, the weight of
a player is its ability to mine a new block. In a proof-of-work based system,

suppose there are k miners having hash rates hq, ..., hy with the total hash rate
h of the system being equal to h = hy + - - - + hg. The weights of the miners are
the hash rates hy,...,h;. For any positive real number A, it is possible to use

Ah1, ..., Ahg as the weights without changing the characteristic function of the
game. The winning threshold depends on the game as explained in Sections
and

Approximations of the hash rates of the players: Being a decentralised
and distributed system, the hash rates of the miners of a proof-of-work cryp-
tocurrency system are not directly available. However, the proportion of blocks
contributed by a miner to the system should indicate its proportion of the total
hash rate.

Several Internet sites provide the number of blocks mined by various miners in
a given time period. From this, it is possible to obtain an estimate of the hash rate
of the miners. Suppose that for a given time period, a list (A1,b1), ..., (A, bx)
is available indicating that the miner A; has mined b; blocks in that time period.
It is reasonable to assume that the fraction of blocks mined by A; in a given
time period is proportional to h;/h. Under this assumption, an estimate of the
proportional hash rate of the miner A; can be taken to be b;/b where b =
by + -+ + b,. Since for a particular time period, b is constant, the weight of a
miner can be taken to be the number of blocks it has mined in the given time
period. The choice of this time period is not definite. It should not be too long
since then miners who had been active earlier, but are no longer active will get
positive weights. Neither should it be too short as then the estimate would not
be accurate.

The suggested method of approximating the weights of the miners has a
limitation. The actual weight of a miner is its hash rate while the approximate
weight of a miner vote is taken to be the number of blocks that it is able to mine
in the given time interval. While this number is expected to be proportional to
the hash rate of the miner, it is not an exact correspondence. For example, it
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is possible that miners with low weights are unable to mine any block in the
required time interval. As a result, the approximate weights of these miners will
be zero, even though they have positive hash rates. While this is indeed an issue,
for the miners with high hash rates, the proportion of mined blocks would be
quite close to the proportional hash rates.

We note that the theoretical aspects of our work are not dependent on the
method employed to obtain estimates of the hash rates of the miners. The theory
that we develop could be equally well applied to hash rates estimated using some
other method.

3.1 The Rule Game

The procedure for protocol change in a proof-of-work cryptocurrency has been
briefly described in Sections [I] and [2] For Bitcoin, this is done through a BIP.
The Rule Game arising from a BIP occurs as follows. The difficulty (minimum
number of leading zeros) of the hash value for a valid Bitcoin block is fixed for
every 2016 blocks. Such a window of 2016 blocks is called the target period that
typically lasts for 2 weeks. A BIP has to be decided upon within 26 consecutive
target periods (around a year’s time). Once started and before time-out, each
of the 26 target periods creates a new Rule Game for the BIP. The winning
threshold for a BIP is typically 95%. So at least 95% of the 2016 blocks in a
target period must indicate support for the BIP (by setting the respective bit
for the BIP in the block header) for it to be considered as accepted and active.
So BIP games are played during fixed time intervals which are the periods of
constant difficulty. Coalitions of players can form for the activation (or blocking)
of a BIP. The interests of the members of such a coalition would be aligned, i.e.,
all of them would benefit (or suffer) in the same manner if a BIP is activated.

Simultaneous voting games: Several BIPs could be under consideration at
the same point of time. In any target period, a miner who mines a new block has
to indicate its preference for all of these BIPs. So in each time period a number
of voting games are being simultaneously played. If the outcomes of the BIPs
are unrelated, then the effect of simultaneous voting games can be captured by
considering the voting games to be played sequentially. While some BIPs can
indeed be unrelated, it is unlikely that BIPs under consideration will always
be unrelated. The interaction between the outcomes can create complex voting
and coalition strategies among the miners. For example, a miner may indicate
support for a BIP only if some other miners indicate support for some other
BIP.

