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Abstract. How can we detect anomalies: that is, samples that signifi-
cantly differ from a given set of high-dimensional data, such as images
or sensor data? This is a practical problem with numerous applications
and is also relevant to the goal of making learning algorithms more ro-
bust to unexpected inputs. Autoencoders are a popular approach, partly
due to their simplicity and their ability to perform dimension reduction.
However, the anomaly scoring function is not adaptive to the natural
variation in reconstruction error across the range of normal samples,
which hinders their ability to detect real anomalies. In this paper, we
empirically demonstrate the importance of local adaptivity for anomaly
scoring in experiments with real data. We then propose our novel Adap-
tive Reconstruction Error-based Scoring approach, which adapts its scor-
ing based on the local behaviour of reconstruction error over the latent
space. We show that this improves anomaly detection performance over
relevant baselines in a wide variety of benchmark datasets.

Keywords: Anomaly detection · machine learning · unsupervised learning.

1 Introduction

The detection of anomalous data is important in a wide variety of applications,
such as detecting fraudulent financial transactions or malignant tumours. Re-
cently, deep learning methods have enabled significant improvements in perfor-
mance on ever larger and higher-dimensional datasets. Despite this, anomaly
detection remains a challenging task, most notably due to the difficulty of ob-
taining accurate labels of anomalous data. For this reason, supervised classi-
fication methods are unsuitable for anomaly detection. Instead, unsupervised
methods are used to learn the distribution of an all-normal training set. Anoma-
lies are then detected amongst unseen samples by measuring their closeness to
the normal-data distribution.

Autoencoders are an extremely popular approach to learn the behaviour
of normal data. The reconstruction error of a sample is directly used as its
anomaly score; anomalies are assumed to have a higher reconstruction error than
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normal samples due to their difference in distribution. However, this anomaly
score fails to account for the fact that reconstruction error can vary greatly
even amongst different types of normal samples. For example, consider a sensor
system in a factory with various activities on weekdays but zero activity on
weekends. The weekday samples are diverse and complex, therefore we could
expect the reconstruction error of these samples to vary greatly. Meanwhile,
even a small amount of activity in a weekend sample would be anomalous, even
if the effect on the reconstruction error is minimal. The anomaly detector would
likely detect false positives (high reconstruction error) among weekday samples
and false negatives among weekend samples. Although encoded within the input
data attributes, the context of each individual sample (i.e. day of the week) is
neglected at the detection stage by the standard scoring approach. Instead, all
samples are assessed according to the same error threshold or standard. This
invokes the implicit assumption that the reconstruction errors of all samples are
identically distributed, regardless of any individual characteristics and context
which could potentially influence the reconstruction error significantly.

In this work, we aim to address this problem by proposing Adaptive Re-
construction Error-based Scoring (ARES). Our locally-adaptive scoring
method is able to automatically account for any contextual information which
affects the reconstruction error, resulting in more accurate anomaly detection.
We use a flexible, neighbourhood-based approach to define the context, based
on the location of its latent representation learnt by the model.

Our scoring approach is applied at test time, so it can be retrofitted to
pre-trained models of any size and architecture or used to complement existing
anomaly detection techniques. Our score is simple and efficient to compute,
requiring very little additional computational time, and the code is available
online4. In summary, we make the following contributions:

1. We empirically show with real, multi-class data the variation in re-
construction error among different samples in the normal set and why this
justifies the need for local adaptivity in anomaly scoring.

2. We propose a novel anomaly scoring method which adapts to this variation
by evaluating anomaly status based on the local context of a given sample
in the latent space.

3. We evaluate our method against a wide range of baselines with various bench-
mark datasets. We also study the effect of different components and formu-
lations of our scoring method in an ablation study.

2 Background

2.1 Autoencoders

Autoencoders are neural networks that output a reconstruction of the input
data [26]. They are comprised of two components: an encoder and decoder. The

4 https://github.com/agoodge/ARES
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encoder compresses data from the input level into lower-dimensional latent rep-
resentations through its hidden layers. The encoder output is typically known
as the bottleneck, from which the reconstruction of the original data is found
through the decoder hidden layers. The network is trained to minimise the re-
construction error over the training set:

min
θ,φ
‖x− (fθ ◦ gφ)(x)‖22, (1)

where gφ is the encoder, fθ the decoder. The assumption is that data lies on
a lower-dimensional manifold within the high-dimensional input space. The au-
toencoder learns to reconstruct data on this manifold by performing dimension
reduction. By training the model on only normal data, the reconstruction error
of a normal sample should be low as it close to the learnt manifold on which it
has been reconstructed by the autoencoder, whereas anomalies are far away and
are reconstructed with higher error.

