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Abstract. An adverse drug event (ADE) is defined as an adverse reac-
tion resulting from improper drug use, reported in various documents
such as biomedical literature, drug reviews, and user posts on social
media. The recent advances in natural language processing techniques
have facilitated automated ADE detection from documents. However,
the contextualized information and relations among text pieces are less
explored. This paper investigates contextualized language models and
heterogeneous graph representations. It builds a contextualized graph
embedding model for adverse drug event detection. We employ differ-
ent convolutional graph neural networks and pre-trained contextualized
embeddings as the building blocks. Experimental results show that our
methods can improve the performance by comparing recent ADE detec-
tion models, suggesting that a text graph can capture causal relationships
and dependency between different entities in a document.

Keywords: Adverse drug events · Graph neural networks ·
Contextualized embeddings

1 Introduction

Adverse Drug Events (ADEs) are injuries resulting from medical intervention
related to a drug [7]. A typical way to detect ADEs is to conduct a clinical
trial. However, there are many settings where a drug would be used, and we
cannot check all of them during the clinical trial. Besides, some ADEs have
long latency, making them hard to be discovered by an ordinary clinical trial
[29]. Post-marketing drug safety surveillance, also called pharmacovigilance, is
conducted to solve these problems. Pharmacovigilance activities mostly depend
on Spontaneous Reporting Systems, which collect users’ voluntary ADE reports
[18]. However, the number of people willing to report their experiences through
the official systems is negligible. Furthermore, these systems are limited due to
biased and incomplete reports.

Compared with reports using Spontaneous Reporting Systems, more peo-
ple often talk about their adverse reactions on social media platforms. Recent
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publications collect documents from social media such as Twitter and Reddit
to obtain more reliable data and detect ADEs automatically using Nature Lan-
guage Processing (NLP) techniques. The detection of ADEs can be seen as a
text classification task or a sequence-labeling problem, where we need to identify
documents including ADEs [8]. The early studies include lexicon-based and rule-
based methods [28]. These methods focus on string-matching, which is less effec-
tive for social media text and consumes many resources to build rules. Machine
learning algorithms are also used to solve this task, such as Support Vector
Machine (SVM) [4], Recurrent Neural Network (RNNs) [5] and Convolutional
Neural Networks (CNNs) [10]. These approaches can process text with man-
ual feature engineering or enable automated feature learning with deep learning
methods, facilitating automated ADE detection from biomedical text or social
content. However, the existing approaches and models have two limitations: (1)
some works are limited in capturing the rich context information in the text.
(2) some do not fully consider the causal relationship and dependency between
different entities in a document. Effective text encoding should be considered
for the ADE detection task to capture rich semantic and contextualized infor-
mation. Note that detecting causal relationships does not here refer to causal
inference as in the field of machine learning focusing on causality [24], but rather
expressing or indicating the relationship between the cause, e.g. a drug taken,
and the respective individual’s adverse health outcome as reported in the text
sample.

Graphs are commonly used for different data representations because of their
strong expressivity. Text data can be represented by heterogeneous graphs, where
different words, phrases, and documents are seen as nodes, and their relations
are shown using edges. Text graphs and graph neural networks are widely used
in many NLP applications for healthcare tasks such as sentiment classification
and review rating [20,35]. Graph Neural Networks (GNNs) [33] can be applied
to graph representation learning and capture the causal relationships and depen-
dency of objects, making them more suitable for representing text with adverse
drug events. However, no existing studies on ADE detection employ graph rep-
resentation and graph neural networks. Besides, contextualized representations
of text facilitate various NLP applications and boost the performance of NLP
systems with minimal architecture engineering. In the medical domain, con-
textualized embeddings with domain knowledge are also in need. Pretrained
contextualized language embeddings have been applied to various medical appli-
cations such as medical code assignment [11] and biomedical knowledge graph
construction [12].

This paper presents a contextualized graph embedding model for ADE detec-
tion. We build contextualized language embeddings to capture contextualized
information. With a heterogeneous graph built to embody word and document
relations from the ADE corpus, we use graph neural networks to learn causal
relations between word and document nodes to improve adverse drug reaction
detection. This paper deploys different GNN-based models and pre-trained con-
textualized embeddings. The performance of these models is evaluated and com-
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pared with state-of-the-art models on three public benchmarks for ADE detec-
tion. Our model outperforms several strong ADE detection models in most cases.
We also analyze the experiment results to discuss some potential challenges and
explore the potential for improving the ADE detection tasks. The code will be
made publicly available on acceptance.