Repeated voting games: Voting for a BIP takes place in at most 26 consec-
utive target periods. A BIP may not receive adequate support in a particular
target period. However, this does not mean that the BIP has failed. It will again
be open for voting in the subsequent target period. This process continues until
the BIP gets locked-in, or, it times out after the 26 target periods. This feature
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is again very different from conventional voting game scenarios where once a
motion fails, it is not taken up for voting any more.

A miner may mine several blocks in the time period over which voting takes
place. We have assumed that the miner indicates its support or opposition to a
protocol change proposal in all the blocks in a consistent manner. This seems to
be a reasonable assumption. We do not know if there is any situation where a
miner in a given time interval may indicate support to a proposal in some of the
mined blocks and indicate opposition to the same proposal in the other mined
blocks.

3.2 The Attack Game

In this game, the goal of a player or a coalition of players is to get control of the
network by ensuring that the total sum of their hash rates is at least 51% of the
entire hash rate of the network. So the winning threshold in this game is 51%.

A set of miners may form a coalition whereby they pool their computational
resources so that the combined hash rate of the coalition becomes 51%. Such
a coalition can attempt to launch a double spending attack on the network
and agree to divide the income from the double spending among themselves in
accordance with some criterion. It is possible that different coalitions of players
can achieve the 51% threshold.

Continuously playable game: The Attack Game has the potential of being
played at any point of time. There is no fixed time when the game is to be played.
If we assume that the players are constantly trying to maximise their profits,
then they are potentially exploring coalitions which will increase the hash rate.
The aspect of the Attack Game whereby it is always possible to be played is not
present in more conventional weighted majority voting games which are played
at certain points of time and with adequate notice.

Remark: We have taken 51% as the winning threshold for the Attack Game.
It has been suggested that the Bitcoin system can be attacked with even lower
threshold [I7]. The actual value of the winning threshold is not important for
the method of analysis outlined in this work. So even though we later work with
only the 51% threshold, a similar analysis can be done with other thresholds.

4 Security Notions for Analysis of the Attack Game

Let € be a cryptocurrency system and let G be an Attack Game for €. For
users of € a basic question is whether € is secure against the 51% attack, or,
more formally whether the pair (€, G) is secure. The question that arises is how
to define security for the pair (€, G)? Of course, if there is a single miner in
G having weight 51% or more of the total weight, then € is clearly insecure. A
single miner, however, may not have sufficient hash rate to be able to compromise
the system. Then one needs to consider a coalition of miners who may wish to
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attack €. So any minimal winning coalition in the Attack Game G can mount a
successful attack on €. Consequently, the number of minimal winning coalitions
in G provide the number of ways in which € can be attacked. It is unlikely
that all possible minimal winning coalitions can actually form. More granular
information provides better understanding of the security of €.

Denoting mw, to be the number of minimal winning coalitions of size ¢, we
are essentially looking for the distribution (¢, mw,) for ¢ = 1, ..., n. For example,
if mw; > 0, then a single miner can win the Attack Game. So one measure of
security is the maximum value of ¢ such that mw, = 0. This would ensure that
(€, G) is secure against a coalition of ¢ or less number of miners. This leads to
the following definition.

Definition 2. Let € be a cryptocurrency system and G = (N, w, q) be an Attack
Game for €. Then (€,G) is said to be c-secure if ¢ = max{c : mw, = 0}.
Equivalently, (€, Q) is said to be c-secure if mw, = 0 for all ¢ < ¢ and mw41 # 0.

It is perhaps intuitive that (€, G) provides the maximum security against the
Attack Game if all miners in G have equal weights. We prove a formalisation of
this statement in [3]. For a cryptocurrency €, one may ask for the maximum ¢
such that (€, G) is c-secure where the maximum is taken over all possible Attack
Games G having n players and the sum of the weights of the players is wy.
Elementary arguments show that when the players have the same weight, the
maximum value of ¢ is [ng] — 1.

It is possible to consider the Attack Game from the viewpoint of a particular
player A. Suppose A wishes to win the Attack Game. Then a relevant question
for A is the minimum number of other players it needs to form a coalition with.
This is captured by considering minimal winning coalitions containing A. More
generally, instead of a single miner A, one can consider a coalition S and ask
how many other miners are required to win the Attack Game.