2.2 Local Outlier Factor

The Local Outlier Factor (LOF) method is a neighbourhood-based approach
to anomaly detection; it measures the density of a given sample relative to its
k nearest neighbours’ [8]. Anomalies are assumed to be in sparse regions far
away from the one or more high-density clusters of normal data. A lower den-
sity therefore suggests the sample is anomalous. The original method uses the
‘reachability distance’; defined for a point A from point B as:

max{k-distance(B), d(A,B)} (2)

where d(·, ·) is a chosen distance metric and k-distance(B) is the distance of B
to its kth nearest neighbour. The local reachability density and subsequently the
local outlier factor of A based on its set of neighbours Nk(A), is:

lrdk(A) :=

(∑
B∈Nk(A) reachability-distancek(A,B)

|Nk(A)|

)−1
. (3)

LOFk(A) =

∑
B∈Nk(A) lrdk(B)

|Nk(A)| · lrdk(A)
, (4)

3 Related Work

Anomalies are often assumed to occupy sparse regions far away from high-density
clusters of normal data. As such, a great variety of methods detect anomalies by
measuring the distances to their nearest neighbours, most notably KNN [35],
which directly uses the distance of a point to its kth nearest neighbour as the
anomaly score. LOF [8] measures the density of a point relative to the density
of points in its local neighbourhood, as seen in Section 2. This is beneficial as a
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given density may be anomalous in one region but normal in another region. This
local view accommodates the natural variation in density and therefore allows for
the detection of more meaningful anomalies. More recently, deep models such as
graph neural networks have been used to learn anomaly scores from neighbour-
distances in a data-driven way [15]. Naturally, this relies on an effective distance
metric. This is often itself a difficult problem; even the most established metrics
have been shown to lose significance in high-dimensional spaces [6] due to the
‘curse of dimensionality’.

Reconstruction-based methods rely on deep models, such as autoencoders, to
learn to reconstruct samples from the normal set accurately. Samples are then
flagged as anomalous if their reconstruction error higher than some pre-defined
threshold, as it is assumed that the model will reconstruct samples outside of
the normal set with a higher reconstruction error [26,13,4,9,14].

More recent works have used autoencoders or other models are deep fea-
ture extractors, with the learnt features then used in another anomaly detection
module downstream, such as Gaussian mixture models [7], DBSCAN [3], KNN
[5] and auto-regressive models [1]. [11] calibrates different types of autoencoders
against the effects of varying hardness within normal samples.

Other methods measure the distance of a sample to a normal set-enclosing
hypersphere [30,25]. or its likelihood under a learnt model [12,24,34]. Generative
adversarial networks have also been proposed for anomaly detection, mostly
relying either on the discriminator score or the accuracy of the generator for a
given sample to determine anomalousness [2,33].

In all of these methods, the normal set is often restricted to a subset of
the available data; e.g. just one class from a multi-class dataset in experiments.
In practice, normal data could belong to multiple classes or modes of behaviour
which all need to be modelled adequately. As such, developing anomaly detection
methods that can model a diverse range of normal behaviours and adapt their
scoring appropriately are important.

4 Methodology

4.1 Problem Definition

We assume to have m normal training samples x
(train)
1 , · · · ,x(train)

m ∈ Rd and

n testing samples, x
(test)
1 , · · · ,x(test)

n ∈ Rd, each of which may be normal or
anomalous. For each test sample x, our algorithm should indicate how anomalous
it is through computing its anomaly score s(x). The goal is for anomalies to be
given higher anomaly scores than normal points. In this work, the fundamental
question is:

Given an autoencoder with encoder gφ and decoder fθ, how can we use the
latent encoding z = gφ(x) and reconstruction x̂ = (fθ ◦ gφ)(x) of a sample x to
score its anomalousness?

Our approach is not limited to standard autoencoders, and can be applied
to other models that involve a latent encoding z and a reconstruction x̂.
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In practice, the anomaly score is compared with a user-defined anomaly
threshold; samples which exceed this threshold are flagged as anomalies. Dif-
ferent approaches can be employed to set this threshold, such as extreme value
theory [28]. Our focus is instead on the approach to anomaly scoring itself, which
allows for any choice of thresholding scheme to be used alongside it.

4.2 Statistical Interpretation of Reconstruction-based Anomaly
Detection

In the standard approach, with the residual as ε := x− x̂, the anomaly score is:

R(ε) := ‖ε‖22 = ‖x− x̂‖22. (5)

This can be seen as a negative log-likelihood-based score that assumes ε follows
a Gaussian distribution with zero mean and unit variance: ε ∼ N (0, I):

− logP (ε) =
d

2
log(2π) +

R(ε)

2
(6)

The negative log-likelihood is an intuitive anomaly score because anomalous
samples should have lower likelihood, thus higher negative log-likelihood.

The key conclusion, ignoring the constant additive and multiplicative factors,
is that R(ε) can be equivalently seen as a negative log-likelihood-based score,
based on a model with the implicit assumption of constant mean as well as
constant variance residuals across all samples, known in the statistical literature
as homoscedasticity. Most crucially, this assumption applies to all x regardless
of its individual latent representation, z, which implies that the reconstruction
error of x does not depend on the location of z in the latent space. We question
the validity of this assumption in real datasets.

In our earlier example of a factory sensor system, the variance of a sample x
depends greatly on its characteristics (i.e. day of the week), with high variance
during weekdays and low variance on weekends. This is instead a prime example
of heteroscedasticity. Furthermore, since the latent representation z typically
encodes these important characteristics of x, there is likely to be a clear de-
pendence between z and the reconstruction error R(ε), which will be examined
in Section 4.3. This relationship could be exploited to improve the modelling
of reconstruction errors and thus detection accuracy by adapting the anomaly
score to this relationship at the sample-level.

