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ABSTRACT
Graph representation learning has demonstrated improved per-

formance in tasks such as link prediction and node classification

across a range of domains. Research has shown that many natural

graphs can be organized in hierarchical communities, leading to

approaches that use these communities to improve the quality of

node representations. However, these approaches do not take ad-

vantage of the learned representations to also improve the quality

of the discovered communities and establish an iterative and joint

optimization of representation learning and community discovery.

In this work, we present Mazi, an algorithm that jointly learns the

hierarchical community structure and the node representations of

the graph in an unsupervised fashion. To account for the structure

in the node representations, Mazi generates node representations
at each level of the hierarchy, and utilizes them to influence the

node representations of the original graph. Further, the communi-

ties at each level are discovered by simultaneously maximizing the

modularity metric and minimizing the distance between the rep-

resentations of a node and its community. Using multi-label node

classification and link prediction tasks, we evaluate our method on

a variety of synthetic and real-world graphs and demonstrate that

Mazi outperforms other hierarchical and non-hierarchical methods.

KEYWORDS
networks, network embedding, unsupervised learning, graph rep-

resentation learning, hierarchical clustering, community detection
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1 INTRODUCTION
Representation learning in graphs is an important field, demonstrat-

ing good performance in many tasks in diverse domains, such as

social network analysis, user modeling and profiling, brain model-

ing, and anomaly detection [9]. Graphs arising in many domains are

often characterized by a hierarchical community structure [1, 5, 15],
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where the communities (i.e., clusters) at the lower (finer) levels of

the hierarchy are better connected than the communities at the

higher (coarser) levels of the hierarchy. For instance, in a large

company, the graph that captures the relations (edges) between

the different employees (nodes) will tend to form communities at

different levels of granularity. The communities at the lowest levels

will be tightly connected corresponding to people that are part of

the same team or project, whereas the communities at higher levels

will be less connected corresponding to people that are part of the

same product line or division.

In recent years, researchers have conjectured that when present,

the hierarchical community structure of a graph can be used as

an inductive bias in unsupervised node representation learning.

This has led to various methods that learn node representations

by taking into account a graph’s hierarchical community structure.

HARP [4] advances from the coarsest level to the finest level to learn

the node representations of the graph at the coarser level, and then

use it as an initialization to learn the representations of the finer

level graph. LouvainNE [2] uses a modularity-based [15] recursive

decomposition approach to generate a hierarchy of communities.

For each node, it then proceeds to generate representations for the

different sub-communities that it belongs to. These representations

are subsequently aggregated in a weighted fashion to form the final

node representation, wherein the weights progressively decrease

with coarser levels in the hierarchy. SpaceNE [13] constructs sub-

spaces within the feature space to represent different levels of the

hierarchical community structure, and learns node representations

that preserves proximity between vertices as well as similarities

within communities and across communities.

Further, in recent times, certain GNN-based approaches [12, 21]

have also been proposed which exploit the hierarchical commu-

nity structure while learning node representations. However, these

methods use supervised learning and require more information to

achieve good results.

Though all of the above methods are able to produce better rep-

resentations by taking into account the hierarchical community

structure, the information flow is unidirectional—from the hier-

archical communities to the node representations. We postulate

that the quality of the node representations can be improved if we

allow information to also flow in the other direction—from the node

representations to hierarchical communities—which can be used to

improve the discovered hierarchical communities. Moreover, this al-

lows for an iterative and joint optimization of both the hierarchical

community structure and the representation of the nodes.

We present Mazi1, an algorithm that performs a joint unsuper-

vised learning of the hierarchical community structure of a graph

and the representations of its nodes. The key difference between

1
Mazi is Greek for together.
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Mazi and prior methods is that the community structure and the

node representations help improve each other.Mazi estimates node

representations that are designed to encode both local informa-

tion and information about the graph’s hierarchical community

structure. By taking into account local information, the estimated

representations of nodes that are topologically close will be similar.

By taking into account the hierarchical community structure, the

estimated representations of nodes that belong to the same commu-

nity will be similar and that similarity will progressively decrease

for nodes that are together only in progressively coarser-level com-

munities.

Mazi forms successively smaller graphs by coarsening the origi-

nal graph using the hierarchical community structure such that the

communities at different levels represent nodes in the coarsened

graphs. Then, iterating over all levels, Mazi learns node represen-
tations at each level by maximizing the proximity of the represen-

tation of a node to that of its adjacent nodes while also drawing

it closer to the representation of its community. Furthermore, at

each level, Mazi learns the communities by taking advantage both

of the graph topology and the node representations. This is done

by simultaneously maximizing the modularity of the communi-

ties, maximizing the affinity among the representations of near-by

nodes by using a Skip-gram [14] objective, and minimizing the

distance between the representations that correspond to a node

and its parent in the next-level coarser graph.

We evaluate Mazi on the node classification and the link pre-

diction tasks on synthetic and real-world graphs. Our experiments

demonstrate that Mazi achieves an average gain of 215.5% and

9.3% over competing approaches on the link prediction and node

classification tasks, respectively.

The contributions of our paper are the following:

(1) We develop an unsupervised approach to simultaneously

organize a graph into hierarchical communities and to learn

node representations that account for that hierarchical com-

munity structure. We achieve this by introducing and jointly

optimizing an objective function that contains (i) modularity-

and skip-gram-based terms for each level of the hierarchy

and (ii) inter-level node-representation consistency terms.

(2) We present a flexible synthetic generator for graphs that con-

tain hierarchically structured communities and community-

derived node properties. We use this generator to study the

effectiveness of different node representation learning algo-

rithms.

(3) We show that our method learns node representations that

outperform competing approaches on synthetic and real-

world datasets for the node classification and link prediction

tasks.

2 DEFINITIONS AND NOTATION
Let𝐺 = (𝑉 , 𝐸) be an undirected graph where𝑉 is its set of 𝑛 nodes

and 𝐸 is its set of𝑚 edges. Let X ∈ R𝑛×𝑑 store the representation

vector 𝑥𝑖 at the 𝑖th row for 𝑣𝑖 ∈ 𝑉 .

A community refers to a group of nodes that are better connected

with each other than with the rest of the nodes in the graph. A

graph is said to have a community structure, if it can be decomposed

into communities. In many natural graphs, communities often exist

Table 1: Summary of notation.

Notation Description

𝑙 A level in the hierarchical structure.

𝐿 The number of levels in the hierarchical communities.

𝐺𝑙
The graph𝐺𝑙 = (𝑉 𝑙 , 𝐸𝑙 ,𝑊 𝑙 ) at level 𝑙 , where𝑉 𝑙

is the set of

nodes, 𝐸𝑙 is the set of edges, and𝑊 𝑙
stores the edge weights.

𝑣𝑖 A vertex in𝐺 .

deg(𝑣𝑖 ) The degree of node 𝑣𝑖 .

𝑋 The node representations of𝐺

C A community decomposition of𝐺 .

𝐻 The community membership indicator vector of𝐺 .

𝐶𝑖 A community in𝐶 .

deg𝑖𝑛𝑡 (𝐶𝑖 ) The internal degree of community𝐶𝑖 .

deg𝑒𝑥𝑡 (𝐶𝑖 ) The external degree of community𝐶𝑖 .

deg(𝐶𝑖 ) The overall degree of community𝐶𝑖 .

𝐼𝐷 An array containing the vertex internal degrees.

