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Abstract. Reconnaissance activities precedent other attack steps in the
cyber kill chain. Zero-day attacks exploit unknown vulnerabilities and
give attackers the upper hand against conventional defenses. Honeypots
have been used to deceive attackers by misrepresenting the true state of
the network. Existing work on cyber deception does not model zero-day
attacks. In this paper, we address the question of ”How to allocate hon-
eypots over the network?” to protect its most valuable assets. To this
end, we develop a two-player zero-sum game theoretic approach to study
the potential reconnaissance tracks and attack paths that attackers may
use. However, zero-day attacks allow attackers to avoid placed honey-
pots by creating new attack paths. Therefore, we introduce a sensitivity
analysis to investigate the impact of different zero-day vulnerabilities on
the performance of the proposed deception technique. Next, we propose
several mitigating strategies to defend the network against zero-day at-
tacks based on this analysis. Finally, our numerical results validate our
findings and illustrate the effectiveness of the proposed defense approach.
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1 Introduction

The cyber kill chain defines seven stages of cyber attack that end with gaining
control of a system/network and infiltrating its data [1]. The first stage is the re-
connaissance stage in which an adversary collects valuable information regarding
the network topologies, structures, node features, and the important assets of
the system. To achieve this goal, an attacker may use active sensing techniques
and/or passive sensing techniques. The latter can observe traffic between servers
and clients to infer information from packet length, packet timing, web flow size,
and response delay [2], it is difficult to detect and is invisible to the hosts running
the services and can be difficult to be detected by conventional IDS. Active prob-
ing attacks send packets to a host and analyze its response. Hence, the attacker
learns the system information and vulnerabilities [3]. The active reconnaissance
is faster and identifies open and unprotected ports [4]. On the other side, it is
more aggressive and intrusive, and hence can be detected. Also, attackers may
mix between active and passive attacks during the reconnaissance stage. Game
theory provides a suitable framework for modeling attacks and defense against
several attacks [5,6,7].

Cyber deception: Cyber deception is an emerging proactive cyber defense
technology it provides credible yet misleading information to deceive attack-
ers. Deception techniques have been used in the physical space as a classical
war technique. However, deception has recently been adopted into cyberspace
for intrusion detection and as a defense mechanism [8]. Cyber deception shares
some characteristics of non-cyber deception and follows similar philosophical and
psychological traits. Successful deception relies on understanding the attacker’s
intent, tools and techniques, and mental biases. The first step to achieve this
deep level of understanding is to act proactively aiming to capture the attacker
and exploit the opportunity to monitor her behavior. For that purpose, honey-
pots are effectively used as fake units in the system/network that deceive the
attacker and allow the defender to study her attack strategy, and intent in order
to design a better deception scheme.

Honeypots: Among many other techniques, honeypots are widely used for
cyber deception. Honeypots are fake nodes that can mislead attackers and waste
their resources. They are categorized into two levels, namely low-interaction hon-
eypots and high-interaction honeypots. Low interaction honeypots can memic
specific services and are virtualized, and hence they are easier to build and
operate than high interaction honeypots. However, they can be detected by ad-
versaries more easily [9].

Attack Graph: An attack graph (AG) is a graph-based technique for attack
modeling. Attack modeling techniques model and visualize a cyber-attack on a
computer network as a sequence of actions or a combination of events [10]. Attack
graphs (trees) are a popular method of representing cyber-attacks. There exist
no unique way to instantiate attack graphs, authors in [10] surveyed more than
75 attack graph visual syntax and around 20 attack tree configurations. A key
challenge of generating attack graphs is the scalability [11]. None of the existing
works has shown that the graph generation tool can scale to the size of an
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enterprise network. In this work, we consider a simplified attack graph where
each node represents a vulnerable host in the network (i.e., it suffers one or
more vulnerabilities), and edges on the attack graph represent specific exploits
that provide reachability to the attacker from one host to another. In this sense,
the graph scale is in the order of the size of the original network. Although
this model does not explicitly model each vulnerability in the network, however,
it sufficiently illustrates the attack paths that can be exploited by adversaries
which are an essential input to generating optimal honeypot allocation policy.
However, attack graphs can not directly model zero-day attacks since it remain
unknown to the graph generating tool. Therefore, we propose parallel

Zero-day attack: The challenge with defending against zero-day attacks is
that these attacks exploit a vulnerability that has not been disclosed. There is
almost no defense against exploiting such unknown vulnerability [12]. In this
work, we leverage attack graphs to model potential zero-day attacks. If the con-
sidered network suffers a zero-day vulnerability then the corresponding attack
graph will have some edges and hence attack paths that are unknown to the
defender. Moreover, zero-day attacks are used for carrying out targeted attacks.
To the best of our knowledge, this represents a new framework to proactively
defend against zero-day attacks via strategic honeypot allocation based on game
theory and attack graphs.