For any subset .S, denote by mw,.(S) the number of minimal winning coali-
tions of cardinality ¢ which contain all elements of S. The distribution (¢, mw,.(.5))
is of interest. The maximum value of ¢ such that mw.(S) = 0 is a measure of
security of (€, G) with respect to the subset S. It indicates the minimum number
of other miners that the coalition S will need to collude with to compromise the
system. This leads to the following definition.

Definition 3. Let € be a cryptocurrency system and G = (N, w, q) be an Attack
Game for €. Then (€, G) is said to be c-secure with respect to S if ¢ = max{c:
mw,.(S) = 0}. Equivalently, (€, G) is said to be c-secure with respect to S if
mw,(S) =0 for all ¢ < ¢ and mw41(S) # 0.

If S = {A} is a singleton set consisting of a single player A, then we can talk
about (€, G) to be c-secure with respect to the player A. If (€, G) is c-secure,
then it is not difficult to argue that ¢ = min4ey max{c: mw.(A) = 0}.

So far, we have assumed that all coalitions are possible. In a realistic setting,
it is reasonable to postulate that not all coalitions will form. There could be two
competing miners who will not be part of any coalition. More generally, one can
consider two disjoint coalitions S; and Sy and consider the scenario where the



Cryptocurrency Security and Protocol Stability Voting Games 11

miners in S; wish to win the Attack Game but, the miners in Sy do not wish to
compromise €.

For a positive integer ¢, we define mw(S7, S, ¢) to be the number of minimal
winning coalitions in G of cardinalities ¢ containing all elements of S; and no
element of Ss.

Definition 4. Let € be a cryptocurrency system and G = (N, w, q) be an Attack
Game for €. Let S1 and Sz be two subsets of N. Then (€, G) is said to be c-secure
with respect to the pair (S1,S2) if ¢ = max{c: mw(Sy, Se,c) = 0}.

Remarks:

1. For the pair (€, G), mw(0, 0, c) = mw,.

2. For any miner A, mw({A},,c) is the number of minimal winning coalitions
in G containing A and having cardinalities equal to ¢. Consequently, (€, G)
is c-secure with respect to A if and only if (€, G) is c-secure with respect to
the pair ({A4},0).

3. For any subset S of miners, mw(, S, c) is the number of minimal winning
coalitions in G not containing any element of S and having cardinalities
equal to ¢. Consequently, (€, G) is ¢-secure with respect to the pair (0, .S) if
the size of any minimal winning coalition in G not containing any element of
S is at least ¢ + 1. By leaving out a set of miners, we ask for the possibility
of the system being compromised by some coalition of the other miners. The
maximum value of ¢ such that G is c-secure with respect to the pair (0, .5)
provides a measure of security of the system against coalitions of miners who
are not in S.

Definition 5. Let € be a cryptocurrency system and G = (N, w, q) be an Attack
Game for €. We say that (€, G) is (c1, cg, ¢)-secure, if

¢ = max{c: mw(S1,S2,¢) =0 for all subsets S1,S2 C N with #51 < ¢1, #52 < ¢2}.

Remarks:

1. If S§; = Sy = 0, then there are no constraints and in this case mw(S, Ss, ¢) =
mw.. (€, G) is (0,0, ¢)-secure if the size of any minimal winning coalition in
G is at least c.

2. If S; = {A;} and Sy = (), then mw(S;,S2,¢) is the number of minimal
winning coalitions of cardinality ¢ containing A; in G.

(€, G) is (1,0, c)-secure if for any miner A;, the size of any minimal winning
coalition containing A; is at least c.