Our contributions include the following folds.

– We develop a contextualized graph embedding model (CGEM) that intro-
duces text graphs to capture the cause-effect relation for drug adverse event
detection.

– The CGEM model utilizes contextualized embeddings pre-trained in large-
scale domain-specific corpora for capturing context information, convolutional
GNNs for text graph encoding, and an attention classifier for ADE classifica-
tion.

– Experimental results show our approach outperforms recent advanced ADE
detection models in three public datasets from the biomedical domain and
social media.

2 Related Work

The rapid development of deep learning makes neural network-based approaches
predominant in ADE detection. RNN can process sequence information and cap-
ture the sequential dependency, making it is suitable for ADE detection from
text. Many studies on the ADE detection task employ RNN-based models. Cocos
et al. [5] developed a Bidirectional Long Short-Term Memory (BiLSTM) net-
work to label different parts of a sequence for ADE detection. Information from
recognition of concepts and relations can benefit each other, enabling this joint
modeling technique to obtain more useful information during learning. However,
inaccurate recognition in the first step will affect the following steps, known as
the error propagation issue. To address this issue, Wei et al. [31] proposed a
joint learning model which can recognize entities of ADE, the reason, and their
relations simultaneously. In the recognition phase, the joint model employs CRF
and BiLSTM. To achieve relation classification, it uses CNN-RNN and SVM.

Some studies also developed models with other neural network architectures,
such as capsule networks and the self-attention mechanism. Zhang et al. [38]
presented a model called Gated iterative capsule network (GICN), which applies
CNN to obtain the complete phrase information and extracts deep semantic
information using a capsule network with a gated iteration unit. This unit can
remember contextual information by clustering features. However, they did not
consider the wights of different parts of a document. With attention mechanisms,
more critical parts of a document get higher weights. Ge et al. [9] employed Multi-
Head Self-Attention in their model to distinguish the importance of different
words. Wunnava et al. [34] developed a dual-attention mechanism with BiLSTM
to capture both task-specific and semantic information in the sentence. However,
they did not fully consider the causal relationship between entities in a document.
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3 Methods

3.1 Overall Architecture

This paper defines ADE detection as a classification task. We develop the contex-
tualized graph embedding model as illustrated in Fig. 1. There are three compo-
nents of the model. (1) Graph Construction with Contextualized Embed-
dings. We construct a heterogeneous graph to represent words and documents in
the whole dataset, following TextGCN [35], and use pre-trained language models,
specifically BERT [6] and its domain-specific variants, to obtain the contextual-
ized text representation. (2) Graph-based Text Encoding. To capture neigh-
borhood information in the heterogeneous graph, the feature matrix obtained
from the embedding layer and the adjacency matrix from the constructed graph
are fed into graph encoders. The feature embeddings are iteratively updated in
the heterogeneous relational networks of words and documents. (3) ADE Clas-
sification. We follow the BertGCN model [20] to fuse contextualized embedding
and graph networks with a weight coefficient to balance these two branches. Fur-
thermore, we build an attentive classification layer to allow more critical content
to contribute more to predictions. Figure 1 shows the overall model architecture.
The details of these components are introduced in the following sections.

Fig. 1. The illustration of the model architecture with contextualized graph embed-
dings for ADE detection
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3.2 Graph Construction

Heterogeneous Graph. We first represent text as a graph before feeding it
to neural networks. Representing text in a heterogeneous graph can provide dif-
ferent perspectives for text encoding and improve ADE detection. The process
of graph construction follows TextGCN [35]. Nodes in the graph represent doc-
uments and different words. The number of nodes n equal to the number of
documents nd plus the number of unique words nw in the whole dataset, i.e.,
n = nd + nw. There are two types of edges, i.e., word-word and document-word
edges. We use the term frequency-inverse document frequency (TF-IDF) of one
word in the document to represent the weight of a document-word edge, while
the weight of a word-word edge is based on positive point-wise mutual informa-
tion (PMI) of two words. We can represent the weight between the node i and
the node j as:

Aij =

⎧
⎪⎪⎨

⎪⎪⎩

PMI(i, j), PMI > 0; i, j: words
TF-IDFij, i: document, j: word
1, i = j
0, otherwise

. (1)

Contextualized Embeddings. We used three pre-trained contextualized lan-
guage models to obtain embeddings for documents. They are all BERT-based
models but pre-trained with different strategies or corpora collected from differ-
ent domains. The pre-trained language embeddings include:

– RoBERTa [21]: a pre-trained model with masked language modeling (MLM)
objective on English language. In this paper, we used the base version.