Contributions: In this paper, we propose a cyber deception technique us-
ing strategic honeypot allocation under limited deception budget. We consider
a game theoretic approach to characterize the honeypot allocation policy over
the network attack graph. We then evaluate the deception allocation policy un-
der zero-day attacks by introducing several vulnerabilities to the attack graph
and study the sensitivity of the different potential vulnerabilities on the attacker
and defender game reward. In our analysis, the defender has no information re-
garding the zero-day vulnerability. We identify the most impactful vulnerability
location and introduce several mitigating strategies to address the possible zero-
day attack. The developed game model accounts for the network topology and
different importance to each node. We summarize our main contribution below:

– We formulate a deception game between defender and attacker to study the
effectiveness of cyber deception against lateral move attacks. The game is
played on an attack graph to capture relation between node vulnerabilities,
node importance, and network connectivity. We characterize a honeypot allo-
cation policy over the attack graph to place honeypots at strategic locations.

– We evaluate the proposed deception approach against zero-day attack under
asymmetric information where the attack graph is not fully known by the
defender. We conduct sensitivity analysis to identify critical locations that
have major impact on the deception policy in place.

– We present three mitigating strategies against zero-day attacks to readjust
the existing honeypot allocation policy based on the conducted analysis.

– Finally, we present numerical results for the developed game model to show
the effectiveness of cyber deception as well as the zero-day attack mitigating
strategies.
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The rest of the paper is organized as follows. We discuss related work in
section 2. In section 3, we present the system model, define the game model,
and propose our deception approach.In section, 5 we present zero-day attack
mitigating strategies. Our numerical results is presented in section 6. Finally, we
conclude our work and discuss future work in section 7.

2 Related work

Our research builds upon existing work on cyber deception and games on attack
graphs to model zero-day attacks and characterize game-theoretic mitigation
strategies.

2.1 Cyber Deception GT:

Game theoretic defensive deception [13] has been widely discussed in cyberse-
curity research. Authors in [14] presented a deception game for a defender who
chooses a deception in response to the attacker’s observation, while the attacker
is unaware or aware of the deception. Authors in [15,5] proposed a signaling game
based model to develop a honeypot defense system against DoS attacks. Hyper-
game theory [16] has been used as an extensive game model to model different
subjective views between players under uncertainty. [17] explored hypergames
for decision-making in adversarial settings. Authors in [18],[19] leveraged hyper-
games to quantify how a defensive deception signal can manipulate an attacker’s
beliefs.

2.2 Games on AG:

Game Theory (GT) provides a suitable framework to study security problems
including cyber deception [20]. Modeling the attacker behavior allows the net-
work admin to better analyze and understand the possible interactions that
may take place over cyberspace. Security games are defender-attacker games,
the defender allocates a limited set of resources over a set of targets. On other
hand, the attacker goal is to attack and gain control over these targets [21].
Resource allocation problems are usually modeled as Stackelberg game where
the defender leads the course of play. We consider two-player zero-sum games
acting simultaneously, hence the Nash equilibrium of the game coincides with
that of the Stackelberg game. Moreover, most of the resource allocation prob-
lems considered had no underlying network structure. For the cyber deception
problem considered we play a security game on an attack graph which imposes
a structure on the players reward function and defines the action space for both
players as will be discussed in Section 3.

2.3 Zero-day

A zero-day attack is a cyber attack exploiting a vulnerability that has not been
disclosed publicly [12]. Due to the challenges associated with zero-day attacks,
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authors in [12] conducted systematic study to learn the characteristics of zero-
day attacks from the data collected from real hosts and identify executable files
that are linked to exploits of known vulnerabilities.

Eder-Neuhauser et al. [22] introduced three novel classes of malware that are
suitable for smart grid attacks. Their model provides a basis for the detection of
malware communication to predict malware types from existing data.They sug-
gest proper update and segmentation policies for anomaly detection. However,
such an approach does not capture the dynamics of zero-day attacks or model
its usage in lateral movement attacks.

Al-Rushdan et al. [23] propose zero-day attack detection and prevention
mechanism in Software-Defined Networks, prevent zero-days attack based on
traffic monitoring. However, in practical zero-day attack incidents alter traffic
information to bypass detection systems and traffic monitoring tools. In this
work, we take a first step in modeling zero-day attacks in a strategic approach
using game theory leveraging the existing work on cyber deception on AGs.
We conduct analysis to identify impact of different vulnerabilities and propose
zero-day mitigating strategies for several practical scenarios.