3. (€,G) is (0,0, c)-secure if and only if the cardinality of any minimal winning
coalition in G is at least ¢+ 1. On the other hand, (¢, G) is (1,0, ¢)-secure if
and only if the cardinality of any minimal winning coalition in G' containing
at least one miner is at least ¢ 4+ 1. Since a minimal winning coalition must
contain at least one miner, it follows that G is (0,0, ¢)-secure if and only if
(¢,G) is (1,0, c)-secure.
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4. If S; = {4;} and Sy # 0, then mw(Sy, S2,¢) is the number of minimal
winning coalitions of cardinality ¢ in G containing A;, but, not containing
any element of Ss.

(¢,G) is (1,1, c)-secure if for any two miners A, and A;, the size of any
minimal winning coalition containing A; but not containing A; is at least c.

5. If S; = 0 and Sy # 0, then mw(S1, Sa,¢) is the number of minimal winning
coalitions of cardinality ¢ in G not containing any element of Ss.

(¢, G) is (0, co, ¢)-secure if for any set Sy of size at most cq, the size of any
minimal winning coalition not containing any element of S5 is at least c.

Typically, in a cryptocurrency system the set of miners can be roughly divided
into two sets, those having “large” hash rates and those have significantly smaller
hash rates. Let L be such a set of “large” miners. Any successful attack is likely
to involve the miners in L. On the other hand, it is also quite unlikely that all
the miners in L will collude. So one can consider a partition (S1, S2) of L where
the miners in S7 are part of the coalition attacking the system while the miners
in S5 are not part of this coalition, i.e., L = S;US5 and S1NSs = 0. The relevant
question is what is the minimum number of miners outside L (i.e., in N'\ L) who
need to form a coalition with the miners in S; to win the Attack Game?

Let N be a set of miners and L be a subset of N. For any subset S of L,
by mwp (S, c) we will denote the number of minimal winning coalitions in G
containing S which are disjoint from L \ S and have cardinalities equal to c.

Definition 6. Let € be a cryptocurrency system and G = (N, w, q) be an Attack
Game for €. Let L be a subset of N. We say that (€, G) is (L, ¢y, ¢)-secure if

¢ = max{c: mwg(S,c) =0 for all subsets S C L with #S = ¢1}.

If (¢,G) is (L, ¢q, ¢)-secure, then the following is ensured. Consider any partition
of L into S and L\ S with #S5 = ¢; and suppose that the coalition S does not
collude with any miner in L\ S. Then to win the Attack Game the coalition S
must collude with at least ¢ — #S miners from N \ L.

Remark: Suppose € is a cryptocurrency and G is an Attack Game for €.
Suppose B is any minimal blocking coalition in G. Then any winning coalition
for G must contain at least one miner from B. This has practical implications.
Suppose that at some point of time € is indeed attacked, then it is certain that
at least one of the miners in B must have been involved in the attack. Given the
pseudonymity of participants in a blockchain network, identifying attackers is a
challenge. The above formalisation of the Attack Game could be a useful tool
to either reduce the set of suspects or in certain cases even pin-point the set of
attackers. We leave the details for future work.

5 A Snapshot Analysis of Bitcoin

For the snapshot analysis, we consider the blocks mined during the period July
2021 to June 2022 as shown in Table[Il For both the Rule Game and the Attack
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Game, the players are the miners and as explained in Section [3] the weight of a
miner is its hash rate estimated from the number of blocks mined by it during
this one-year period. We have obtained the data from https://blockchair.com/.
Our analysis can be applied equally well if the hash rates are estimated using
some other methods, for any other meaningful time period and for any proof-of-
work cryptocurrency.

Table 1. Miners (22 known) and the number of blocks they are known to have mined
during July 2021 to June 2022.

Miner# | Miner Name #blocks|| Miner#| Miner Name|#blocks
01 Unknown 13808 02 AntPool 8287
03 F2Pool 7454 04 ViaBTC 6078
05 Binance 5645 06 Poolin 4810
07 Foundry USA Pool 3204 08 SlushPool 2955
09 Huobi 331 10 SBICrypto 325
11 EMCD 261 12 Bitdeer 212
13 MaraPool 142 14 OKEX 139
15 BTC.com 113 16 SpiderPool 34
17 Solo CKPool 9 18 50BTC 6
19 SigmaPool 6 20 OKKONG 5
21 mmpool 3 22 BTC.TOP 3
23 KanoPool 1

The data in Table [I] attributes the highest number of blocks to “Unknown”.
This means that the identities of the miners of these blocks are not known. It
is most likely that it is not a single entity which mined these blocks. So in the
computation of the voting powers, it is not appropriate to consider “Unknown”
as a player. Let U be the set of all miners in the group “Unknown”. We handle
the miners in U in the following manner.