4.3 Motivation & Empirical Results

In this section, we train an autoencoder on all 10 classes of MNIST to empirically
examine the variation in the reconstruction error of real data to scrutinise the
homoscedastic assumption. In doing so, we exemplify the shortcomings of the
standard approach which implicitly assumes all reconstruction errors from a fixed
Gaussian distribution. The autoencoder architecture and training procedure is
the same as those described in Section 5. We make the following observations:
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Fig. 1: t-SNE plot of the latent encodings with colour determined by reconstruc-
tion error of the associated sample.

1. Inter-class variation: In Figure 1, the t-SNE [21] projections of the la-
tent representations of training points are coloured according to their recon-
struction error. We see that the autoencoder learns to separate each class
approximately into distinct clusters. In this context, the class label can be
seen as a variable characteristic between different samples within the normal
set (similar to the weekday vs. weekend example).

Fig. 2: Probability density function of reconstruction errors associated with dif-
ferent classes of training samples, estimated via kernel density estimation.

2. Intra-class variation Also in Figure 1, we can see that there is significant
variation even within any single cluster. In other words, there are noticeably
distinct regions of high (and low) reconstruction errors within each individual
cluster. This shows that there are additional characteristics that influence
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whether a given normal sample has a high or low reconstruction error besides
its class label.

We observe that there is significant variation in reconstruction error between
the different clusters. Most notably, samples in the leftmost cluster (corre-
sponding to class 1) has significantly lower reconstruction errors than most
others. Indeed, as shown in Figure 2, the distribution of reconstruction errors
associated with class 1 samples is very different to those of the other classes.

This shows that there is significant variation in reconstruction errors between
classes, and that it is inappropriate to assume that the reconstruction errors
of all samples can be modelled by a single, fixed Gaussian distribution. For
example, a reconstruction error of 0.06 would be high for a class 1 or class 9
sample, but low for a class 2 or class 8 sample.

Fig. 3: Average reconstruction error of the training set nearest neighbours of a
point versus its own reconstruction error for normal test samples.

3. Neighbourhood correlation: In Figure 3, we plot the reconstruction er-
ror of test samples against the average reconstruction error of its nearest
training set neighbours in the latent space (neighbourhood error). We see
that the reconstruction error of a test point increases as its neighbourhood
error increases. Furthermore, the variance in test errors increases for larger
neighbourhood errors: a clear heteroscedastic relationship. This information
is useful in determining anomalousness: a test error of 0.1 would be anoma-
lously high if its neighbourhood error is 0.02, but normal if it is 0.06.

Given these observations, we propose that anomalies could be more accurately
detected by incorporating contextual information into the anomaly scoring be-
yond reconstruction error alone. Furthermore, analysing the neighbourhood of a
given sample provides this contextual information to help determine its anoma-
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lousness. In section 4.4, we propose our Adaptive Reconstruction Error-based
Scoring method to achieve this.

4.4 Adaptive Reconstruction Error-based Scoring

In Section 4.2, we saw that the standard approach assumes that all residuals
come from a fixed Gaussian with constant mean and unit variance: ε ∼ N (0, I).
In Section 4.3, we saw that this assumption is inappropriate. In this section, we
detail ARES, a novel anomaly scoring methodology which aims to address this
flaw by adapting the scoring for each samples local context in the latent space.

The normal level of reconstruction error varies for samples in different regions
of the latent space, meaning the latent encoding of a sample holds important
information regarding anomalousness. As such, ARES is inspired by the joint-
likelihood of a samples residual ε with its latent encoding z, defined as follows:

− logP (ε, z) = − logP (ε|z)− logP (z). (7)

The first term,− logP (ε|z), is the conditional (negative log-) likelihood of the
points residual conditioned on its latent encoding. The second term, − logP (z),
is the likelihood of observing the latent encoding from the normal set.

We now detail our approach to interpret these terms into tractable, efficient
scores which we name the local reconstruction score and local density score
respectively. These scores are combined to give the overall ARES anomaly score.

4.5 Local Reconstruction Score

The local reconstruction score is based on an estimate of how likely a given resid-
ual ε (and consequent reconstruction error) is to come from the corresponding
sample x, based on its latent encoding z:

r(x) = − logP (ε|z) (8)

This likelihood cannot be calculated directly for any individual z. Instead,
we consider the k nearest neighbours of z in the latent space, denoted Nk(z),
to be a sample population which z belongs to. This is intuitive as data points
with similar characteristics to x in the input space are more likely to be encoded
nearer to z in the latent space. The full local reconstruction score algorithm is
shown in Algorithm 1.

After training the autoencoder, we fix the model weights and store in mem-
ory all training samples’ reconstruction errors and latent encodings taken from
the bottleneck layer. For a test sample x, we find its own latent encoding z
and reconstruction x̂. We then find Nk(z), the set of k nearest neighbours to z
amongst the training set encodings. We only find nearest neighbours among the
training samples as they are all assumed to be normal and therefore should have
reconstruction errors within the normal range.