𝐸𝐷 An array containing the vertex external degrees.

𝑄 The modularity of𝐺 for a given C (cf. Eqn. 1).

𝑋 𝑙
The node representations at level 𝑙 .

𝐻 𝑙
The community structure at level 𝑙 .

𝑑 The dimension of 𝑋 𝑙
, where 𝑙 ∈ 1, . . . , 𝐿.

𝑛𝑒𝑙 The number of epochs at level 𝑙 .

𝑙𝑟 𝑙 The learning rate at level 𝑙 .

𝑘 The context size extracted from walks.

𝑤𝑙 The length of random-walk.

𝑟 The number of walks per node.

𝛼 The weight of the contribution of node neighborhood to the

overall loss.

𝛽 The weight of the contribution of proximity to a node’s com-

munity to the overall loss.

𝛾 The weight of the contribution of𝑄 to the overall loss.

at different levels of granularity. At the upper (coarser) levels, there

is a small number of large communities, whereas at the lower (finer)

levels, there is a large number of small communities. In general, the

communities at the coarser levels are less well-connected than the

finer level communities. When the communities at different levels

of granularity form a hierarchy, that is, a community at a particular

level is fully containedwithin a community at the next level up, then

we will say that the graph has a hierarchical community structure.
Let C = {𝐶0, . . . ,𝐶𝑘−1}, with 𝑉 = ∪𝑖𝐶𝑖 and 𝐶𝑖 ∩𝐶 𝑗 = ∅ for 0 ≤

𝑖, 𝑗 < 𝑘 be a𝑘-way community decomposition of𝐺 with𝐶𝑖 indicating

its 𝑖th community. Let 𝐻 be the community membership indicator

vector where 0 ≤ 𝐻 [𝑣𝑖 ] < 𝑘 indicates 𝑣𝑖 ’s community. Given a

𝑘-way community decomposition C of 𝐺𝑙 = (𝑉 𝑙 , 𝐸𝑙 ), its coarsened
graph 𝐺𝑙+1 = (𝑉 𝑙+1, 𝐸𝑙+1) is obtained by creating 𝑘 vertices—one

for each community in C—and adding an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑙+1 if

there are edges (𝑢𝑝 , 𝑢𝑞) ∈ 𝐸𝑙 such that 𝑢𝑝 ∈ 𝐶𝑖 and 𝑢𝑞 ∈ 𝐶 𝑗 . The

weight of the (𝑣𝑖 , 𝑣 𝑗 ) edge is set equal to the sum of the weights of

all such (𝑢𝑝 , 𝑢𝑞) edges in 𝐸𝑙 . In addition, each 𝑣𝑖 ∈ 𝑉 𝑙+1
is referred

to as the parent node to all 𝑢 ∈ 𝐶𝑖 .
Given C, the modularity of 𝐺 is defined as

𝑄 =
1

2𝑚

( ∑︁
𝐶𝑖 ∈C

(
deg𝑖𝑛𝑡 (𝐶𝑖 ) −

deg(𝐶𝑖 )2
2𝑚

))
. (1)
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Here, deg𝑖𝑛𝑡 (𝐶𝑖 ) is the number of edges that connect nodes in 𝐶𝑖
to other nodes in 𝐶𝑖 and deg(𝐶𝑖 ) is the sum of all node degrees in

𝐶𝑖 . Further, let deg𝑒𝑥𝑡 (𝐶𝑖 ) be the number of edges that connect 𝐶𝑖
to nodes in other communities. 𝑄 measures the difference between

the actual number of edges within 𝐶𝑖 and the expected number of

edges within 𝐶𝑖 , aggregated over all 𝐶𝑖 ∈ C. 𝑄 ranges from −0.5,
when all the edges in 𝐺 are between 𝐶𝑖 and 𝐶 𝑗 , where 𝑖 ≠ 𝑗 , and

approaches 1.0 if all the edges are within any 𝐶𝑖 and 𝑘 is large.

Let the hierarchical community structure of 𝐺 , with 𝐿 levels,

be represented by a sequence of successively coarsened graphs,

denoted by 𝐺,𝐺2, · · · ,𝐺𝐿
, such that |𝑉 | > |𝑉 2 | > · · · > |𝑉 𝐿 |,

wherein at each 𝑙 ∈ 𝐿, the communities in𝐺𝑙
are collapsed to form

the nodes in 𝐺𝑙+1
. Every 𝑣𝑙

𝑖
∈ 𝑉 𝑙

is collapsed to a single parent

node, 𝑣𝑙+1
𝑗

, in the next level coarser graph, 𝐺𝑙+1
. Let us denote a

model that takes the hierarchical community structure into account

as hierarchical models and those that do not as flat models. Finally,

we summarize all the notations in Table 1.

3 MAZI
Given a graph 𝐺 , Mazi seeks to jointly learn its node represen-

tations and its hierarchical community structure organized in 𝐿

levels. Mazi coarsens the graphs at all levels of the hierarchy and

learns representations for all nodes. At any given level, the node

representation is learned such that it is similar to those of the nodes

in its neighborhood, to its community and to the nodes it serves as

a community to. This ensures the node representations at all levels

align with the hierarchical community structure. Further, the com-

munities at all levels are learned by utilizing node representations

along with the graph topology. Mazi utilizes Skip-gram to model

the similarity in the representations of a node and its neighbors.

To model the similarity in the representations of node and its asso-

ciated community, Mazi minimizes the distance between the two

representations. Finally, to learn the communities, Mazi maximizes

the modularity metric along with the above objectives.

Figure 1 illustrates a graph with a hierarchical community struc-

ture. From the figure, we see that the original graph (level 1 in

the hierarchical structure) contains 5 large communities (level 3)
in its coarsest level, each of which can be further split into 5 sub-

communities (level 2). A community in level 3 is represented in

blue and one of its 5 sub-communities is colored yellow.Mazi learns
the representation of a node belonging to the yellow community

such that it will be similar to other nodes in that community over

others. Furthermore, it will also be similar in representation to the

nodes in the blue community, although this similarity value will be

progressively lower as compared to that of the nodes in the yellow
community.

3.1 Objective Function
Mazi defines the objective function used for learning node repre-

sentations using three major components. First, at each level, for

each node, Mazi maximizes the proximity of its representation to

the representation of the nodes belonging to its neighborhood us-

ing the Skip-gram objective. Second, iterating over all levels, the

proximity of the representation of a node to that of its direct lineage

in the embedding space is maximized. Third, the communities at

Figure 1: A visualization of a synthetic 3K-node graph with
a hierarchical community structure. The graph is generated
by the proposed synthetic graph generator in Section 4. The
important parameters include common-ratio of 3.0, a branch-
ing factor of 5, except at the finest level, which is formed
with a branching factor of 30 and a maximum degree for
each node equal to 7.5. A community in level 3 is colored
blue and a sub-community, in level 2, within that is repre-
sented in yellow.

each level are discovered and refined by maximizing themodularity
metric.