Suppose the total weight of the components w is wy out of which the miners
in U have a total weight of w. Suppose that a fraction p of the total weight of
the miners in “Unknown” play to win the game while the other (1 — p) fraction
of the total weight of the miners in “Unknown” try to block the winning. By
considering different values of p in [0, 1], it becomes possible to study the effect of
the “Unknown” miners on the game. To capture this idea we make the following
definition.

Definition 7. Given the game G = (N,w,q), a player U with weight w and
p € [0,1], we define the game G with respect to U as GP) = (N\{U}, wg, ¢P)
where ¢P) = (q-wy — p-w)/(wy —w) and wy is the sum of the weights of all
the players in the original game G. Here wi; denotes the weight vector obtained
from w by leaving out the entry corresponding to U.

The miners in “Unknown” are not present in G?) so the total weight of the
miners in G® is wy — w. To win, a coalition in the original game G needed to
have weight at least ¢ - wy. So in G®), to win a coalition needs to have weight
at least ¢-wy —p - w.

In the game G = (N, w, ¢) obtained from Table|l] there are a total of n = 23
miners with the weight vector w as given in Table [1| and ¢ = 0.95. The value
of wy is 53831 and “Unknown” miners have total weight of w = 13808. In the
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game G®) the group U is removed from the game while the threshold ¢(®) is
modified depending upon the value of p.

5.1 Computation of Voting Powers in the Rule Game

There is a large literature suggesting a variety of indices on how to measure the
power or influence of a player in a voting game. We refer to [I8] for discussions
on this vast subject and to [LI] for a textbook level introduction. We consider
the Coleman preventive power measure which has been defined in [14]. Under
this measure, the power of a player A; in a game G is defined as follows.

CPa(Ai) = ZVGV({Z;-

The value of CPg(A4;) is at least 0 and at most 1. We get CP&(A;) = 0 if and
only if A; is not a swing in any coalition (a dummy player with mg(A4;) = 0).
We have CPg(A;) = 1 if and only if A; is present in every winning coalition
(a blocker with mg(4;) = #W(G)). Further, CP¢(4;) is monotonically non-
decreasing with the weight of A;. For the Rule Game, the property of a miner
being a blocker is of crucial interest. To the best of our knowledge, among the
various power measures available in the literature, CP is the only power measure
which assigns the maximum value of 1 to a blocker and is monotonically non-
decreasing with the weights of the players. Due to these two reasons, we suggest
that CP is an appropriate measure for measuring the power of a player in the
Rule Game.

Let G = (N, w,q) where the sum of the weights of all the players in G is
wy. Let U be a player with weight w. For p € [0,1] consider the game G
with respect to U. A player A; in G) of weight w; is a blocker if and only if
w; > (1 — @wn + (p — 1)w. So whether a player is a blocker depends on the
value of p. It may happen that for a certain value of p, the player is a blocker,
but, fails to be a blocker for a different value of p. For a specified value of p, the
set of blockers in G(®) is fixed.

We consider the game G®) for various values of p. The power profile given
by CP for G(?) for various values of p is shown in Table [2| In Table 2| a value of
1 in the (¢, p) cell indicates that player number i is a blocker in G®) For p=0,
when none of the “Unknown” miners support the protocol change, the largest
7 miners are blockers (the protocol cannot be changed without their support)
while the remaining 15 miners are all dummies with no say in the matter. As p
increases, the number of blockers decreases. In Table [2| the numbers of blockers
are 7,5, 5, 2, and 1 corresponding to the values of p = 0,0.1,0.2,0.3 and 0.4. For
the other values of p, none of the known players are blockers. As the fraction of
miners in “Unknown” who support the protocol change increases, the blocking
capability of the other players go down. More generally, in Table [2] with increase
in p, the power of any particular player decreases monotonically.