We want to obtain an estimate of the reconstruction error that could be
expected of x, assuming its a normal point, based on the reconstruction errors of
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its (normal) neighbours. We can then compare this expected value, conditioned
on its unique location in the latent space, with the points true reconstruction
error to determine its anomalousness.

In a fully probabilistic approach, we could do this by measuring the likelihood
of the test points reconstruction error under a probability distribution, e.g. a
Gaussian, fit to the neighbours’ reconstruction errors. However, it is unnecessar-
ily restrictive to assume any closed-form probability distribution to adequately
model this population for the unique neighbourhood of each and every test sam-
ple. Instead, we opt for a non-parametric approach; we measure the difference
between the test points reconstruction error and the median reconstruction error
of its neighbouring samples. The larger the difference between them, the more
outlying the test point is in comparison to its local neighbours, therefore the
more likely it is to be anomalous. In practice, using the median was found to
perform better than the mean as it is more robust to extrema. With this, we
obtain the local reconstruction score as:

r(x) = ‖x− x̂‖22 − median
n∈Nk(z)

(‖n− n̂‖22). (9)

Nearest neighbour search in the latent space is preferable over the input
space as dimension reduction helps to alleviates the curse of dimensionality (see
Section 3), resulting in more semantically-meaningful neighbors. Secondly, from
a practical perspective, the neighbour search is less time-consuming and compu-
tationally intensive in lower dimensional spaces.

Algorithm 1 Local Reconstruction Score

Input: Autoencoder A(·) = (fθ ◦ gφ)(·), training set Xtrain, test sample xtest

Parameters: neighbour count k
Output: Local reconstruction score r(xtest)

1: Train autoencoder A on training set according to: minθ,φ ‖Xtrain − X̂train‖22 where
x̂itrain = (fθ ◦ gφ)(xitrain) for xitrain ∈ Xtrain.

2: Find latent encoding of xtest: ztest := gφ(xtest)
3: Find the set of k nearest neighbours to ztest among latent encodings of the training

data: Nk(ztest) := {z1train, ..., zktrain} where zitrain = gφ(xitrain) ∈ for i = {1, ..., k}.
4: return r(xtest) = ‖xtest − x̂test‖22 − median

n∈Nk(z)
(‖xitrain − x̂itrain‖22)

4.6 Local Density Score

The local reconstruction score corresponds to the conditional term of the joint
likelihood. We now introduce the local density score, which corresponds to the
likelihood of observing the given encoding in the latent space. This is a density
estimation task, which concerns the relative distance of z to its nearest neigh-
bours, unlike the local reconstruction score which focuses on the reconstruction
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error of neighbours. Anomalies are assumed to exist in sparse regions, where
normal samples are unlikely to be found in significant numbers. Any multivari-
ate distribution P , with trainable parameters Θ, could be used to estimate this
density:

d(x) := − logP (z;Θ) (10)

Note that it is common to ignore constant factor shifts in the anomaly score.
Thus, the distribution P need not be normalized; even unnormalized density
estimation techniques can be used as scoring functions. We note that LOF is
an example of an unnormalized score which is similarly locally adaptive like the
local reconstruction score, so LOF is used for the local density score in our main
experiments. Other methods are also tested and their performance is shown in
the ablation study.

The overall anomaly score for sample x is:

s(x) := r(x) + αd(x), (11)

where r(x) is its local reconstruction score and d(x) the local density score.
These two scores are unnormalized, so we use a scaling factor α to balance the
relative magnitudes of the two scores. We heuristically set it equal to 0.5 for all
datasets and settings for simplicity, as this was found to balance the two scores
sufficiently fairly in most cases. We choose not to treat α as a hyper-parameter
to be tuned to optimise performance, although different values could give better
performance for different datasets. The effect of changing α is shown in the
supplementary material.

Computational Runtime: The average runtimes of experiments with the MNIST

dataset can be found in the supplementary material. We see that, despite taking
longer than the standard reconstruction error approach, the additional computa-
tional runtime of ARES anomaly scoring is insignificant in relation to the model
training time. Anomaly scoring with ARES is just 1.2% of the overall time taken
(including training) in the one-class case (0.017 minutes for scoring versus 1.474
minutes for training), and 3.5% in the multi-class case. The additional run-time
is a result of the k nearest neighbour search. An exact search algorithms would
be O(nm) with n train and m test samples, however approximate methods can
achieve near-exact accuracy much more efficiently.

5 Experiments

In our experiments, we aim to answer the following research questions:
RQ1 (Accuracy): Does ARES perform better than existing anomaly detection
methods?
RQ2 (Ablation Study): How do different components and design choices of
ARES contribute to its performance?
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5.1 Datasets and Experimental Setup

Dataset #Dim #Classes #Samples Description

SNSR [31] 48 Multi-class 58, 509 Electric current signals
MNIST [19] 784 Multi-class 70, 000 0-9 digit images

FMNIST [32] 784 Multi-class 70, 000 Fashion article images
OTTO [22] 93 Multi-class 61, 878 E-commerce types
MI-F [29] 58 Single-class 25, 286 CNC milling defects
MI-V [29] 58 Single-class 23, 125 CNC milling defects
EOPT [16] 20 Single-class 90, 515 Storage system failures

Table 1: Name and descriptions of the datasets used in experiments, including
the number of samples and dimensions.