– BioBERT [17]: a BERT-based model trained with biomedical corpora includ-
ing PubMed abstracts and PubMed Central full-text articles.

– ClinicalBERT [2]: another domain-specific BERT-based model which is
trained on clinical notes from the MIMIC-III database [13].

Given the dimension of embeddings denoted as d, the final output of contextu-
alized text encoding are denoted as Hdoc ∈ R

nd×d. We then apply a zero matrix
as the initialization of word nodes to get the feature matrix input to GNN:

H(0) =
(

Hdoc

0

)

(2)

where H(0) ∈ R
(nd+nw)×d.

3.3 Graph-Based Text Encoding

This section employs a graph-based model for text encoding and capturing com-
plex heterogeneous relationships. Graph neural networks are powerful models to
mine and capture the relations and dependencies of graph data. Specifically, we
apply two graph neural networks, i.e., Graph Convolutional Network (GCN) [16]
and Graph Attention Network (GAT) [30], which are commonly used in different
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tasks. Graph convolution encodes the topological structure of the heterogeneous
graph, enables label influence propagation, and achieves effective modeling of
ADE corpora. In this section, we introduce their principles.

GCN is a category of Convolutional Graph Neural Networks (ConvGNNs)
models. It is a spectral-based model which incorporates nodes’ feature infor-
mation from their neighbors. It can be seen as a multilayer neural network
limited to undirected graphs where the number of layers is fixed. Each layer
has different weights to better process cyclic mutual dependencies. GCN is the
approximations and simplifications of Spectral CNN. It approximates spectral
graph convolutions using convolutional architecture to get a localized first-order
representation.

A graph G consists of nodes set V , and edge sets E. A is the adjacency
matrix obtained from the step of graph construction, and Â is its normalized
form. D is the degree matrix, where Dij =

∑
j Aij . In the GCN model, multiple

layers are stacked to integrate information about higher-order neighborhoods.
In the m-th layer, the feature matrix is updated as:

H(m) = f(ÂH(m−1)W(m−1)), Â = D− 1
2 AD

1
2 , (3)

where H(m) ∈ R
n×dm , and W(m−1) ∈ R

dm−1×dm is the weight matrix, H(0) is the
output from contextualized language models, and f(·) is an activation function.

Being similar to GCN, GAT is also a ConvGNNs model. However, it is spatial-
based neural networks, where node information is propagated within edges and
graph convolutions are finally decided by the spatial relation. It employs the
message passing process and attention mechanism to learn relations between
nodes. Graph attention layers in GAT assign different attention scores to one
node’s distant neighbors and prioritize the importance of different types of nodes.

3.4 Classification Layers

The GNN-based text encoding produces hidden feature representations H ∈
R

n×dc . We propose to use an attention mechanism (Eq. 4) to put more attention
on nodes with more important information related to positive or negative ADE
classes, denoted as

s = softmax(waHT), (4)

where wa ∈ R
dc and s = (s1, s2, · · · , sn) ∈ R

n is the attention weight vec-
tor containing attention score of each node. Attention scores from the attentive
classification layer are different from the attention layer of GAT. Here, atten-
tion scores measure which nodes are more important to the graph, while in the
attention layer of GAT, attention scores decide the importance of one node to
the other node in the neighborhood. The weight is assigned to feature matrix
to obtained attentive hidden representation weighted by attention scores, i.e.,
Ha = [s1 × h′

1, s2 × h′
2, ..., sn × h′

n].
Then, we apply the softmax classifier over the graph-based encoding and

obtain the probability of each class as:

pg = softmax(WfHT
avf ), (5)
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where Wf ∈ R
n×dh and vf ∈ R

n×2 are the weight matrices. We apply the same
calculation as Eq. 5 but with different weight matrices to pretrained contextu-
alized embeddings H(0). Finally, we get pc as the prediction probability from
the contextualized embeddings. A weight coefficient λ ∈ [0, 1) is introduced to
balance the result from graph-based encoding models and the result from BERT-
based contextualized models:

p = λpg + (1 − λ)pc. (6)

This weighted strategy can also be viewed as an ensemble of two classifiers or
the interpolation of the prediction probability of two classifiers.