Cryptocurrency Security and Protocol Stability Voting Games 15

Table 2. Values of the Coleman preventive power index of the different players in the
Rule Game for July 2021 to June 2022 and for various values of p.

p
player# player wt 0 0.1 02 03 04 5 06 07 08 09 1
02 AntPool 8287 1 T T T T 0.941 0.864 0.876 0.759 0.731 0.641
03 F2Pool 7454 1 1 1 1 0.998 0.799 0.864 0.711 0.719 0.603 0.621
04 ViaBTC 6078 1 1 1 0.996 0.716 0.797 0.635 0.625 0.560 0.548 0.409
05 Binance 5645 1 1 1 0.913 0.713 0.783 0.593 0.580 0.527 0.457 0.408
06 Poolin 4810 1 1 1 0.536 0.713 0.494 0.591 0.488 0.478 0.383 0.364
07 Foundry USA Pool 3204 1 0.959 0.335 0.518 0.435 0.465 0.354 0.338 0.242 0.282 0.244
08 SlushPool 2955 1 0.780 0.332 0.518 0.435 0.405 0.328 0.308 0.241 0.252 0.222
09 Huobi 331 0 0.117 0.001 0.044 0.007 0.061 0.018 0.049 0.023 0.042 0.017
10 SBICrypto 325 0 0.117 0.001 0.043 0.007 0.060 0.018 0.048 0.023 0.042 0.016
11 EMCD 261 0 0.094 0.001 0.038 0.007 0.047 0.014 0.037 0.017 0.032 0.013
12 Bitdeer 212 0 0.076 0.001 0.031 0.007 0.039 0.012 0.030 0.015 0.026 0.011
13 MaraPool 142 0 0.057 0.001 0.022 0.005 0.026 0.007 0.020 0.009 0.017 0.007
14 OKEX 139 0 0.056 0.001 0.022 0.005 0.025 0.007 0.019 0.009 0.017 0.007
15 BTC.com 113 0 0.045 0.001 0.017 0.004 0.020 0.006 0.016 0.008 0.014 0.006
16 SpiderPool 34 0 0.017 0.001 0.008 0.001 0.007 0.001 0.005 0.002 0.004 0.001
17 Solo CKPool 90 0.002 0 0.001 0 0.002 0.001 0.001 0.001 0.001 0.001
18 50BTC 60 0.001 0 0.001 0 0.001 0 0.001 0.001 0.001 0
19 SigmaPool 6 0 0.001 0 0.001 0 0.001 0 0.001 0.001 0.001 0
20 OKKONG 50 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0
21 mmpool 30 0.001 0 0 0 0.001 0 0 0 0 0
22 BTC.TOP 30 0.001 0 0 0 0.001 0 0 0 0 0
23 KanoPool 10 0 0 0 0 0 0 0 0 0 0
Zblockers 7 5 5 2 T 0 0 0 0 0 0

5.2 Computation of Security in the Attack Game

As in the Rule Game, the role of the miners in the group marked “Unknown” is
tackled by considering the game G(P) for various values of p. This indicates that
a fraction p of the total weight of the miners in “Unknown” are trying to attack
the system while a fraction 1 — p of the total weight of the miners in “Unknown”
do not form part of any such attack coalition.

The cardinality wise number of minimal winning coalitions in G® for dif-
ferent values of p are shown in Table [3] The value of 0 means that there is no
minimal winning coalition for the particular values of ¢ and p. There is, however,
a nuance in the interpretation of this condition. For ¢ < 3, the value 0 denotes
that there is actually no winning coalition in the game while for ¢ > 16, the
value 0 denotes that the winning coalitions are not minimal, i.e., dropping any
miner from the coalition does not convert it into a losing coalition. We have the
following observations from Table

1. There is no winning coalition of cardinality 1 of known miners. So a coalition
of at least 2 known miners along with more than 80% of the unknown miners’
weight is required to win the Attack Game.