Modeling node proximity to its neighborhood. As previously stud-

ied, see [8], to capture the neighbourhood of a node in the repre-

sentations, we seek to maximize the log-likelihood of observing

the neighbors of a node conditioned on its representation using

the Skip-gram model with negative sampling. Utilizing the concept

of sequence-based representations, neighboring nodes of a node

𝑣𝑖 , represented by 𝑁 (𝑣𝑖 ), are sampled to form its context. Let the

negative sampling distribution of 𝑣𝑖 be denoted by 𝑃𝑛 and the num-

ber of negative samples considered for training the loss be denoted

by 𝑅. We use 𝐿𝑛𝑏𝑟_𝑝𝑜𝑠 and 𝐿𝑛𝑏𝑟_𝑛𝑒𝑔 to denote the loss of 𝑣𝑖 to its

neighbors and to its negative samples, respectively. Using the above,

we define

𝐿𝑛𝑏𝑟_𝑝𝑜𝑠 =
1

|𝑁 (𝑣𝑖 ) |
∑︁

𝑣𝑗 ∈𝑁 (𝑣𝑖 )
log𝜎 (𝑥⊤𝑖 𝑥 𝑗 ), (2a)

𝐿𝑛𝑏𝑟_𝑛𝑒𝑔 = 𝑅 · 𝐸𝑣𝑛∼𝑃𝑛 (𝑣𝑖 ) log(1 − 𝜎 (𝑥
⊤
𝑖 𝑥 𝑗 )) . (2b)

Taken together, we model the neighbourhood proximity of 𝑣𝑖 as:

𝐿𝑛𝑏𝑟 = 𝐿𝑛𝑏𝑟_𝑝𝑜𝑠 + 𝐿𝑛𝑏𝑟_𝑛𝑒𝑔 . (3)
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Modeling node proximity to its Community. In many domains,

nodes belonging to a community tend to be functionally similar to

each other in comparison to nodes lying outside the community [6].

As a consequence, we expect the representation of a node to be

similar to the representation of its lineage in the hierarchy. Consider

a level, 𝑙 , in the hierarchical community structure of 𝐺 . At 𝑙 , for 𝑣𝑙
𝑖
,

with representation 𝑥𝑙
𝑖
, we let the representation of its associated

community (parent-node) in the next level coarser graph, 𝐺𝑙+1
,

be denoted by 𝑥𝑙+1
𝐻 𝑙 (𝑣𝑙

𝑖
)
. To model the relationship between 𝑣𝑙

𝑖
and

𝐻 𝑙 (𝑣𝑙
𝑖
), we use:

𝐿𝑙𝑐𝑜𝑚𝑚 = log𝜎
(
𝑥𝑙𝑖
⊤
𝑥𝑙+1
𝐻 𝑙 (𝑣𝑙

𝑖
)
)
. (4)

As we iterate over the levels in the hierarchy of the graph, we

bring together nodes in each level closer to its parent node in the

next-level coarser graph in the embedding space. Consequently,

the representation of a node is influenced by the communities the

node belongs to at different levels.

Jointly Learning the Hierarchical Community Structure and Node
Representations. Typically, community detection algorithms utilize

the topological structure of a graph to discover communities. How-

ever, we may also take advantage of the information contained

within the node representations while forming the communities

at each level in the hierarchy. Mazi discovers the communities in

the graph by jointly maximizing the modularity metric, described

in Equation 1, at each level and minimizing the distance between

the representations of a node and its community in the next level

coarser graph. The communities that we learn at each level, thus,

better align with the structural and the functional components of

the graph at that level. At each level in the hierarchical community

structure, we use Equation 3 and Equation 4 to model and learn the

node representations.

Consequently, putting all the components together, we get the

following coupled objective function:

max
𝜃

𝐿∑︁
𝑙=1

(
1

|𝑉 𝑙 |

(
𝐿𝑙
𝑛𝑏𝑟_𝑝𝑜𝑠

+ 𝛼𝑙𝐿𝑙
𝑛𝑏𝑟_𝑛𝑒𝑔

+ 𝛽𝑙𝐿𝑙𝑐𝑜𝑚𝑚

)
+ 𝛾𝑙𝑄𝑙

)
,

𝜃 = 𝑥𝑙𝑖 , 𝐻
𝑙 , 𝑖 ∈ 1 . . . |𝑉 |𝑙 ∀𝑙 ∈ 1 . . . 𝐿.

(5)

Since the order of the three terms that contribute to the overall

objective is different, the terms are normalized with its respective

order of contribution. Further, 𝛼𝑙 , 𝛽𝑙 and 𝛾𝑙 serve as regularization

parameters and are added to Sub-equations (2b), (4) and (1) in the

overall objective for each level 𝑙 , respectively.

3.2 Algorithm
An initial hierarchical community structure of the graph at level 1,
denoted by𝐺1 = (𝑉 1, 𝐸1,𝑊 1), is constructed and node represen-

tations are computed for all the levels in the hierarchy. Then, using

an alternating optimization approach in a level-by-level fashion,

the objective, defined previously, is optimized. The optimization

updates step through the levels from the finest level graph to the

coarsest level graph (Forward Optimization) and then from the

coarsest level graph to the finest level graph (Backward Optimiza-

tion) in multiple iterations. This enables the node representations at

each level to align itself to its direct lineage in the embedding space,

additionally refining the community structure by the information

contained within this space. An outline of the overall algorithm

can be found in Algorithm 1.

Algorithm 1 Mazi: Joint Unsupervised Learning of Node Embed-

ding and Hierarchical Community Structure.

INPUT: Undirected Graph𝐺1 = (𝑉 1, 𝐸1,𝑊 1)
OUTPUT: Node embedding 𝑋 𝑙

and hierarchical community structure 𝐻 𝑙
,

∀ 𝑙 ∈ [1 . . . 𝐿]
1: procedure Mazi

2: Set hyper-params 𝑘 , 𝑤𝑙 , 𝑟 , 𝐿, 𝑙𝑟1 . . . 𝑙𝑟𝐿 , 𝑛𝑒1 . . . 𝑛𝑒𝐿 ,𝑊 , 𝑑 , 𝛼 , 𝛽 , 𝛾 .

3: 𝐺𝑙 , 𝑋 𝑙 , 𝐻 𝑙 ← InitGXH(𝐺1, 𝑋1, 𝐻1, 𝐿) , ∀ 𝑙 ∈ [1 . . . 𝐿]
4: for 𝑤 ← 1,𝑊 do
5: for 𝑙 ← 1, 𝐿 − 1 do
6: 𝑋 𝑙 , 𝐻 𝑙 ← UpdateXH(𝐺𝑙 , 𝑋 𝑙 , 𝐻 𝑙 ∀ 𝑙 ∈ [1 . . . 𝐿], 𝑙)

⊲ Forward Optimization: Fine to Coarse.

7: for 𝑙 ← 𝐿 − 1, 1 do
8: 𝑋 𝑙 , 𝐻 𝑙 ← UpdateXH(𝐺𝑙 , 𝑋 𝑙 , 𝐻 𝑙 ∀ 𝑙 ∈ [1 . . . 𝐿], 𝑙)

⊲ Backward Optimization: Coarse to Fine.

9:

10: procedure InitGXH(𝐺1
, 𝑋1

, 𝐻1
, 𝐿)

11: ⊲ Initialize node representations and hierarchical community

structure.

12: for 𝑙 ← 1, 𝐿 − 1 do
13: for all 𝑣𝑙

𝑖
∈ 𝑉 𝑙 do

14: Merge 𝑣𝑙
𝑖
to 𝑣𝑙+1

ℎ
, where 𝑣𝑙

𝑖
∈ 𝑉 𝑙 , ℎ ← 𝐻 𝑙 [𝑣𝑙

𝑖
].