Table 1 shows the datasets we use in experiments. The single-class datasets
consist of ground truth normal-vs-anomaly labels, as opposed to the multiple
class labels in multi-class datasets. In the latter, we distinguish between the
’one-class normality’ setup, in which one class label is used as the normal class
and all other classes are anomalous. Alternatively, in the ’multi-class normality’
setup, one class is anomalous and all other classes are normal. For a dataset with
N classes, there are N possible arrangements of normal and anomaly classes. We
train separate models for each arrangement and find their average score for the
final result. We use the Area-Under-Curve (AUC) metric to measure performance
as it does not require an anomaly score threshold to be set.

As anomaly scores are calculated for each test sample independently of
each other, the proportion of anomalies in the test set has no impact on the
anomaly score assigned to any given sample. Therefore, we are able to use a nor-
mal:anomaly ratio of 50:50 in our experiments for the sake of simplicity and an
unbiased AUC metric. Besides the normal sampels in the test set, the remaining
normal samples are split 80:20 into training and validation sets for all models.
Full implementation details can be found in the supplementary material.

5.2 Baselines

We test the performance of ARES against a range of baselines. We use the sci-
kit learn implementations of LOF (in the input space) [8], IForest [20], PCA
[27] and OC-SVM [10]. Publicly available codes are used for DAGMM [7],
RAPP-SAP and RAPP-NAP [17], and we use Pytorch to build the autoen-
coder (AE and ARES) and variational autoencoder (VAE). All experiments
were conducted in Windows OS using an Nvidia GeForce RTX 2080 Ti GPU.

We do not tune hyper-parameters relating to the model architectures or
training procedures for any method. The effect of variation in hyper-parameters
is studied in the ablation study in Section 5.4 and the supplementary material
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instead. We set the number of neighbours k = 10 for both the local density and
local reconstruction score in our main experiments.

5.3 RQ1 (Accuracy):

Table 2 shows the average AUC scores as a percentage (i.e. multiplied by 100).
In the one-class normality setting, ARES significantly improves performance
over the baselines in all multi-class datasets besides FMNIST. In the single-class
datasets, this improvement is even greater, e.g. +8% lift for MI-F and EOPT.
Compared with AE, we see that local adaptivity helps to detect true anomalies
by correcting for the natural variation in reconstruction error in the latent space.
This effect is even more pronounced in the multi-class normality setting, where
ARES gives the best performance on all datasets. Here, the normal set is much
more diverse and therefore local adaptivity is even more important. We show the
standard deviations and additional significance test scores in the supplementary
material, which also show statistically significant (p < 0.01) improvement.

Dataset LOF IForest PCAOC-SVM SAP NAP DAGMM VAE AE ARES

One-class Normality

SNSR 97.98 89.16 92.01 95.85 98.79 98.74 88.08 89.49 98.30 98.83**
MNIST 96.85 85.44 95.68 90.35 95.35 97.25 89.60 91.73 96.96 97.89**
FMNIST 91.35 91.39 90.13 90.74 89.66 93.08 87.97 77.59 92.33 91.63
OTTO 84.76 70.34 80.09 81.43 81.61 82.77 68.02 82.39 85.26 87.86**
MI-F 59.79 81.53 55.07 76.69 81.78 80.61 82.23 76.93 71.19 89.52
MI-V 83.97 84.35 87.32 83.58 88.24 89.35 75.45 89.03 90.75 93.94
EOPT 55.01 61.61 54.72 59.66 59.87 61.69 60.63 68.08 59.85 68.43

Multi-class Normality

SNSR 60.74 52.70 52.94 52.79 57.52 58.32 54.77 61.36 57.28 69.78**
MNIST 77.40 56.49 70.41 58.56 84.76 86.38 54.24 84.12 80.04 93.25**
FMNIST 71.50 64.75 66.92 60.27 68.50 72.09 57.56 71.18 71.03 72.49
OTTO 63.01 54.14 58.27 62.96 57.47 63.44 58.96 61.88 59.59 63.54

Table 2: Mean AUC scores for each datasets and normality setting. The best
scores are highlighted in bold and we mark the most significant improvements
over AE (p < 0.01) with **. Further tests are in the supplementary material.

The neighbours of a normal sample with high reconstruction error tend to be
have high reconstruction errors themselves. By basing the anomaly scoring on
their relative difference, ARES uses this to better detect truly anomalous sam-
ples. Furthermore, ARES also uses the local density of the point, which depends
purely on its distance to the training samples in the latent space. This is impor-
tant as there may be some anomalies with such low reconstruction error that
comparison with neighbours does not alone indicate anomalousness (for example
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the weekend samples mentioned earlier). These samples could be expected to be
occupy very sparse regions of the latent space due to their significant deviation
from the normal set, which means they can be better detected through the local
density score. By combining these two scores, we are able to detect a wider range
of anomalous data than either could individually.