2. If 50% of the weight of the “Unknown” miners can be roped in then there
are 3 minimal winning coalitions of the other 22 miners of cardinality 3.

3. There are several minimal winning coalitions of cardinalities 4 (or more) that
do not require any unknown miner to win the Attack Game. So the system is
vulnerable if 4 miners collude. In fact, there are 22 different ways of forming
a set of 7 miners (without the “Unknown” miners) which can compromise
the system. Given that the Bitcoin market is worth billions of dollars, the
thought that there are multiple ways to form a malicious coalition of only 7
miners (all mining pools) is disconcerting.
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4. In general, as p increases, the number of minimal coalitions initially increases
and then decreases. The increase indicates that the number of winning coali-
tions itself goes up while the decrease indicates that some of the winning
coalitions fail to remain minimal.

Table 3. Cardinality wise number of minimal winning coalitions in G® for the time
period July 2021 to June 2022 of Table

D
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0 0 0 0 0
0 0 0 0 1 3
0 3 6 11 18 19 24
25 15 17 12 20 10 25
17 13 26 17 53 44 48
19 47 30 38 47 44 29 36
45
44
55

15 59 53 31 58 33
37 48 50 64 65 7
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13 73 51 48 45 88 41 45 9 13 1
14 26 64 31 22 52 11 31 1 18 7
15 14 34 36 8 10 9 5 1 5 1
16 4 20 9 0 9 1 0 0 1 0
17 1 8 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0
Total|512 522 489 600 678 667 509 608 395 529 225

In Table[d] we provide the cardinality wise number of minimal winning coalitions
containing the largest miner AntPool. It is possible to compute similar data for
all the individual players and their subsets. From the totals of the first columns
of Tables [3] and [4] we see that there are 512 — 362 = 150 minimal winning
coalitions of miners other than the largest miner AntPool and the “Unknown”
miners in the Attack Game. Table [d] shows that if 50% of the “Unknown” miners
can be roped in, then AntPool can form possible coalitions consisting of itself
and just 2 of the other 22 miners to win the Attack Game. On the other hand,
if coalitions of size 4 or more are considered, then AntPool can form several
winning coalitions in the Attack Game without involving any of the miners
in “Unknown”. Again, this is not a very comfortable scenario. Note that for
p =0, mws({Antpool}) = 0 although mwy({Antpool}) > 0. This means that the
winning coalitions of cardinality 5 are not minimal.

(L, c1,c)-security: For a set L of large miners, we consider (L, ¢1, ¢)-security in
G®) for different values of p. We have considered several options for L, namely,
L consists of the miners with ¢ of the largest weights where we have taken
i=1,2,3,4,5 and 6. The value of ¢; is in the set {0,1,...,4}. In each case, we
have computed the corresponding value of c. Table [5] provides values of ? such
that G is (L, c1,¢1 + 0 — 1)-secure for different values of p and ¢;. This means
that ¢; largest miners in L need to collude with at least d miners outside of
L to win the Attack Game. In the table, a ‘=’ denotes that there is no winning
coalition for the corresponding condition whereas a ‘x’ denotes that any coalition
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Table 4. Cardinality wise number of minimal winning coalitions containing the largest
miner AntPool for Table |I| in G®),

D
3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 3
2 0 0 0 0 0 3 5 8 12 9 3
3 1 3 6 10 22 8 9 6 8 0 3
4 8 6 12 10 14 12 26 17 35 25 20
5 0 0 19 19 32 30 36 47 34 27 15
6 2 0 2 4 22 11 33 43 20 35 25
7 26 10 16 21 2 3 15 21 30 44 2
8 35 36 17 28 11 17 9 18 31 53 0
9 41 46 16 40 18 34 21 22 18 64 8
10 57 64 25 43 7 26 4 19 7 33 3
11 75 49 25 43 2 11 0 18 3 4 1
12 72 24 18 24 0 17 1 10 O 6 0
13 26 45 1 17 9 12 0 0 0 1 0
14 14 29 5 21 8 2 0 0 0 0 o0
15 4 13 1 9 0 4 0 0 0 0 0
16 1 2 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 o0
18 0 0 0 0 0 0 0 0 0 0 o0
19 0 0 0 0 0 0 0 0 0 0 o0
20 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0
Total|362 327 163 289 147 190 159 229 198 302 83

of size ¢; of L is already a winning coalition in G(®). Based on Table |5, we make
the following observations.