15: for all (𝑣𝑖 , 𝑣𝑗 ) ∈ 𝐸𝑙 do
16: Collapse (𝑣𝑙+1

𝐻 (𝑣𝑖 )
, 𝑣𝑙+1

𝐻 (𝑣𝑗 )
) to 𝐸𝑙+1.

17: 𝑤𝑙+1
(𝑣𝑙+1
𝐻 (𝑣𝑖 )

,𝑣𝑙+1
𝐻 (𝑣𝑗 )

)
+ = 𝑤𝑙

(𝑣𝑙
𝑖
,𝑣𝑙
𝑗
)

18: for all 𝑣𝑙
𝑖
∈ 𝑉 𝑙 do

19: 𝑥𝑙+1
𝑣𝑙+1
𝐻 (𝑣𝑖 )

+ = 𝑥𝑙
𝑣𝑙
𝑖

20: Generate 𝐻 𝑙+1
for𝐺𝑙+1 (𝑉 𝑙+1, 𝐸𝑙+1,𝑊 𝑙+1) .

21: return𝐺𝑙 = (𝑉 𝑙 , 𝐸𝑙 ,𝑊 𝑙 ), 𝑋 𝑙 , 𝐻 𝑙 ∀ 𝑙 ∈ [1 . . . 𝐿]
22:

23: procedure UpdateXH(𝐺𝑙
, 𝑋 𝑙

, 𝐻 𝑙 ∀ 𝑙 ∈ [1 . . . 𝐿], 𝑙 )
24: ⊲ Update node representations and clustering solution at level 𝑙 .

25: for all 𝑣𝑖 ∈ 𝑉 𝑙 do
26: for 𝑤𝑎𝑙𝑘_𝑛𝑢𝑚 ← 1, 𝑟 do
27: 𝑡𝑟𝑎𝑖𝑛𝑣𝑖 ← RandomWalker(𝐺𝑙 , 𝑘, 𝑤𝑙)
28: 𝑋 𝑙 ← UpdateX(𝑋 𝑙−1, 𝐻 𝑙−1, 𝑋 𝑙 , 𝐻 𝑙 , 𝑋 𝑙+1,

𝐻 𝑙+1, 𝑡𝑟𝑎𝑖𝑛𝑣𝑖 , 𝑛𝑒
𝑙 , 𝑙𝑟 𝑙 , 𝛼, 𝛽)

29: 𝐻 𝑙 ← UpdateH(𝐺𝑙 , 𝐻 𝑙 , 𝑋 𝑙 , 𝑋 𝑙+1)
30: return 𝑋 𝑙 , 𝐻 𝑙

31:

32: procedure UpdateH(𝐺𝑙
, 𝐻 𝑙

, 𝑋 𝑙
, 𝑋 𝑙+1

)

33: ⊲ Update clustering solution.

34: for all 𝑣𝑖 ∈ 𝑉 𝑙 do
35: Compute 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 [𝑘 ] ∀ 𝑘 ← 1, |𝐻 𝑙 |.
36: 𝑑𝑒𝑔 (𝑣𝑖 ) = sum(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)
37: for 𝑘 ← 1, |𝐻 𝑙 | do
38: 𝑜𝑏 𝑗 [𝑘 ] ← MoveTo(𝑣𝑖 , 𝑘, 𝐻 𝑙 (𝑣𝑖 ), 𝑑𝑒𝑔𝑟𝑒𝑒𝑠,

𝐼𝐷, 𝐸𝐷,𝑑𝑒𝑔 (𝑣𝑖 ), 𝑋 𝑙 , 𝑋 𝑙+1)
39: ℎ𝑚𝑎𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑜𝑏 𝑗)
40: 𝐻 𝑙 (𝑣𝑖 ) ← ℎ𝑚𝑎𝑥

41: Modify 𝐼𝐷 , 𝐸𝐷 .

42: return 𝐻 𝑙
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Initializing the Hierarchical Community Structure and Node Rep-
resentations. A hierarchical community structure with 𝐿 levels and

their associated community membership vectors for 𝐺 is initial-

ized by successively employing existing community detection algo-

rithms, such as Metis [11] at each level 𝑙 ∈ 𝐿. The node representa-
tions at the finest level of the graph, denoted by 𝑋1

, are initialized

by using existing representation learning methods such as node2vec,
DeepWalk [8, 16]. Node representations of coarser level graphs are

then initialized by computing the average of the representations of

nodes that belong to a community in the previous level finer graph,

𝐺𝑙−1
.

Optimization Strategy. At each level, Mazi utilizes an alternat-

ing optimization (AO) approach to optimize its objective function.

Mazi performs AO in a level-by-level fashion, by fixing variables

belonging to all the levels except one, say denoted by 𝑙 , and opti-

mizing the variables associated with that level. At 𝑙 , the community

membership vector, 𝐻 𝑙
, is held fixed and the node representations,

𝑋 𝑙
, is updated. Then, 𝑋 𝑙

is fixed, and 𝐻 𝑙
is updated. Let us denote

the node representation update as the 𝑋 𝑙
sub-problem, and the

community membership update as the 𝐻 𝑙
sub-problem for further

reference.

Node Representation Learning and Community Structure Refine-
ment. At each level 𝑙 , Mazi computes the gradient updates for the

𝑋 𝑙
sub-problem. By holding 𝐻 𝑙

fixed, Mazi updates 𝑥𝑙
𝑖
to be closer

to the representation of 𝑣 𝑗 ∈ 𝑁 (𝑣𝑙𝑖 ), 𝑥
𝑙
𝑗
, and its parent node, 𝑥𝑙+1

𝐻 𝑙 (𝑣𝑙
𝑖
)

(see Equation 3 and 4). The 𝐻 𝑙
sub-problem is then optimized using

the updated 𝑋 𝑙
at 𝑙 . To maximize the modularity objective, Mazi

utilizes an efficient move-based approach. From Equation 1, we note

that𝑄𝑙
can be determined by computing deg𝑖𝑛𝑡 (𝐶𝑙

𝑖
) and deg𝑒𝑥𝑡 (𝐶𝑙

𝑖
),

where𝐶𝑙
𝑖
∈ 𝐶 , and applying the above equation. Therefore, to move

𝑣𝑙
𝑖
from 𝐶𝑙

𝑎 to 𝐶𝑙
𝑏
, instead of computing the contribution from each

community to the value of modularity, Mazi only modifies the in-

ternal and the external degrees of 𝐶𝑙
𝑎 and 𝐶𝑙

𝑏
by computing how

the contribution of 𝑣𝑙
𝑖
to 𝐶𝑙

𝑎 and 𝐶𝑙
𝑏
changes. The new community

assignment of 𝑣𝑙
𝑖
is determined such that it maximizes 𝑄𝑙

and mini-

mizes the distance between 𝑥𝑙
𝑖
and 𝑥𝑙+1

𝐻 𝑙 (𝑣𝑖 )
. This process is repeated

for all nodes for a fixed number of iterations or until no moves lead

to a better solution. This is returned as the optimized solution for

the 𝐻 𝑙
sub-problem.