3 System Model

We consider a network represented as a graph G1(N , E) denote the network
graph with a set of nodes N and edges E . Nodes are connected to each other via
edges modeling the reachability and the network connectivity. The defender cat-
egorizes the nodes differently according to the node’s vitality and functionality.
Specifically, there are two distinguishable subsets of nodes, set of entry nodes
E and the set of target nodes T , other nodes are intermediate nodes that an
attacker needs to compromise along the way from the entry node (attack start
node ∈ E) toward a target node ∈ T .

Fig. 1: 7-node tree network topology with single point of entry and two target
nodes (5,7) and zero-day vulnerability(2,3) and (3,5).
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An edge connecting node u and node v, represents an exploitable vulner-
ability that allows an adversary to launch an attack to reach node v from a
compromised node u. In this setting, we adopt a slightly different version of the
attack graph introduced in [24]. In other words, in this graph, each node repre-
sents a host that suffers one or more vulnerabilities that could be exploited to
reach a neighboring node. Hence, the edge models the connecting link that could
be used by malicious users to reach the next victim node. A legitimate user at
node v, will have the right credentials to reach node u. However, an adversary
will only reach u through an exploitable vulnerability. For each node i ∈ N we
assign a value v(i). Hence, G1(N , E1) is an attack graph assumed to be known
to the defender and the attacker.

A zero-day attack vulnerability is exclusively known to the attacker. The
effect of a single zero-day vulnerability is an additional edge. This generates a
different attack graph perceived by the attacker solely. Let G2(N , E2) denote the
attack graph induced via zero-day vulnerability e, such that, E2 = E1 + e. The
attacker plays a game on the graph with an additional edge(s) representing the
zero-day vulnerability. In other words, considering a single zero-day vulnerability
at a time, G2 = G1+{e}, where {e} is the new edge due to zero-day vulnerability.

Fig. 1 denotes 7-node tree attack graph consists of one entry node(1), 4 in-
termediate nodes(2,3,4,6) and 2 target nodes(5,6). In this network, one available
path for reaching every target nodes. However, with two zero-day vulnerabili-
ties(2,3) and (3,5) increases the available attack path to every target node form
attacker perspective.

3.1 Defender model

The defender allocates one or more honeypots along the network edges as fake
vulnerabilities to capture malicious traffic and illegitimate users. Let H de-
note the honeypot budget. The defender’s action is to allocate up to H hon-
eypots over the different edges. Therefore, the defender action space Ad ={
e ∈ 2E | eT 1 ≤ H

}
. Where, e is a binary vector of length |E|, such that the

ith entry e(i) = 1 indicates a honeypot is allocated along the ith edge, and is set
to zero otherwise. The defender incurs a cost associated with each action that
takes into account the number of allocated honeypots. Otherwise, the defender
will always max out the number of allocated honeypots. Let Cd denote the cost
per honeypot. Hence, the total cost is Cd × ∥ad∥1, where ∥ad∥1 is the number
of honeypots allocated by ad. The defender tries to reduce the attacker reward
via placing more honeypots at the edges of high potential that are attractive to
attacker, while reducing the total deception cost.

3.2 Attacker model

The attacker is assumed to launch a targeted attack. Therefore, she selects one
of the possible attack paths to reach a target node to maximize his/her expected
reward. Hence, the attacker’s action space, Aa, is the set of all the possible attack
paths starting at an entry node u ∈ E to a target node v ∈ T . The attacker pays
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an attack cost that depends on the selected attack path. We consider a cost due
to traversing a node in the attack graph denoted by Ca. The attacker faces a
tradeoff between traversing through important nodes while reducing his overall
attack cost.

3.3 Reward function

We define the reward function to capture the the tradeoff that faces each player.
For each action profile played by the defender and attacker (ad, aa) ∈ Ad ×Aa,
the defender receives a reward Rd(ad, aa) and the attacker reward is Ra(ad, aa).
The defender is interested in protecting specific nodes than others. Recall that
each node i ∈ N is assigned a value v(i) that reflect its importance for the
attacker, the defender gains more by protecting high valued nodes. On the other
hand, the attacker reward increases when attacking nodes of high values along
the selected attack path.