5.4 RQ2 (Ablation Study):

Density Estimation Method Table 3 shows the performance of ARES with other
density estimation methods. KNN is the distance to the kth nearest neighbour
in the latent space with k = 20. GD is the distance of a point to the closest of
N Gaussian distributions fit to the latent encodings of samples for each of the
classes in the training set (N = 1 in the one-class normality case). NF is the
likelihood under a RealNVP normalizing flow [23].

Dataset LOF KNN GD NF

One-class Normality

SNSR 98.83 98.66 95.68 98.29
MNIST 97.89 95.24 87.29 97.30
FMNIST 91.63 92.94 90.26 92.14
OTTO 87.76 83.14 81.27 86.74
MI-F 89.52 76.12 80.41 84.47
MI-V 93.94 91.60 79.61 92.89
EOPT 68.43 67.63 63.35 61.07

Multi-class Normality

SNSR 69.78 67.42 61.86 60.63
MNIST 93.25 92.92 91.14 86.25
FMNIST 72.49 72.77 73.02 70.48
OTTO 63.54 61.71 66.30 63.67

Table 3: Mean AUC scores for each choice of local density score. The best scores
are highlighted in bold.

LOF performs best overall, closely followed by KNN. GD performs poorly
in one-class experiments, however it is better in multi-class normality exper-
iments and even the best for FMNIST and OTTO. This could be as the use of
multiple distributions provides more flexbility. NF is noticeably worse; previous
studies have found that normalizing flows are not well-suited to detect out-of-
distribution data [18].

In the supplementary material, we further test these density estimation meth-
ods by varying their hyper-parameters and find LOF to still come out best.
Further supplementary experiments show that the local density score generally
performs better than the local reconstruction score in the multi-class normality
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case and vice versa in the one-class case. Combining them, as in ARES, generally
gives the best performance overall across different latent embedding sizes.

Robustness to Training Contamination In practice, it is likely that a small pro-
portion of anomalies ‘contaminate’ the training set. In this section, we study
the effect of different levels of contamination on ARES, defined as n% of the
total number of samples in the training set. Table 4 shows that increasing n
worsens performance overall. With more anomalies in the training set, it is more
likely that anomalies are found in the nearest neighbour set of more test points,
which skews both the average neighbourhood reconstruction error as well as their
density in the latent space and degrades performance.

Neighbourhood Size

n 10 50 100 200 500

One-class Normality

0 97.89 97.85 97.80 97.73 97.56
0.5 95.77 96.08 96.06 95.95 95.72
1 82.50 94.45 95.97 95.81 95.42
2 90.65 92.88 93.29 93.33 92.99
3 88.41 91.35 91.92 92.07 91.86
5 84.91 87.85 89.20 90.26 90.65
10 79.69 81.51 83.16 84.88 86.82

Multi-class Normality

0 93.25 92.71 92.08 91.31 89.68
0.5 68.38 76.07 78.36 80.75 81.42
1 52.38 58.42 67.62 65.75 68.91
2 59.50 63.13 65.71 67.98 69.68
3 57.09 59.00 60.78 62.89 65.35
5 50.86 51.48 52.40 53.47 55.78
10 52.50 50.80 50.87 51.14 52.11

Table 4: Mean AUC scores in MNIST with training set anomaly contamination
(n%) and different neighbourhood sizes. The best scores are highlighted in bold.

We find that ARES is more robust to training set contamination with a higher
setting of the number of neighbours (k). In the one-class setup, we see that ARES
performs better with higher values of k as the proportion of anomalies increases.
By using more neighbours, the effect of any individual anomalies on the overall
neighbourhood error is reduced, which helps to maintain better performance.
This effect is even more stronger in the multi-class normality setup. The highest
neighbour count of k = 500 gives the best performance in all cases except for
n = 0% and 10%. As the multi-class training sets are much larger than their
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one-class normality counterparts, n% corresponds to a much larger number of
anomalous contaminants, which explains their greater effect for a given k.

6 Conclusion

Autoencoders are extremely popular deep learning models used for anomaly de-
tection through their reconstruction error. We have shown that the assumption
made by the standard reconstruction error score, that reconstruction errors are
identically distributed for all normal samples, is unsuitable for real datasets.
We empirically show that there is a heteroscedastic relationship between latent
space characteristics and reconstruction error, which demonstrates why adap-
tivity to local latent information is important for anomaly scoring. As such, we
have developed a novel approach to anomaly scoring which adaptively evalu-
ates the anomalousness of a samples reconstruction error, as well as its density
in the latent space, relative to those of its nearest neighbours. We show that
our approach results in significant performance improvements over the standard
approach, as well as other prominent baselines, across a range of real datasets.
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Supplementary Material: Appendix

Experiments

Model Architecture and Training

The autoencoder models for the two image datasets had seven hidden layers in
both the encoder and decoder, for 14 layers total, while the tabular datasets
had six in each (12 total). All linear layers were followed by a Leaky ReLU
layer and Batch Normalization except for the final output layer in the decoder.
For the image datasets, the hidden layer sizes for the encoder were as follows:
[784, 600, 500, 400, 300, 200, 100, 20] and the same in reverse order for the de-
coder. For tabular datasets, the bottleneck size was set equal to the number of
PCA principal components needed to explain 90% of the data, and the hidden
layer sizes decrease (increase) linearly in the encoder (decoder) accordingly. All
autoencoder models (including VAE) models followed this structure for the sake
of consistency. All models were trained for 350 epochs with early stopping acti-
vated if the loss function, mean squared error, did not achieve a new minimum
for 20 consecutive epochs. The batch size was set at 250 samples.