3.5 Model Training

We apply the negative log-likelihood loss function as the training objective.
Because data in one of the datasets used in our study is imbalanced and the
number of instances of this dataset is not large where the downsampling method
is not suitable, we use the weighted negative log-likelihood loss function to solve
the data imbalance problem [27]. Assuming that the number of documents con-
taining ADE is N1 and the number of documents not containing ADE is N2, the
weight w+ for documents predicted as positive samples is N2

N1+N2
and the weight

w− for documents predicted as negative samples is N1
N1+N2

. The weighted loss
function is:

L = − 1
N

N∑

i=1

(w+yi log(pi) + w−(1 − yi) log(1 − pi)), (7)

where N is the number of documents in one batch and yi is the true label of a
document. When a document contains ADE, yi equals to 1; otherwise, yi equals
to 0. The Adam optimizer [15] is used for model optimization. To control the
learning rate, we use the multiple-step learning rate scheduler. The learning
rate scheduler decays the learning rate by the parameter γ when the number of
epochs reaches a specific number.

4 Experiment

4.1 Data and Pre-processing

We used three datasets from the biomedical domain and social media to evaluate
the performance of baselines and our model. The details of these datasets are
shown in Table 1. We perform data pre-processing before building graph repre-
sentation. Specifically, stop words, punctuation, and numbers are removed. For
the data collected from Twitter, we use the tweet-preprocessor Python package1

to remove URLs, emojis, and some reserved words for tweets.
1 https://pypi.org/project/tweet-preprocessor/.

https://pypi.org/project/tweet-preprocessor/
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Table 1. A statistical summary of datasets

Dataset Documents ADR non-ADR

SMM4H 2418 1209 1209

TwiMed-Pub 1000 191 809

TwiMed-Twitter 625 232 393

TwiMed-Twitter and TwiMed-Pub2. The TwiMed dataset [3] includes
two sets collected from different domains, i.e., TwiMed-Twitter and TwiMed-
Pub. They consist of documents from Twitter and PubMed, respectively. Peo-
ple with different backgrounds annotate diseases, symptoms, drugs, and their
relations in each document. There are three types of relations: Outcome-
negative, Outcome-positive, and Reason-to-use. When a document is annotated
as outcome-negative, it is marked as ADE (positive). Otherwise, we mark it as
non-ADE (negative). The TwiMed-Pub has a small number of documents con-
taining ADEs. The weighted loss function is used to solve the issue of imbalanced
classification. Models are evaluated by 10-fold cross-validation.

SMM4H Dataset3 [22,26]. The dataset is from Social Media Mining for Health
Applications (#SMM4H) shared tasks. Documents collected from Twitter con-
tain a description of drugs and diseases. The dataset contains 17,385 tweets for
training and 915 tweets for testing. In our experiment, since this dataset is large
enough, we conduct downsampling to mitigate the problem of imbalance, where
we only use 2418 tweets, half of which are negative (non-ADE) and the other half
are positive (ADE). The training tweets are split into train and validation sets,
with a ratio of 9:1. We use the official validation set to evaluate the model per-
formance for a fair comparison with baseline models developed in the SMM4H
shared task, such as [14,25,36].

4.2 Baselines, Evaluation and Setup

Precision (P), Recall (R), and F1-score are commonly used to measure different
models in a classification task. We report these three metrics in our results and
mainly use the F1-score to compare models’ performance in our experiments.
We consider two sets of baseline models for performance comparison: 1) models
explicitly designed for ADE detection and 2) pre-trained contextualized models.

Customized models for ADE detection include:

– CNN-Transfer [19] (CNN-T for short): a CNN-based model with transfer
learning module. It has two sentence classifiers and a shared feature extractor
based on CNN.

2 https://github.com/nestoralvaro/TwiMed.
3 https://healthlanguageprocessing.org/smm4h-2021/task-1/.

https://github.com/nestoralvaro/TwiMed
https://healthlanguageprocessing.org/smm4h-2021/task-1/
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– HTR-MSA [32]: a model with hierarchical tweet representation and multi-
head self-attention. This model learns word representations and tweet repre-
sentations with CNN and Bi-LSTM. The multi-head self-attention mechanism
is also applied.