The defender reward is expressed as:

Rd(ad, aa) =
∑
i∈aa

Cap · v(i) · 1{i∈ad} − Esc · v(i) · 1{i/∈ad}

−Cd · ∥ad∥1 + Ca(aa) (1)

where Cap denotes the capture reward received by the defender when the
attacker hits a honeypot along the selected attack path aa. Esc is the attacker
gain upon successful attack from one node to another in the way toward the
target node. Finally, Cd and Ca(aa) are the cost per honeypot, and attack cost,
respectively. The attack cost is proportional to the length of the attack path as
the attacker could become less stealthy due to numerous moves. We consider a
zero-sum game where Ra +Rd = 0. Now we readily define a two-player zerosum
game Γ (P,A,R), where P is the set of the two players (i.e., defender and at-
tacker). The game action space A = Ad ×Aa as defined above, and the reward
function R = (Rd, Ra).

Due to the combinatorial nature of the action spaces in terms of the network
size, characterizing a Nash equilibrium (NE) in pure strategy is challenging.
However, the finite game developed above, holds a NE in mixed strategies. Let
x1 and y1 denote the mixed strategies of defender, and attacker, when the game
is played on known-to-all graph, G1. The defender expected reward of game 1
(i.e., game on G1 with no zero-day vulnerabilities) is expressed as:

Ud(G1) = xT
1 Rd(G1)y1 (2)

where Rd(G1) is the matrix of the game played on G1 and the attacker expected
reward Ua(G1) = −Ud(G1). Both defender and attacker can obtain their NE
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mixed strategies x∗
1 and y∗

1 via a linear program (LP) as follows,

maximize
x

Ud

subject to
∑

ad∈Ad

Rd(ad, aa)xad
≥ Ud, ∀aa ∈ Aa.∑

ad∈Ad

xad
= 1, xad

≥ 0,

(3)

where xad
is the probability of taking action ad ∈ Ad.

Similarly, the attacker’s mixed strategy can be obtained through a minimizer
LP under y of Ud.

4 Zero-day Vulnerability Analysis

We conduct a zero-day vulnerability analysis by modifying the original graph
G1 via considering one vulnerability at a time. The goal of this analysis is to
identify the most critical zero-day vulnerability in terms of the impact of each
vulnerability to the attacker’s reward against a base deception strategy. The base
deception strategy is x1 that is obtained from the game played on G1. In other
words, the attacker expected reward is Ua(G1) = xT

1 Ra(G1)y1, for any game 1
mixed strategies x1 and y1, and Ua(G2) = xT

2 Ra(G2)y2 for the game played on
G2. The game played under G1 is referred to as game 1, and the game played
on G2 is referred to as game 2. Where, x2 and y2 denote the mixed strategies of
the game played on the G2 graph (i.e., under zero-day vulnerability).

However, x2 is infeasible in practice for the defender since the defender has
no information about the zero-day vulnerability nor its location. However, the
attacker’s action space expands to contain additional attack paths induced by
zero-day vulnerabilities. Each of these vulnerabilities may produce one or more
new attack path leading to the target node.

Although the defender does not actually know that the network suffers a zero-
day vulnerability at a specific location, he may have the knowledge that such
vulnerability exists. Therefore, the attacker is not fully certain that this specific
vulnerability is unknown to the defender. The attacker uncertainty regarding the
defender knowledge leads to two possible game settings and hence two evaluation
criteria as follows:

– The first criterion considers an attacker that uncertain whether his opponent
knows about the zero-day vulnerability. In fact, the defender has no such
information, yet the attacker accounts for some infeasible defender actions.
We refer to this criterion as ’optimistic’. Hence, the expected game value for
the attacker, Uopt

a (G2) = x̂T
1 Ra(G2)y2, where x̂1 is a mixed strategy adopted

from x1 and padded with zeros to ensure proper matrix multiplication while
it zero-enforce infeasible actions for the defender.
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– Secondly, we consider a ’pessimistic’ criterion, where the attacker is certain
that the defender does not know the zero-day vulnerability. Hence, the de-
fender action space is exactly similar to game 1. The expected reward is
Upes
a (G2) = xT

1 Ra(G2)y2. This pessimistic criterion is referred to as game 3.

Remark 1. Considering one zero-day vulnerability at a time allows the defender
to study the impact of each vulnerability separately, reduces the game com-
plexity, and enables parallel analysis by decoupling the dependencies between
different vulnerabilities.