1.

Case #L = 4 and ¢; = 0. All corresponding entries in the table are ‘—’. This
means that if the largest four miners are left out, then there is no way to
win the Attack Game. In other words, the set of four largest miners form a
minimal blocking coalition. So any attack on the system certainly involves
one of the four largest miners. As mentioned earlier, this fact contains useful
information. If an attack is detected in the future, then one can be sure that
at least one of the four largest miners was certainly part of the attack.

. Case #L =5 and ¢; > 5. All corresponding entries in the table are marked

by ‘«’. Similarly, for #L = 6. This means that if five (or more) of the largest
miners collude, then the Attack Game is immediately won.

Case #L = 3 and ¢; = 0, i.e., the three largest miners are left out. The
entries for p < 0.6 are ‘. This means that if less than 60% of the hash rate
of “Unknown” miners are involved in the attack, then the attack cannot
be successful. On the other hand, the entry for p = 0.7 is 9. This means
that if 70% of the hash rate of the “Unknown” miners are involved in the
attack, then leaving out the three largest miners, a coalition of 9 of the other
23 — 1 — 3 = 19 miners is both necessary and sufficient to win the Attack
Game.

Case #L =4 and ¢; = 3 and p = 0.4. The corresponding entry in the table
is 1. The condition #L = 4 and ¢; = 3 means that out of the four largest
miners, one is left out. If 40% of the miners in “Unknown” can be roped in,
then out of the 19 other miners, it is necessary and sufficient to have only 1
miner to win the Attack Game.

Case #L =5, ¢; = 1 and p = 0.9. The corresponding entry in the table is 4.
The condition #L = 5 and ¢; = 1 means that out of the five largest miners,
four are left out. If 90% of the miners in “Unknown” can be roped in, then
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out of the 7 other miners, it is necessary and sufficient to have only 4 miners
to win the Attack Game.

6. Consider the cases (#L =5,¢3 =3, p=0) and (#L =6, ¢; =3, p=0).
The corresponding entries in the table are 2 and ‘—’. This may appear to be
surprising, since in both cases ¢; = 3. The explanation is that in the first
case, out of the five largest miners, two are left out, while in the second case,
out of the six largest miners, three are left out. Since in the second case,
more miners are left out, that leads to the absence of any (minimal) winning
coalition.

Table 5. The entries in the table are ? such that G is (L, c1,¢14+0—1)-secure where L
consists of the miners with the i largest weights as given in Table[I]for i = 1,2, 3,4, 5, 6.
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6 Conclusion

Protocol stability and security play extremely important roles in the socio-
economic dynamics of any proof-of-work cryptocurrency. In this work, we have
modelled these two key functional aspects using weighted majority voting games.
Our modelling immediately allows the rich tools from the theory of voting games
to be used for analysis of cryptocurrency systems. As a practical contribution, we
have shown how to perform concrete snapshot analysis on the games using such
tools. We suggest that such analysis be performed at regular intervals to build a
good understanding of the socio-economic dynamics of proof-of-work cryptocur-
rencies like Bitcoin. Wide dissemination of the results of such periodic analysis
will help the general public to understand and appreciate the risks involved in
using and investing in cryptocurrencies. This will also place the usually small
number of parties who can compromise the system under intense public scrutiny
and hopefully prevent any malicious behaviour. We also hope that this work will
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stimulate interest in the connection between cryptocurrencies and voting games
leading to further interesting work on the intersection of these two topics.
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