Standard Deviation in AUC Score

Table 1 shows the standard deviations of the AUC scores over the N trials for
each dataset and settings, where N is the number of classes in the dataset.
Naturally, as each setup has a different set of normal and anomalous classes,
the scores vary greatly. Therefore we show the ificance values for performance
improvement in the next section.

One-sided Wilcoxon Significance Test

In Table 2, we show the p-values of the one-sided Wilcoxon signed-rank test [1].
We test our method against both the AE, to see the effect of local adaptivity, as
well as RAPP-NAP performance, as it was generally the next best-performing
method. A lower p-value indicates more confidence that our method performs
better over the corresponding baseline method. The binary-class datasets are not
shown as they only had one experimental setup, i.e. one AUC score to measure.
The p-values for the SNSR, MNIST and OTTO datasets in particular are extremely
low. The performance is more comparable between ARES and the baselines for
FMNIST, hence the larger p-values. The median p-value of ARES against AE is
0.0073 and for RAPP-NAP it is 0.016.
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Dataset PCA LOF OC-SVM AE SAP NAP DAGMM ARES

Multi-Class Normality

SNSR 7.91 18.47 19.16 17.25 18.52 20.19 13.15 16.73
MNIST 16.48 14.91 16.65 22.64 13.57 12.54 14.30 7.77
FMNIST 16.12 17.01 17.10 17.43 17.48 15.20 23.79 16.23
OTTO 15.24 22.76 19.58 17.62 17.88 20.32 15.64 18.09

One-Class Normality

SNSR 5.41 1.12 2.54 1.32 0.66 0.67 6.38 0.94
MNIST 4.11 2.72 6.59 2.44 2.82 1.90 5.76 1.75
FMNIST 6.25 4.77 5.74 5.07 6.12 4.84 8.62 4.04
OTTO 8.64 6.46 7.17 6.15 7.63 7.27 8.44 4.98

Table 1: Standard deviation of AUC scores over the different runs.

Table 2: p values from the one-sided Wilcoxon signed-rank test. Values lower
than 0.05 and 0.01 are marked with * and ** respectively.

p value AE RAPP-NAP

One-Class Normality

SNSR 0.0063** 0.2969
MNIST 0.0083** 0.0234*
FMNIST 0.9303 0.9937
OTTO 0.0038** 0.0038**

Multi-Class Normality

SNSR 0.0017** 0.0029**
MNIST 0.0035** 0.0035**
FMNIST 0.2538 0.6006
OTTO 0.0693 0.6165
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Runtime

Table 3 shows the runtimes of the autoencoder training, the regular AE anomaly
scoring and our ARES scoring. We see that, despite noticeably longer compu-
tational time for our method at test time, it is very insignificant in relation to
the overall pipeline of the model including training time.

Time Training AE score ARES score

One-Class 1.47444 0.00014 0.01721
Multi-Class 24.29161 0.00037 0.87681

Table 3: Runtimes (minutes) of training and testing for AE and ARES for
comparison for each normality setting. Runtimes are calculated for the MNIST

dataset and averaged over each of the trials for each modality setup.

Analysis

To understand why local adaptivity improves anomaly detection performance,
we study one particular problem setup: MNIST samples of class 8 are normal and
all other classes are all anomalies. Figure 1 shows the reconstruction error of the
test samples of all classes in this setup. We see that reconstruction errors of the
class 8 samples are generally lower than those from other classes except for class
1. This means that, based on reconstruction error alone, many anomalies from
class 1 will be falsely classified as normal.

Fig. 1: Probability density functions of reconstruction errors of each class (class
8 is normal and others are anomalous.



4

ARES compares a points reconstruction error against its nearest neighbours
which provides local context for more accurate detection. As shown in Figure 3,
the neighbours of a poorly reconstructed normal test point tend to be the more
poorly reconstructed training points, perhaps because these training points also
contained some kind of abnormality. With this, the abnormality of these normal
test points is less outlying within the context of the training points around them.
This context is neglected in the standard scoring approach, and so is likely to
detect false positives for these kinds of samples, unlike in our method which
accounts for this context.

Fig. 2: t-SNE embeddings of class 1 test samples (blue), class 8 test samples
(dark orange) and class 8 training samples (light orange).

Fig. 3: Reconstruction error of normal (8) test samples versus the average recon-
struction error of their training set nearest neighbours.
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Furthermore, ARES also uses the local density of the point, which depends
not on its reconstruction error but purely on its distance to the training samples
in the latent space. In Figure 2, we can see that the vast majority of anomalous
class 1 samples (in blue) are far away from their nearest neighbours in the
training set than the normal class 8 test samples (in dark orange). By combining
these two scores, we are able to detect such anomalies even if the reconstruction
error alone cannot.