After alternatively solving for the sub-problems 𝑋 𝑙
and 𝐻 𝑙

at

level 𝑙 , Mazi optimizes level 𝑙 + 1. These steps proceed up the

hierarchy in this fashion until it reaches level 𝐿−1. Starting at 𝐿−1,
the sub-problems 𝑋𝐿−1

and 𝐻𝐿−1
is optimized in the backward

direction level-by-level using the updated representations, that

is, 𝑙 = 𝐿 − 1, 𝐿 − 2, . . . , 1. By performing the optimization in the

backward direction such as above, the node representations at

the finer levels of the hierarchy are influenced by the updated

representations at the coarser levels. After𝑊 such iterations, the

refined node representations and community membership vectors

for all levels are returned as the result of the algorithm.

4 EXPERIMENTS
In order to evaluate the proposed algorithm, Mazi, in Section 3, we

design synthetic as well as real-world experiments. We testMazi on
two major tasks: (1) Node classification, and (2) Link prediction. We

compare Mazi against the below state-of-the-art baseline methods:

• node2Vec [8]: node2vec uses second order random walks to

capture the neighborhood of a node and optimizes its model

using skip-gram with negative-sampling.

• HARP [4]: HARP coarsens the graph into multiple levels

by collapsing edges (chosen using heavy-edge matching)

and star-like structures at each level. Then, from the coars-

est level to the finest level, using existing methods, such as

node2vec, node representations of the coarser level graph are

generated and used as an initialization to learn the represen-

tations at the finer level graph.

• LouvainNE [2]: For any input graph, LouvainNE recursively

generates the sub-communities within each community in

a top down fashion. For all the different sub-communities

that a node belongs to, the 𝑑-dimensional representations

are generated either randomly or using one of the existing

non-hierarchical models, referred to as the stochastic variant
and the standard variant of the algorithm respectively. These

representations are subsequently aggregated in a weighted

fashion to form the final node representation.

• ComE [3]: ComE jointly learns communities and node repre-

sentations of a graph by modeling the community and node

representations using a gaussian mixture formulation.

• Variations of the above mentioned models.

In addition, for any undirected graph, we extract the induced

subgraph formed by all the vertices in the largest connected compo-

nent of the graph. This pre-processing step ensures that the graphs

constructed in the coarser levels in the hierarchy will remain con-

nected.

4.1 Datasets
Real World Graphs. We evaluate the proposed algorithm on three

real world networks: BlogCatalog, CS-CoAuthor, and DBLP. BlogCat-
alog is a social network illustrating connections between bloggers

while CS-CoAuthor and DBLP are co-authorship networks. More in-

formation about each dataset is detailed in Table 2. For each graph,

the total number of levels in the hierarchical community structure

is set equal to 4, thereby including 2 levels of coarsened graphs. The
number of communities in each subsequent level is generated using√
𝑛, where, 𝑛 is the number of nodes in the graph in the current

level.

Synthetic Graphs. We design a novel synthetic graph generator

that is capable of generating graphs with a hierarchical community

structure and real-world structural properties (e.g., average degree,

degree distribution, number of edges a node forms with other com-

munities in the upper levels, etc). Figure 1 shows the visualization

of a 3K node graph generated with the proposed generator. We

discuss the details of the proposed generator in the Appendix A.1.

In this experiment, we create a 5-level hierarchical tree struc-
ture, whose leaves form the nodes in the graph. Each level in the

hierarchical tree, except the level before the leaf nodes, which has a
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Level 1

Level 2

Level 3

75 nodes

Level 4

Figure 2: The hierarchical tree structure we use to generate
our synthetic datasets. It is composed of 4 levels, where the
finest level has a branching factor of 75, and all other levels
have a branching factor of 5.

Table 2: Real-world graph dataset statistics.

Initial

Dataset #nodes #edges #labels #communities in Label

coarsened levels rate

BlogCatalog 10312 667966 34 {100, 10, 1} 0.17
CS-CoAuthor 18333 163788 15 {135, 12, 1} 0.08

DBLP 20111 115016 23 {141, 11, 1} 2.86

Details of the graph datasets extracted from its largest connected component.

Label rate is the fraction of nodes in the training set.

The number of communities in each subsequent level is generated using

√
𝑛, where,

𝑛 is the number of nodes in the graph in the current level. The last level in the

hierarchy is created if the #communities computes to be less than 10, in which

case we create the all-encompassing node.

The number of samples in the training set is chosen such that it results in the best

performance in the non-hierarchical methods.

branching factor of 75, has a branching factor of 5. Thus, the graph
has 9375 nodes. See Figure 2 for reference. We define the range of

the common-ratio parameter between {1.05, 1.2, 1.4, 1.6, 1.8, 2.0}
(see Appendix A.1 for details) . Higher values of the common-ratio
results in fewer number of edges that are formed across nodes that

appear in different communities. This results in progressively in-

creasing themodularity values of the graph as computed by the com-

munities present in the second last level of the hierarchical commu-

nity structure. On average, themodularity value of the graph for the

corresponding common-ratio is 0.23, 0.28, 0.33, 0.37, 0.41, 0.44, re-
spectively. We use a power-law distribution to model the degree

distribution of the graph, with the value 4.5 for the power-law

distribution parameter. The maximum degree a node has in the

(directed) graphs we study is 187 and the average degree is about

33.

4.2 Experimental Setup
Setup of the Link Prediction Task. We divide the original graph into

three sets: validation set, test set and train graph. We sample edges

(node pairs) such that the number of validation and test samples,

considered as the unobserved set, equal 5% and 10% of the total

number of edges, respectively. Further, we sample 99 negative

samples for each positive sample. We form the training graph using

the set of edges in the train set, and we use this training graph

to generate the representations for all the nodes. Then, for every

edge in the validation and test sets, we compute the prediction

score of the representations of its node pairs along with that of its

corresponding negative samples and compute the mean average

precision.

Moreover, to test our algorithm on link prediction using learnable

decoders, we implement the DistMult model [19] and a 2-layer
multi-layer perceptron (MLP). We provide the element-wise product

of the representations of the nodes that comprise an edge as input to

train the above models. We use 2% of the edges as the train set and

1% each for the validation and test set, with 20 negative samples

for each positive edge, and report the average precision (AP) score

of the test set for the best performing score on the validation set.

We run an elaborate hyper-parameter search, with context_size,
walk_length, and walks_per_node selecting values between {2, 3, 4, 5},
{4, 6, 8, 10}, and from within 5 and 60, respectively, to generate

the node2vec representations. The p and q parameters takes val-

ues from sets {0.1, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8} and {1, 2, 4, 6, 8, 10},
respectively. The number of epochs is varied up to 4. For HARP,
the 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑠𝑖𝑧𝑒 is chosen from {2, 3, 4, 6}, the𝑤𝑎𝑙𝑘_𝑙𝑒𝑛𝑔𝑡ℎ from

{5, 10, 20, 30, 40, 50}, and the𝑤𝑎𝑙𝑘𝑠_𝑝𝑒𝑟_𝑛𝑜𝑑𝑒 from {5, 10, 20, 30}.
We choose 𝛽 and 𝛾 , hyper-parameters specific to the Mazi model,

from a more fine-tuned set for these graphs. 𝛽 and 𝛾 is assigned val-

ues from {0.0, 0.25, 0.5, 1.0, 1.5, 1.25, 1.75, 2.0, 2.25, 2.5} and {0.0, 1.0, 2.0,
3.0}, respectively. Other hyper-parameters tuned in Mazi include
the number of epochs within an optimization step in either direc-

tion, and the number of such optimization steps. These have been

chosen such that they give the best performance for the respective

datasets. In LouvainNE, we use the stochastic node representations
variant of their method which they use to report their best per-

forming results. We perform a parameter sweep of the partitioning

scheme provided by the approach for generating the hierarchy

and also the damping parameter, which was given values such

as 0.0001, 0.001, 0.01, 0.1, 1.0. The number of dimensions for all

methods have been set to 128.