– ATL [19]: a model based on adversarial transfer learning for the ADE detec-
tion, where corpus-shared features are exploited.

– MSAM [37]: a model with the multihop self-attention mechanism. It captures
contextual information using Bi-LSTM and applies an attention mechanism
in multiple steps to generate semantic representations of sentences.

– IAN [1]: interactive attention networks, a model to interactively learn atten-
tions in the context and model targets and context separately.

We compare our model with pre-trained language models on the SMM4H
dataset as it is a recent dataset not studied by the aforementioned ADE detection
baselines. We use the base version of pretrained models in our experiments for
a fair comparison, which is the same setting as in the compared baselines.

– BERT [6]: a language representation models pre-training with unlabeled text.
Yaseen et al. [36] proposed a model that combined LSTM with a BERT
encoder for ADE detection, denoted as BERT-LSTM in this paper.

– RoBERTa [21]: a BERT-based model on the English language with slightly
different pre-training strategies. Pimpalkhute et al. [25] developed a data aug-
mentation method with RoBERTa text encoder for ADE detection, denoted
as RoBERTa-aug in this paper.

– BERTweet [23]: a domain-specific model for English Tweets with the same
architecture as BERT-base. Kayastha et al. [14] built a model with BERTweet
and single-layer BiLSTM for ADE detection, denoted as BERTweet-LSTM
in this paper.

We use Python 3.7 and PyTorch 1.7.1 to implement the model. The hyper-
parameters we tuned in our experiments are presented in Table 2. In our exper-
iment, we set the hyper-parameter of the learning rate scheduler γ and the
milestone of epoch number to 0.1 and 30, respectively.

Table 2. Choices of hyper-parameters

Hyper-parameters Choices

Learning rate for text encoder 2e−5, 3e−5, 1e−4

Learning rate for classifier 1e−4, 5e−4, 1e−3

Learning rate for graph-based models 1e−3, 3e−3, 5e−3

Hidden dimension for GNN 200, 300, 400

Weight coefficient λ 0, 0.1 0.3, 0.5, 0.7, 0.9
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4.3 Main Results

We compared our model with baseline models for the ADE detection task to
validate the performance of our model. Tables 3 and Table 4 show the results of
TwiMed and SMM4H dataset, respectively. Our model achieves the best per-
formance for all datasets compared with other methods in terms of F1-score.
The best result of TwiMed-Pub is obtained with ClinicalBERT embeddings and
a GAT encoder. As for SMM4H and TwiMed-Twitter, the best combination of
building blocks is RoBERTa embeddings and GCN encoder.

Table 3. Results of TwiMed datasets

Datasets Metrics HTR-MSA [32] CNN-T [19] MSAM [37] IAN [1] ATL [19] Ours

TwiMed-Pub P (%) 75.0 81.3 85.8 87.8 81.5 88.4

R (%) 66.0 63.9 85.2 73.8 67.0 85.0

F1 (%) 70.2 71.6 85.3 79.2 73.4 86.7

TwiMed-Twitter P (%) 60.7 61.8 74.8 83.6 63.7 84.2

R (%) 61.7 60.0 85.6 81.3 63.4 83.7

F1 (%) 61.2 60.9 79.9 82.4 63.5 83.9

Table 4. Results of SMM4H dataset

Methods P (%) R (%) F1 (%)

BERT-LSTM [36] 77.0 72.0 74.0

BERTweet-LSTM [14] 81.2 86.2 83.6

RoBERTa-aug [25] 82.1 85.7 84.3

Ours 86.7 93.4 89.9

As shown in Table 3, performances of HTR-MSA, ATL, and CNN-Transfer
are lower than others. The network structures of these three models are complex,
resulting in a large amount of data being required. Thus, it performs worse than
other models on small corpora. MSAM achieves the best performance on recall,
while our model performs the best on precision and F1-score. Our model can
balance precision and recall better. The competitive performance on the three
datasets also shows the high generalization ability of our model. In Table 3, the
performances of most models on the two datasets are significantly different. It
is challenging to detect ADEs from tweets since tweets are informal text and
contain much colloquial language. However, our model performs well on the
TwiMed-Twitter dataset, showing that it can effectively encode information from
the informal text and better capture relationships of entities in a document. From
Table 4, we can find that other models are all BERT-based models. In contrast,
our model employs GNN architectures, which suggests GNN can significantly
improve models’ performance on this task.
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4.4 Analyses and Discussion

We further analyze the contextualized graph embedding model in this section,
discuss the choice of different building blocks, and conduct a case study.