As explained above, we augment zeros to x1 to restrict the defender honeypot
allocation strategy and make the defender strategy consistent with the Ra(G2)
matrix.
Let, x1 = [x0, x1, x2, · · · , xr], and x̂1 = [x0, x1, x2, · · · , xr, · · · , xn]. Hence, x̂1 =[
x1, · · · , xn

]
, where n ≥ r, and value of all strategies from xr+1 to xn will be

zero after sorting the corresponding actions in x̂1. For the pessimistic case (i.e.,
game 3), the defender is forced to play the base deception strategy x1 in which
he also deviates from the NE of game 3.

We solve one game corresponding to each zero-day vulnerability. Assume we
have a set of possible zero-day vulnerabilities E0 such thatG2(e) = G1+e ; ∀e ∈
E0. For each game we record the expected attack reward, hence we sort the
vulnerabilities to find the most impactful that results in the highest increase of
the attacker’s reward.

Without loss of generality, assuming the new vulnerability introduced one
new pure strategy ae for the attacker (if e ∈ E0 induces more than one new
attack path, we select ae to be the path that has higher reward), then we can
establish the following theorem.

Theorem 1. For the game Γ defined in Section 3, given any base policy of the
defender x, for the new attacker pure strategy ae:

y2 [ae] = 1 ; if Ua(x, se) > Ua(x,¬ae)
y2 [ae] = 0 ; if Ua(x, ae) < Ua(x, aa) ∀aa ∈ supp{y1} and Ua(x, ae) <
Ua(x,y1).

Proof. The proof follows strong dominance definition [25].

In Theorem 1, we characterize two main conditions: (1) when the zero-day vul-
nerability generates a new attack path that strongly dominates every other ex-
isting attack path and (2) when it is being dominated by every path in terms of
both pure and mixed strategy.

5 Zero-day mitigating strategies

The defender takes additional actions to mitigate the possible zero-day vulner-
ability exploits. The performed game-theoretic analysis identifies the impact of
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each vulnerability, and the attacker’s strategy for exploiting such vulnerability.
The defender does not know which of the vulnerabilities will take place. However,
to mitigate the zero-day attack, the defender allocates an additional honeypot.
We consider four different strategies such as impact-based, capture-based, worst
case mitigation, and critical point analysis to select the location of the new
mitigating honeypot.

5.1 Impact-based mitigation (Alpha-mitigation)

First, we allocate based on the impact of each zero-day vulnerability. The impact
measures the increase of the attacker reward due to each introduced vulnerability,
e ∈ E0, where E0 is the set of zero-day vulnerabilities. We allocate the new
honeypot to combat the most impactful vulnerability such that, Ua(G2(e)) is
the highest. The defender may allocate more honeypots following the same order
of impact of each e ∈ E0. In this mitigating strategy, we assume no information
is available to the defender about which vulnerability is introduced. In the next
subsection, we consider the probability of each of these vulnerabilities. In Section
6, we shed more light on the formation of the set of zero-day vulnerabilities E0
overcoming the possible explosion in its carnality and applying several rules
to exclude dominated elements that are obviously useless or infeasible to the
attacker.

5.2 Capture-based mitigation (LP-mitigation)

In the previous strategy (i.e., Alpha-mitigation), the defender does not account
for the probability that a zero-day vulnerability may occur. Let P (e) denote
the probability that a vulnerability located at edge e ∈ E0 exists. The impact
of such vulnerability is denoted by i(e), where the impact is the innovation in
reward received by the attacker due to exploiting e on G1+{e} compared to the
attacker’s reward on G1. Let J(x) denote the cost function for the defender as
follows:

J(x) =
∑
e∈E0

P (e) · i(e) · (1− y(e) · x(e)) (4)

where y(e) is the probability that e ∈ E0 is exploited during an attack, and
x(e) is the unknown probability to assign honeypot at e.

The goal of the defender is to find x ∈ [0, 1]
|E0| that minimizes the cost

function J(x). This results in a linear program that can be solved efficiently. The
outcome of this LP will pick the location e, of the highest impact and most likely
to occur (i.e., argmaxeP (e) · i(e)). However, since the defender may not know
the probability of existence priorly, we consider a worst-case scenario. In other
words, we assume that nature will play against the defender and try to minimize
its reward. Hence, the defender mitigating strategy should be characterized in
response to the selection of the nature that can be obtained by solving a max-min
problem as discussed next.
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Worst-case mitigation (play against Nature): After identifying the
most impactful vulnerability location or set of vulnerabilities by doing graph
analysis defender does not sure about which zero-day vulnerabilities the at-
tacker is going to exploit. Therefore, we do game formulation to find defender
mitigating strategies based on the available information of the high impactful
locations.