Setup of the Multi-label Classification Task. We use a One-vs-Rest

Logistic Regression model (implemented using LibLinear [7]) with

L2 regularization. For each graph dataset, we split the nodes into

train, validation and test sets. In order to get a representative train

set of the samples from each class, we sample a fixed number of

instances, 𝑠 , from each class. The validation and the test set is, there-

after, formed by almost equally splitting the remaining samples. In

the case of the BlogCatalog dataset, due to heavy class imbalance

with respect to the number of instances in each class, we choose

min(75% of class samples, 𝑠) of samples in the train set. We choose

the weight of the regularizer from the range {0.1, 1.0, 10.0}, such
that it gives the best average macro F1 score on the validation

set for the different methods. Overall, the number of samples in

the training set is chosen such that it results in the best perfor-

mance in the non-hierarchical methods, and then we reuse the

same configuration for the hierarchical methods. We also perform

a hyper-parameter search to find the best set of parameters that

are specific to each method.

To generate the best performingmodel of the approaches for eval-

uation, we conduct a search over the different hyper-parameters for

the synthetic and the real-world graphs. For the synthetic graphs,

context_size, walk_length, and walks_per_node in node2vec
are chosen from set {5, 10, 15}, {10, 20, 30}, and {10, 20, 30}, re-
spectively. The return parameter, p, and the in-out parameter,

q, takes on values between {0.25, 0.50, 1, 2, 4} each. All but one
graph gave the best performing model with number of epochs set
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Table 3: Link prediction on real-world graphs.

Mean Average Precision

Method BlogCatalog CS-CoAuth DBLP

node2vec 0.534 0.797 0.914
ComE 0.389 0.745 0.896
HARP w. 2 lvls 0.532 0.755 0.881
HARP w. 3 lvls 0.460 0.732 0.874
HARP w. all lvls 0.126 0.647 0.769
LouvainNE 0.035 0.270 0.397
Mazi 0.587 0.824 0.930

Link prediction task performance of the methods is listed in the table. All HARP vari-

ants use node2vec as the base model. The mean average precision score is reported.

The results are the average of 3 runs. The standard deviation was observed to be less

than 0.01.

Table 4: Link prediction using learnable de-
coders on BlogCatalog.

Using 2-layer

Method 𝜎 DistMult MLP

node2vec 0.62 0.62 0.59
ComE 0.47 0.47 0.46
HARP w. 2 lvls 0.62 0.62 0.62
HARP w. 3 lvls 0.05 0.56 0.57
HARP w. all lvls 0.05 0.32 0.43
LouvainNE 0.07 0.08 0.12
Mazi 0.70 0.70 0.69

We report average precision score on link prediction task of the methods

using learnable decoders - DistMult and 2-layer multi-layer perceptron.
(𝜎 ) is short for the sigmoid function.

to 1, and thus, we limit the number of epochs to 2. Node repre-

sentations in HARP and Mazi are also generated using the above

values for the context_size, walk_length, and walks_per_node
parameters. Additionally, for the hyper-parameters specific to the

Mazi model, we choose both 𝛽 and 𝛾 from the set {0.0, 1.0, 2.0}.
Other hyper-parameters include the number of epochs within

an optimization step in the fine to coarse direction and in the

coarse to fine direction, and the number of such optimization steps.

For the real world graphs, the context_size, walk_length, and
walks_per_node parameters have been varied between {5, 10, 15},
{10, 20, 30, 40}, and {10, 20, 30, 40}. p and q takes on values from

the set {0.25, 0.50, 1, 2, 4} each. LouvainNE, we use the stochas-

tic node representations variant of their method which they use

to report their best performing results. We perform a parameter

sweep of the partitioning scheme provided by the approach for

generating the hierarchy and also the damping parameter, which

was given values such as 0.0001, 0.001, 0.01, 0.1, 1.0. The number

of dimensions for all methods have been set to 128.

4.3 Performance on the Link Prediction Task
We evaluateMazi using the link prediction task on real world graph

datasets. Mazi demonstrates good performance in the task over the

competing approaches. The results are shown in Table 3. The gains

observed in mean average precision (MAP) varies between 1.6% in

Table 5: Multi-label node classification performance.

Method Dataset Micro F1 Macro F1

node2vec 0.3718 (0.00) 0.2430 (0.00)
ComE 0.4016 (0.00) 0.2464 (0.00)
HARP (n2v) BlogCatalog 0.3602 (0.00) 0.2418 (0.00)
LouvainNE 0.2275 (0.00) 0.1051 (0.00)
Mazi 0.3874 (0.00) 0.2499 (0.00)

node2vec 0.8670 (0.00) 0.8213 (0.00)
ComE 0.8696 (0.00) 0.8238 (0.00)
HARP (n2v) CS-CoAuth 0.8634 (0.00) 0.8153 (0.00)
LouvainNE 0.7790 (0.00) 0.7317 (0.00)
Mazi 0.8708 (0.00) 0.8266 (0.00)

node2vec 0.2499 (0.00) 0.2314 (0.00)
ComE 0.2517 (0.00) 0.2323 (0.00)
HARP (n2v) DBLP 0.2515 (0.00) 0.2326 (0.00)
LouvainNE 0.2578 (0.01) 0.2367 (0.01)
Mazi 0.2510 (0.00) 0.2317 (0.00)

Multi-label classification performance of node2vec, HARP(n2v) and Mazi is listed
on the table. The micro F1 and macro F1 scores are reported. For each method,

we report the scores achieved on the test set such that it achieves the best macro

F1 score in the validation set chosen from the relevant hyper-parameters associ-

ated with each method. The results are the average of three runs. The standard

deviation up to 2 decimal points is reported within the parentheses.

the DBLP dataset to 10% in the BlogCatalog dataset over node2vec.
In comparison to HARP, referred to as HARP w. all lvls in Table 3,

Mazi shows gains as high as 366% in BlogCatalog. To study the

performance of HARP, we restrict the total number of levels to 2,
referred to as HARP w. 2 lvls, and 3, referred to as HARP w. 3 lvls,
and evaluate the performance of the method. We note that both

these approaches result in better performance. Since HARP chooses

random edges and star-like structures to collapse, the coarsened

graph in the last level formed by HARP may not be indicative of

the global structure of the network and further, not be indicative of

how the edges actually form in the network. The negative samples

can be, thus, scored relatively higher leading to low values of MAP.

ComE, using gaussian mixtures to model a single level of commu-

nity representations, did not perform as well in the link prediction

task. The best performing variant of LouvainNE, as reported by

the authors, uses random vectors for node representations for all

nodes at every level in the hierarchy extracted out of the graph

dataset. Since the node representation is created using a weighted

aggregation of the different representations at every level in the

hierarchy, LouvainNE captures the hierarchical structure. However,

it fails to capture the local neighborhood of a node such that nodes

in close proximity are represented similarly. This may indicate the

low performance of LouvainNE on the link prediction task.