Scaling factor In Table 4, we see the average AUC score found when using
different values for the scaling factor α. A lower or higher value of the scaling
factor gives more weight to the local reconstruction or density score respectively.

Generally, we see that a lower value of α is better in the one-class normality
case, while higher is better for the multi-class normality case, meaning the local
density score is more beneficial when the diversity in the normal set is larger.
This corroborates the results seen in Table 5, as the local reconstruction score
is relatively better than the local density score in the one-class normality case
and vice versa in the multi-class normality case.

One-Class Normality Multi-Class Normality
α MNIST FMNIST MNIST FMNIST

0.1 97.51 91.52 88.08 70.84
0.25 97.76 91.70 91.53 71.97
0.5 97.89 91.63 93.25 72.49
1 97.72 91.16 93.91 72.49
2 97.00 90.25 93.90 72.17

Table 4: Average AUC score (%) of ARES with different settings of scaling factor
α

Score Comparison Table 5 shows the performance of the local density and
local reconstruction scores separately. We see that the local reconstruction score
tends to do better in the one-class normality experiments while the local density
score is better for multi-class normality experiments. However, combining both
of them as in ARES gives the best performance in most cases overall.
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Table 5: AUC score of the two components of ARES in isolation.

Dataset d(x) r(x) ARES

One-Class Normality

SNSR 96.24 98.49 98.83
MNIST 91.59 97.21 97.89
FMNIST 86.97 91.17 91.63
OTTO 77.17 88.57 87.86
MI-F 87.08 68.69 89.52
MI-V 87.93 94.73 93.94
EOPT 67.88 60.13 68.43

Multi-Class Normality

SNSR 70.46 62.66 69.78
MNIST 93.23 81.96 93.25
FMNIST 71.05 68.97 72.49
OTTO 62.54 60.84 63.54

Density Estimation Method Table 6 shows the performance of ARES with
other density estimation methods. KNN is the distance to the kth nearest neigh-
bour in the latent space. GD is the distance of a point to a Gaussian distribution
fit to the training set latent encodings or the closest of N in the multimodal case.
GD performs poorly in unimodal experiments, however it is better in multimodal
experiments and even the best for FMNIST and OTTO. This could be as there are
N separate distributions used for each of the N normal classes in this case.
Within GD, we test the use of the Mahalanobis distance versus the Euclidean
distance, and we see the former outperform the latter in most cases. NF is the
likelihood under a RealNVP normalizing flow [2]. Other flows were tested but
did not give stable results. It is noticeably worse than the other methods; pre-
vious studies have found that normalizing flows are not well-suited to detect
out-of-distribution data.
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Dataset SNSR MNIST FMNIST OTTO MI-F MI-V EOPT

One-Class Normality

LOF k = 10 98.83 97.89 91.63 87.76 89.52 93.94 68.43
k = 40 98.75 97.85 92.53 88.04 79.31 91.99 62.28
k = 100 98.55 97.80 93.02 88.08 69.69 89.98 60.80

KNN k = 5 98.65 95.53 92.47 83.99 77.26 93.55 79.45
k = 20 98.66 95.24 92.94 83.14 76.12 91.60 67.63
k = 40 98.56 94.93 92.99 82.76 74.24 90.508 64.91

GD Euclidean 97.21 72.74 79.47 82.08 80.80 75.77 61.11
Mahalanobis 95.68 87.29 90.26 81.27 80.41 79.61 63.35

NF 98.29 97.30 92.14 86.74 84.47 92.89 61.07

Multi-Class Normality

LOF k = 10 69.78 93.25 72.49 63.54
k = 40 67.65 92.90 72.74 63.80
k = 100 66.36 92.08 72.48 64.73

KNN k = 5 68.63 93.68 73.52 61.76
k = 20 67.42 92.92 72.77 61.74
k = 40 66.50 92.06 72.28 61.74

GD Euclidean 56.55 74.40 66.00 59.38
Mahalanobis 61.86 91.14 73.02 66.30

NF 60.63 86.25 70.48 63.67

Table 6: Mean AUC scores for each choice of local density score. The best scores
are highlighted in bold.
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Embedding Size We also study the effect of latent size, or the dimensionality
of latent encodings, on the performance of our approach as well as the following
variants:

– AE: The standard AE method without local adaptivity.
– ARES-G: AE reconstruction score combined with local density score.
– L-R: Local reconstruction score only.
– L-D: Local density score only.
– ARES: Combined local reconstruction and density score.

In Figure 4, we see this effect for the MNIST dataset in particular. We see
that embedding size has little effect on reconstruction scores in the one-class
normality setting but reduces performances significantly in the multi-class nor-
mality setting. In both settings, however, the density scores mostly improve with
increasing embedding size. Overall, we see that combining the local reconstruc-
tion score with the density score gives the best performance across the board; it
is more robust to variation in hyper-parameter choices.

Fig. 4: Performance of various component methods across a range of embedding
sizes.
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