The attacker chooses one vulnerability at a time to exploit and selects a
possible attack path associated with that vulnerability. Hence, the attacker’s
action space, An, is the set of all possible zero-day vulnerabilities, and defender
action space,Amd, is the set of all possible high impacted locations. This problem
is formulated as an auxiliary game played between the defender and nature.

For each action profile played by both players (amd, an) ∈ Amd×An, the de-
fender receives a reward Rmd(amd, an) after zero-day attack mitigation and the
attacker reward is Rn(amd, an). When the attacker selects vulnerability and the
defender selected high impact location, does not match the defender’s mitigating
reward simply comes from the defender expected reward based on which crite-
ria we are following. When they match we just follow Eqn.(1) based on which
attack path and honeypot allocation are selected by the attacker and defender
respectively.

The defender reward is expressed as

Rmitigate
d (G1) =

{
Ud(G2) or Ud(G3) i ̸= j

Rmitigate
d (amitigate

d , an) i = j

We consider a zero-sum game. Let xmitigating and ynature denote the mit-
igating strategies of defender, and nature mixed strategies, when the game is
played on known-to-all graph, G1. The defender expected reward in worst case
mitigation play against nature is expressed as:

Umitigate
d (G1) = xT

mitigatingR
mitigate
d (G1)ynature

whereRmitigate
d (G1) is the matrix of the game played onG1 and the nature(attacker)

expected reward Un(G1) = −Umitigate
d (G1).

This game has played over high impact locations in graph and gives defender
mitigating strategies which location to focus for mitigation and nature mixed
strategies what location attacker may choose to exploit. After having defender
mitigating strategies and nature mixed strategies of the attacker, any mitigation
approaches can run and eventually evaluate over it.

5.3 Critical point mitigation

Previously, we specified a honeypot to combat zero-day attacks in addition to the
honeypots used via the defender’s base deception policy. Now aim at modifying
the base deception policy itself to combat the zero-day attack given the outcome
of our analysis of the impact associated with each zero-day vulnerability. An
insightful observation is that the defender tends to greedily deploy honeypots
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in locations that are closer to the target nodes in the network. However, when
the attacker chooses a different path to attack and reach the target node, this
approach does not help. It is worth noting that, in defending against zero-day
attacks, when the defender selects a location that protects high-degree nodes
(this is captured in node values v(i)) that belong to multiple attack paths while
being far from target nodes, the defender successfully captures the attacker more
often. Interestingly, high-impact locations align with high-degree locations to be
protected more often following Nash equilibrium deception strategies.

These observations led us to conduct critical point mitigation to find over-
lapping locations in the graph. In critical point mitigation, we choose one of the
high impacted locations which is also an overlapping location where we deploy
mitigation. After having critical points we increase the cost of accessing these
points, consequently re-run the game on increased cost locations to find updated
defender strategies and align optimistic and pessimistic defender strategies based
on the updated defender strategies.

In our critical point mitigation, we modify the base policy of the defender, x1,
as we do not deploy additional honeypots. After identifying the most impactful
vulnerability locations, we increase node values of the nodes most affected (i.e.,
neighbors) by such vulnerabilities. This shifts the defender’s attention to these
locations and in turn, results in a modified base policy (which we refer to as
critical point mitigation) that considers the significance of these nodes. We show
that critical point mitigation increased the capture rate of attackers when tested
in different settings such as increased number of honeypots, different vulnerable
entry nodes, and target nodes.

6 Numerical Results

In this section, we present our numerical results to validate the proposed game-
theoretic model. We evaluate our analysis of zero-day vulnerability and the pro-
posed mitigating strategies. First, we present game results to identify impact
of possible zero-day vulnerabilities for the optimistic and pessimistic defender.
Second, we show the results of the proposed deception and mitigation strategies.
Finally, we discuss our findings, limitations, and future directions of our current
research.

6.1 Experiment:

The initial honeypot allocation strategy follows the Nash equilibrium of the
game model (game 1). We formulate the problem as a zero-sum game, solve the
game defined in Section 4 and find the Nash equilibrium in terms of the mixed
strategies, x∗ and y∗, for the defender and attacker strategies, respectively.

For the analysis of the potential impact of zero-day vulnerabilities, we con-
sider a 20-node network topology with 22 edges shown in Fig. 2. The 20-node
network topology shown in Fig. 2 represents an attack graph with multiple root
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node (i.e., the entry node E = {0, 1, 2}). In this scenario we define the set of
target nodes as three nodes, T = {18, 19, 20}.