In Table 4, we report the average precision (AP) scores using

learnable models, DistMult and a 2-layer MLP, on BlogCatalog. We

note very similar trends as in Table 3 and observe that inspite of

using learnable decoders, Mazi outperforms all other approaches

in this task.
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Figure 3: Average micro and macro F1 scores with standard deviation. Results are obtained using the methods: node2vec, HARP, LouvainNE, ComE, which uses√
𝑛 communities, where, 𝑛 is the number of nodes in the graph, Mazi (Prior), which uses the community structure generated by the hierarchical clustering tree,

andMazi, which generates the community structure using Metis on the synthetic graphs with varying values of the parameter common-ratio generated 3 different
times.

4.4 Performance on the Multi-label
Classification Task

Synthetic Graph Datasets. Figure 3 plots the micro and the macro

F1 scores on the multi-label node classification task on the syn-

thetic datasets obtained by Mazi using prior clustering, referred

to as Mazi (Prior), Mazi with the community structure initialized

by Metis, referred to as Mazi (Metis), HARP, LouvainNE, ComE and

node2vec. ComE uses

√
𝑛 communities for generating the node rep-

resentations, where, 𝑛 is the number of nodes in the graph. HARP
uses node2vec as its base model. In Mazi (Metis), the hierarchical
community structure is constructed using 4 levels. The number of

communities in next coarser level is generated using

√
𝑛, where, 𝑛

is the number of nodes in the graph in the current level. The aver-

age gains observed in the macro F1 scores by Mazi (Prior) against
node2vec range from over 50% to 5% for the common-ratio value

of 1.05 to 2.0. Similar trends are observed in the micro F1 scores. As

the modularity of the graph, as defined by the finest level commu-

nity structure, decreases, the random-walks in node2vec will tend
to stray outside the community and result in lowered performance.

Since the labels are, however, distributed in accordance with the

community structure of the graph, the objective in our method that

minimizes the distance between the representation of a node to its

community representation contributes to its improved performance.

Mazi (Metis) achieves similar performance as Mazi (Prior) against
node2vec, ranging from 42% to 5% for common-ration 1.05 to 2.0.

Further, Mazi (Prior) and Mazi (Metis) both are able to demon-

strate significant benefits in comparison to HARP for graphs with

common-ratio ranging from 1.05 to 1.6. The average gain obtained
byMazi (Prior) andMazi (Metis) in the macro F1 score are as high as

19% and 9.5%, respectively, for the common-ratio 1.05. We reason

that for the graphs whosemodularity, as defined by the prior hierar-
chical community structure is low, the coarsening scheme of HARP
is unable to capture a fitting hierarchical community structure and

thus, the representations learnt on the coarsest level does not result

in good initializations for finer levels.

Real World Graph Datasets. Table 5 reports the micro and macro

F1 score obtained by all three methods on the real-world dataset.

The datasets DBLP and CS-CoAuthor both exhibit high values of

modularity, that is, 0.83 and 0.75, respectively, while BlogCatalog
has a relatively lower modularity value of 0.23. In line with syn-

thetic datasets, we note thatMazi obtains a gain of up to 4.19% and

7.55% on macro F1 scores on BlogCatalog, which has a lower mod-
ularity value of 0.23, against node2vec and HARP respectively. We

also note that ComE obtains slightly better micro F1 score in Blog-
Catalog. Its choice of using gaussian mixtures to model community

distributions seems to capture the weak community structure in

BlogCatalog well. While the gain obtained in CS-CoAuthor against
node2vec and HARP is 0.43% and 0.85%, respectively, in the macro

F1 score, we observe that in DBLP, whose modularity value is the

highest amongst the 3 datasets, the performance of Mazi is compa-

rable with the competing approaches.

4.5 Ablation Study
We study the effect of the two parameters, 𝛾 and 𝛽 , that play an

important role in determining the impact of the joint learning of the

node representations and the hierarchical community structure on

the node classification and the link prediction task. We set 𝛾 , which

controls the contribution of the modularity metric, 𝑄𝑙
(Equation 1),

in the multi-objective function (Equation 5), to 0 to perform an

ablation study on the same. Similarly, 𝛽 , which determines the

extent of the contribution of the proximity of a node representation

to its community representation, referred by 𝐿𝑙𝑐𝑜𝑚𝑚 (Equation 4)

in Equation 5, is set to 0 to perform an ablation study for that

parameter. Setting 𝛾 = 0.0 is equivalent to fixing the hierarchical

community structure to its initial value and optimizing only the

node representations while setting 𝛽 = 0.0 is equivalent to fully



Joint Learning of Hierarchical Community Structure and Node Representations: An Unsupervised Approach Woodstock ’18, June 03–05, 2018, Woodstock, NY

ignoring the contribution of the proximity between the node and

its community representations from the objective.

Table 6 depicts the performance of Mazi on synthetic graphs

generated using different values of the common-ratio for the node

classification task, while Table 7 depicts the performance of the

method on the link prediction task. For the node classification task,

we compare the above models using (i)Mazi with prior community

structure generated by the hierarchical solution, referred to asMazi
(Prior), and (ii) Mazi using 4 levels in the hierarchical community

structure. The initial community structure is generated by Metis,
where the number of clusters is equal to the square-root of the

number of nodes in the previous level finer graph.

To study the effectiveness of Mazi on the link prediction task,

we study the performance of Mazi using the initial community

structure generated byMetis, where the number of clusters is deter-

mined similar to above, and compare the scores obtained withMazi
without using 𝑄𝑙

, obtained by setting 𝛾 = 0.0, and Mazi without
using 𝐿𝑙𝑐𝑜𝑚𝑚 , obtained by setting 𝛽 = 0.0.

Performance of Mazi (Prior) on the node classification task. A non-

zero value of 𝛽 plays a crucial role in extracting good performance of

Mazi using the prior community structure. Since the representations

learned are benefited by the knowledge of a fitting community

structure, performance achieved by 𝛽 = 0.0 is consistently lower

than when 𝛽 ≠ 0.0. We also note that in many of these graphs, a

non-zero 𝛾 value does not contribute to the best performance. Since

the graph has been generated using the prior community structure,

which is also used by the synthetic label generating procedure,

refining it further has not resulted in better performance.

Performance of Mazi on the node classification task. The effect of
𝛾 is more apparent in Mazi using the Metis community structure.

Since the community structure provided by Metis does not fully
conform to the prior community structure and the label distribution

on the synthetic graphs correlate with the finest level community

structure, we note that refining the hierarchical community struc-

ture and thereby, using it to improve the representations lead to

better performance of the model.

Performance of Mazi on the link prediction task. For the real-

world datasets, we report effectiveness of 𝛾 and 𝛽 in Table 7. In all

the real-world datasets, we note that the datasets achieve better

performance when accounting for non-zero values of the 𝛽 . This is

especially evident in the BlogCatalog dataset, wherein Mazi shows
a gain as high as 4.09% when compared to Mazi which sets 𝛽 to

0.0. Further, we observe that the community structure refinement

in BlogCatalog and CS_CoAuthor, when 𝛾 ≠ 0.0, leads to better

performance, whereas in DBLP, the results obtained are compara-

ble to when we do not account for refinement in the community

structure.

5 RELATEDWORK
Graph Representation Learning. Several methods model node

representations using deep learning losses in supervised, semi-

supervised and unsupervised settings. Amongst the unsupervised

methods, the Skip-gram model is a popular approach used in the

literature [8, 16, 18] to model the local neighborhood of a node

using random walks while learning its representation. However,

Table 6: Ablation study on the synthetic datasets for the node
classification task.