Choice of Graph Encoders. Our experiment examines GCN and GAT to
study which one is more suitable for the ADE detection task. We record the
best result under different graph encoders. For both GCN and GAT, we obtain
the best result from RoBERTa for the SMM4H dataset and TwiMed-Twitter.
For TwiMed-Pub, the best result is obtained using ClinicalBERT. From Table 5,
we can find the results from the two GNNs are similar, showing that they both
performed well on this task.

Table 5. Comparison on the choices of graph encoders, i.e., GCN and GAT

Graph encoder SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

GCN 86.7 93.4 89.9 88.6 84.3 86.4 84.2 83.7 83.9

GAT 84.8 92.3 88.4 88.4 85.0 86.7 83.1 81.9 82.5

Choice of Pretrained Embeddings. We examine three contextualized lan-
guage models in our experiment. We record the best results with different lan-
guage models. When using RoBERTa, the best results for the SMM4H dataset,
TwiMed-Pub, and TwiMed-Twitter are from GCN, GAT, and GCN, respec-
tively. When using ClinicalBERT, the best results for the SMM4H dataset and
TwiMed-Pub are from GAT, and for TwiMed-Twitter, the best result is from
GCN. When using BioBERT, the choice of GNNs for best results is the same as
using ClinicalBERT.

From Table 6, we can find that, for TwiMed-Pub, there is little difference
among the three pre-trained language models. However, for the SMM4H dataset
and TwiMed-Twitter, RoBERTa performs better than others. The SMM4H
dataset and TwiMed-Twitter dataset contain documents with many non-medical
terms, while ClinicalBERT and BioBERT are trained with many medical terms.
Therefore, when there are insufficient medical terms in the text, ClinicalBERT
and BioBERT are unsuitable. RoBERTa is a better choice for informal text for
this task.

Ablation Study on the Attention Classifier. To examine the effect of the
attention classifier, we conduct an ablation study in our experiment. We remove
the attentive classification layer and check the performance change in F1 scores.

From Table 7, we can find that after removing the attentive classification
layer, values of F1-scores get decreased for all three datasets. It suggests that
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Table 6. The effect of contextualized text embeddings obtained pretrained from dif-
ferent domains

Pretrained embeddings SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

RoBERTa 86.7 93.4 89.9 88.2 84.3 86.2 84.2 83.7 83.9

ClinicalBERT 81.5 92.3 86.6 88.4 85.0 86.7 80.1 80.7 80.4

BioBERT 80.9 93.4 86.7 88.2 84.0 86.0 81.2 80.6 80.9

the attentive classification layer can improve the model to prioritize information
in the heterogeneous graph. More meaningful content, such as the description of
symptoms and drugs, medical terms, and other relevant information related to
ADEs, can contribute more to final predictions by employing attention mecha-
nisms in the classification layer.

We also notice that F1 scores increase with the attentive classification layer,
while precision scores for the SMM4H and TwiMed-Twitter datasets decrease.
The documents of these two datasets are both from Twitter. Tweets are informal
texts that do not follow the logical order, and their structures are unclear. They
lack medical terms, and some content that seems not to be related to ADEs may
also help determine whether a document contains ADEs or not. After applying
the attentive classification layer, the model puts more attention to parts directly
related to the description of symptoms, resulting in a tendency where a tweet is
more easily to be predicted as a positive sample. Therefore, the precision value
decreases after employing the attention classification layer. Besides, we can find
that the F1 score on the SMM4H dataset decreases to a greater extent without
an attentive classification layer. This dataset contains more documents compared
to others. It suggests that the attentive classification layer works better for larger
datasets. For small corpora, models with simpler architectures also perform well.