To form the set of zero-day vulnerabilities E0, we analyze our 20 nodes net-
work topology. If we consider all possible new edges in the network which is
impractical as time complexity is n2 for n nodes network. Since the vulnerabil-
ity analysis is independent between different elements in E0, it can run in parallel
computing nodes to reduce the run-time. Moreover, some locations are practi-
cally infeasible or useless to the attacker. We implemented a set of rules that
excluded useless edges and edges that do not benefit our analysis. For instance,
we excluded edges leading to dead-end nodes and edges from nodes that are
unreachable from any attack path. Also, direct edges between targets and entry
nodes are dominant edges without further analysis.

Fig. 2: Network topology of 20 nodes with blue red, and yellow color for entry,
target and intermediate nodes respectively

We compare the Nash equilibrium strategy for honeypot allocation with ex-
isting attack policies to illustrate the effectiveness of our proposed cyber decep-
tion approach. For that, we observe defender and attacker gain under different
conditions. Fig. 3 illustrates how defender reward change on several conditions
including escape reward of honeypot and capture cost of the attacker.

Fig. 3a shows the defender reward against different cost values for escaping
a single honeypot in the network over different attack policies. We also compare
the Nash equilibrium reward against the greedy and random attacker. A greedy
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attacker always selects nodes that have the highest values to attack regardless
of their cost. A random attacker does not that informed about network that is
unable to distinguish between possible attack paths and hence uniformly selects
among available attack paths.

When the attacker deviates from equilibrium strategies y∗, such as choosing
greedy or random strategies, the defender reward tends to be higher or the same.
For low Esc values, defender reward against greedy attacker higher compare to
Nash equilibrium which less motivates an attacker to play rational strategies. On
the other hand, high Esc values lure the attacker to take more risk in attacking
valuable nodes, and as a consequence a gradual decrease in defender reward.

Fig. 3b shows a linearly increase in defender reward for different attacker
policies. For high cap values, defender reward increases if the attacker deviates
from rational strategies.
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(a) Defender reward versus attacker
cost of escaping a honeypot.
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Fig. 3: Defender reward over different Cap and Esc values.

In addition, we also examine attacker’s reward against different defender
policies to deceive attacker and protect the network. Fig. 4 shows how attacker
gain decreases as the number of honeypots increases and its dependence on the
entry nodes.

In Fig. 4a we plot the average attack reward for different defender policies on
honeypot budgets. We compare the performance of our optimal allocation with
the greedy allocation that always allocates honeypots in the path of highest
values nodes and random policies where defender uniformly select one node to
protect rather than considering network topology analysis. The analysis of Fig.
4a illustrates that the optimal budget of honeypot in this network is three or more
honeypots, as it dramatically reduces the effect of the attack. Also deploying 3
or more honeypots is very costly.
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Fig. 4: Attacker reward over different condition such as variation in honeypot
number and compromised entry node.

In our 20-node network, three entry nodes are compromised at the start of
the attack, so the attacker can attack using all possible existing paths in the
network starting from any of the compromised entry nodes. We also plot the
attacker’s reward for a different number of compromised nodes in the network
as shown in Fig. 4b over different defender policies. Here greedy and optimal
allocation produces the same magnitude result.

Both Fig. 3 and Fig. 4 illustrate that deviating from Nash equilibrium
and selecting some naive policies would not be optimal. Developing optimal
mitigating strategies against a well-informed attacker critical for the defender to
outperform naive deception policies such as random or greedy policies.

6.2 Impact of zero-days vulnerability

In our analysis, we find out high impact locations (zero-day vulnerabilities) for
the 20-node network. We measure the impact of zero-day vulnerability. We con-
sider two scenarios, first, when the attacker is certain that the defender does
not know zero-day vulnerability. Second, the attacker is not sure whether the
defender is aware of these zero-day vulnerabilities.

We also observe some zero-day vulnerabilities increase attacker reward mas-
sively and some remain the same compared to the naive defender. It is worth
mentioning that some zero-day vulnerabilities also increase attacker reward in
both cases, some increase only one scenario, not both depending on the reward
function.