Table 7. Comparison between our model and the model without attentive classification
layer

SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Our model 86.7 93.4 89.9 88.4 85.0 86.7 84.2 83.7 83.9

- Attentive layer 87.0 90.1 88.5 87.8 83.9 85.8 84.6 82.2 83.3

Effect of Weight Coefficient λ. The weight coefficient λ’s value controls
the trade-off between the contextualized language models and graph neural net-
works. When λ equals zero, only BERT-based pre-trained contextualized embed-
dings are considered. In 2, dashed lines show the values of the F1-score when
λ equals to zero. After employing GNNs (λ = 0.1, 0.3, 0.5, 0.7, 0.9), we can find
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that the value of the F1-score increases on all three datasets. It demonstrates
that convolutional GNNs can improve the performance of our model signifi-
cantly. Determining whether a symptom description is about the disease itself
or adverse reactions resulting from the disease is a challenge in ADE detec-
tion. Utilizing GNNs helps solve this issue since GNNs can better capture the
cause-effect relation and dependency between different entities of documents.

We can find the trend of the three lines are similar in respective plots of
Fig. 2. In terms of F1-score, the best choices of the value of λ for three datasets
are 0.5 (SMM4H), 0.9 (TwiMed-Pub), and 0.7 (TwiMed-Twitter). It suggests
how to choose the value of λ depending on which datasets we use and other
model hyper-parameters. Also, when values of λ are greater than 0.5, the F1
scores are relatively high. Therefore, we can first choose a high value of λ to
allow graph embeddings to contribute more.

Fig. 2. The effect of weight coefficient λ on values of metrics

Case Study. We conduct a case study to explore the effect of the attention
mechanism in Eq. 4. We choose two documents classified as positive samples in
the SMM4H test dataset, where one is classified correctly while the other one
does not contain ADE. We record the attention scores of words of these two
tweets and utilize a heap map to show the value of different words’ attention
scores in a document, illustrated in Fig. 3. Figure 3a of a correctly classified
tweet shows nouns (such as medication, sideaffects and seroquel), verbs (such
as jolting), and sentiment words (such as hard and bad) related to drugs and
symptoms get high attention scores. It helps the model put more attention on
these important words. However, assigning high attention scores to such words
does not ensure correct predictions. Figure 3b shows the attention scores of a
tweet incorrectly classified as a positive sample. We can find that words related
to symptoms, negative sentiment, and drugs are still getting high scores, while
the tweet does not talk about ADE directly.
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Fig. 3. Case study of the attention scores in two tweets: (a) with ADE; and (b) without
ADE

5 Conclusion

The automated detection of adverse drug events from social content or biomed-
ical literature requires the model to encode text information and capture the
causal relation efficiently. This paper utilizes contextualized graph embeddings
to learn contextual information and causal relations for ADE detection. We equip
different convolutional graph neural networks with pre-trained language repre-
sentation, develop an attention classifier to detect ADEs in documents and study
the effects of different building components in our model. By comparing our
model with other baseline methods, experiment results show that graph-based
embeddings can better capture causal relationships and dependency between
different entities in documents, leading to better detection performance.
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2018. CCIS, vol. 930, pp. 185–196. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01204-5 18

2. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings
of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)

3. Alvaro, N., Miyao, Y., Collier, N.: Twimed: Twitter and PubMed comparable cor-
pus of drugs, diseases, symptoms, and their relations. JMIR Public Health Surveill.
3(2), e6396 (2017)

4. Bollegala, D., Sloane, R., Maskell, S., Hajne, J., Pirmohamed, M.: Learning causal-
ity patterns for detecting adverse drug reactions from social media. J. Med. Internet
Res. (2018)

5. Cocos, A., Fiks, A.G., Masino, A.J.: Deep learning for pharmacovigilance: recurrent
neural network architectures for labeling adverse drug reactions in twitter posts.
JAMIA 24(4), 813–821 (2017)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT (2019)

https://doi.org/10.1007/978-3-030-01204-5_18
https://doi.org/10.1007/978-3-030-01204-5_18


Contextualized Graph Embeddings for Adverse Drug Event Detection 619

7. Donaldson, M.S., Corrigan, J.M., Kohn, L.T., et al.: To Err is Human: Building a
Safer Health System (2000)

8. Duan, L., Khoshneshin, M., Street, W.N., Liu, M.: Adverse drug effect detection.
IEEE J. Biomed. Health Inform. 17(2), 305–311 (2012)

9. Ge, S., Qi, T., Wu, C., Huang, Y.: Detecting and extracting of adverse drug reac-
tion mentioning tweets with multi-head self attention. In: Proceedings of SMM4H
Workshop, pp. 96–98 (2019)
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