In Table. 1 we present attacker reward for different high-impact locations
against the naive, optimistic, and pessimistic defender. Attacker reward against
naive defender is the benchmark, attacker reward against pessimistic and opti-
mistic defender defines how impactful that zero-days is.
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Table 1: Attacker reward against naive defender, optimistic defender,
pessimistic defender for top 10 edges

Edge Naive defender Optimistic defender Pessimistic defender

(6, 7) 153.43 401.03 398.70
(5, 7) 153.43 374.65 370.26
(3, 7) 153.43 344.39 345.20

(16, 17) 153.43 326.52 326.52
(12, 13) 153.43 325.54 325.55
(15, 17) 153.43 323.60 323.60
(11, 13) 153.43 322.42 322.42
(11, 17) 153.43 315.72 315.71
(14, 17) 153.43 313.99 313.99
(12, 17) 153.43 307.24 307.23

Attacker reward increases: Based on our study, we highlight several reasons
why certain zero-day vulnerabilities cause high damage to the defender compared
to others. First, if a zero-day vulnerability creates multiple attack paths to any or
all target nodes, that challenges the defender base-deception policy with limited
honeypots in place and hence, causes significant damage. Second, zero-day vul-
nerabilities that are very close to any target nodes on the attack graph empower
the attacker through a shortcut and enhance her reward. Also, a combination of
the first two features leads to a significant loss for the defender.

Attacker reward remain same: Interestingly, not all potential zero-day vul-
nerabilities cause significant damage to defender in terms of increasing attacker
reward. Such zero-day vulnerabilities do not add useful actions to attacker ac-
tion spaces that benefits the defender, consequently, the defender does not need
to take mitigating measures for these types of vulnerabilities. Therefore, these
observations benefit the defender to develop proactive defense focusing on most
critical vulnerability locations.

6.3 Mitigation:

As detailed in Section 5, we proposed several approaches to develop mitigat-
ing strategies against zero-day attacks. In our approach, the defender goal is
to thwart the attacker’s progress in the network by observing network informa-
tion. We present numerical results to show the effectiveness of our mitigating
approaches such as measuring proportion under various settings.

In Fig. 5 we show the proportion of attacker capture both for the optimistic
and pessimistic defender with impact and linear programming-based mitigation.
Fig. 5a presents the result of our impact-based mitigation. In our Alpha mit-
igation, we place honeypot based on the high-impact location whereas random
strategies choose a location uniformly to place honeypot. Mitigation effectiveness
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Fig. 5: Attacker capture proportion over different mitigating strategies
of defender including Alpha or LP.

denotes the percentage of zero-day vulnerabilities defender mitigation (Alpha)
prevents among all vulnerabilities. And capture proportion denotes the percent-
age of time an attacker is captured when exploiting a particular vulnerability.

Fig. 5a shows optimistic defender Alpha mitigation with one honeypot has
higher mitigation effectiveness compared to random mitigation with one hon-
eypot. On the other hand, the same strategies with 2 honeypots show a higher
degree of deviation compared to the previous which denotes an increasing num-
ber of honeypots is useful but not a feasible solution.

Fig. 5b denotes attacker capture proportion over no, random, and LP-
based honeypot mitigation both for the optimistic and pessimistic defender.
No-mitigation and random mitigation are very close to each other meaning that
randomly allocating honeypots will not bring any gain. After having the proba-
bility of allocating mitigating honeypot at different locations by solving a linear
program explained in Section 5, we place honeypot on the corresponding loca-
tion(s) and measure the proportion of capture the attacker increases.

In critical point mitigation, we modify the base policy without additional
honeypot to take into account the criticality of the most impactful vulnerability.
Fig. 6 denotes the capture proportion over the increased number of honeypots
for the defender.

Fig. 6a shows capture rate increase for both no-mitigation and critical point
mitigation strategies at different deception budgets (numbers of honeypots in the
base policy). The difference between no and critical point mitigation reduces over
the increased number of honeypots, which denotes that the number of honeypots
more than three is not useful for mitigation. Fig. 6b shows the same result
compare to Fig. 6a.
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Fig. 6: Attacker’s capture proportion over different number of honeypots
for defender on before and after critical node mitigation.
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Fig. 7: Capture proportion on critical point based defender mitigation strategies

Fig. 7 demonstrates capture proportion on different defender mitigation
strategies. Critical point mitigation and critical point mitigation with added
honeypot outperform no mitigation. It is worth noting that adding one honeypot
with critical point mitigation is useful as it increases the proportion of capturing
the attacker.
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7 Conclusion

In this paper, we proposed a security resource allocation problem for cyber de-
ception against reconnaissance attacks. We proposed a novel framework to as-
sess the effectiveness of cyber deception against zero-day attacks using an attack
graph. We formulated this problem as a two-player game played on an attack
graph with asymmetric information assuming that part of the attack graph is
unknown to the defender. We identified the critical locations that may impact
the defender payoff the most if specific nodes suffer a zero-day vulnerability.
The proposed analysis is limited to considering a single vulnerability at a time,
and focusing on the node location. Our future work will consider a set of vul-
nerabilities at a time which will follow the proposed analysis while significantly
increasing the action space of the game model.
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