Method common 𝛾 = 0.0 % gain 𝛽 = 0.0 % gain 𝛾 ≠ 0.0

ratio w/o𝑄𝑙
w/o 𝐿𝑙𝑐𝑜𝑚𝑚 𝛽 ≠ 0.0

Mazi (Prior) 1.2 0.2671 -0.415 (0.607) 0.2551 4.256 (0.555) 0.2659

1.4 0.3210 0.073 (0.101) 0.3155 1.830 (1.118) 0.3213

1.6 0.3735 -0.098 (0.128) 0.3690 1.140 (0.099) 0.3732

1.8 0.3936 0.093 (0.118) 0.3870 1.774 (0.982) 0.3939

2.0 0.4437 0.000 (0.000) 0.4372 1.482 (0.628) 0.4437

Mazi 1.2 0.2578 0.283 (0.889) 0.2561 0.970 (0.908) 0.2585

1.4 0.3140 0.626 (0.035) 0.3142 0.690 (0.079) 0.3164

1.6 0.3705 0.033 (0.546) 0.3688 0.492 (1.005) 0.3706

1.8 0.3878 0.270 (0.414) 0.3873 0.390 (0.579) 0.3889

2.0 0.4386 0.199 (0.328) 0.4380 0.350 (0.022) 0.4395

The macro F1 scores and the percent gain achieved by Mazi over Mazi without𝑄𝑙
(from

Equation 1) by setting 𝛾 = 0.0 and Mazi without 𝐿𝑙𝑐𝑜𝑚𝑚 from (Equation 4) by setting 𝛽 =

0.0 are reported for the graphs synthetically generated in 3 runs. 𝛽 controls weight of the

contribution of the similarity between the representations of a node to its community in the

next coarser level in the multi-objective function. 𝛾 controls the weight of the contribution

of the modularity metric in the multi-objective function. Hyper-parameters controlling the

structure of the synthetic graphs are detailed in Section 4.1. The standard deviation up to 3
decimal points is reported within the parentheses.

Table 7: Ablation study for link prediction.

Graph 𝛾 = 0.0 % gain 𝛽 = 0.0 % gain {𝛾, 𝛽 } ≠ 0.0

without𝑄𝑙
without𝑄𝑙

BlogCatalog 0.5862 0.154 (0.034) 0.5641 4.089 (0.087) 0.5871
CS_CoAuth 0.8234 0.028 (0.122) 0.8212 0.292 (0.088) 0.8236

DBLP 0.9301 -0.021 (0.077) 0.9292 0.075 (0.172) 0.9299

The mean average precision scores and the corresponding percent gain, averaged

over 3 runs, achieved by Mazi on the link prediction task over Mazi without𝑄𝑙

(from Equation 1) by setting 𝛾 = 0.0 andMazi without 𝐿𝑙𝑐𝑜𝑚𝑚 from (Equation 4)

by setting 𝛽 = 0.0 is reported for the real-world graphs. 𝛽 controls the weight of

the contribution of the proximity of a representation of a node to its community

representation in the subsequent level in the multi-objective function. 𝛾 controls

the weight of the contribution of the modularity metric in the multi-objective

function.

unlike our method, these representations are inherently flat and

do not account for the hierarchical community structure that is

present in the network.

Community-aware representation learning. Existingmethods have

also explored jointly learning communities at a single level and the

representations of the nodes in the graph [3, 17]. ComE [3] mod-

els the community and the node representations using a gaussian

mixture formulation. vGraph [17] assumes each node to belong

to multiple communities and a community to contain multiple

nodes, and parametrizes the node-community distributions using

the representations of the nodes and communities. Unlike these

approaches, our approach utilizes the inductive bias introduced by

the hierarchical community structure in the representations.

Hierarchical Representation Learning. Recently, unsupervised hi-

erarchical representation learning methods have been explored to

leverage the multiple levels that are formed by hierarchical com-

munity structure in the graph. HARP [4] and LouvainNE [2] both

learn the node representations of a graph by utilizing a hierarchical

community structure. HARP uses an existing node representation
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learning method, such as node2vec, to generate node representa-

tions for graphs at coarser levels and use them as initializations for

learning the representations of the nodes at finer levels. LouvainNE
recursively generates sub-communities within each community

for a graph. The representations for a node in all the different sub-

communities are generated either stochastically or using one of

existing flat representation learning method, which is then subse-

quently aggregated in a weighted fashion to form the final node rep-

resentation. SpaceNE [13] constructs sub-spaces within the feature

space to represent the hierarchical community structure, and learns

node representations that preserves proximity between vertices

as well as similarities within communities and across communi-

ties. However, all these approaches consider a static hierarchical

community structure, which is then utilized to influence the node

representations. In comparison, we jointly learn the node represen-

tations and the hierarchical community structure that is influenced

by the node representations.

In a parallel line, some GNN-based methods have been suggested

to model the hierarchical structure present in the graph while learn-

ing the network representations. Some of these methods generate

representations for the entire graph [10, 20] and are useful for the

graph classification task. For the node representation learning task,

a recent approach includes HC-GNN [21]. HC-GNN uses the repre-

sentation of a node’s community at each level in the aggregation

and combine phase of the GNN framework. GXN [12], another

GNN model, introduces a pooling method along with a novel idea

of feature crossing layer which allows feature exchange across lev-

els. However, these are supervised methods and use task specific

losses while considering static hierarchical community structures.

6 CONCLUSION
This paper develops a novel framework, Mazi, for joint unsuper-
vised learning of node representations and the hierarchical com-

munity structure in a given graph. At each level of the hierarchical

structure, Mazi coarsens the graph and learns the node representa-

tions, and leverages them to discover communities in the hierarchi-

cal structure. In turn, Mazi uses the structure to learn the represen-

tations. Experiments conducted on synthetic and real-world graph

datasets in the node classification and link prediction demonstrate

the competitive performance of the learned node representations

compared to competing approaches.
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A SUPPLEMENTARY MATERIAL
A.1 Synthetic Graph Generator

Synthetic Graph Generator Model. Our model generates a graph

respecting a hierarchical community structure by modeling this

structure using a hierarchical tree. Each level in the hierarchical

tree corresponds to a level in the hierarchical community struc-

ture of the generated graph. The nodes at each level of the tree

structure forms the communities at that level in the hierarchical

community structure. The nodes in the last level of the hierarchical

tree structure, or, the leaves of the tree, forms the nodes of the

generated graph. Further, we also ensure that the generated graph

emulates the characteristics of real-world networks. First, the nodes

are constructed such that a node in the graph is, in expectation, able

to form edges with other nodes in communities associated with

upper levels in the hierarchical community structure. Typically, the

number of edges a node forms with nodes in other communities

at upper levels progressively decrease as we go up the hierarchy.

To achieve this, we model the expected number of edges using a

probability distribution generated from a geometric progression. A

geometric progression is a series of numbers where each number

after the first is the product of the preceding term with a constant,

non-one number called the common ratio. Thus, we accept a param-

eter, referred to as common-ratio, to enable us to compute 𝐿 terms
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in the series, one corresponding to each level in the 𝐿-level hierar-

chical community structure. Using these 𝐿 terms, we compute the

probability distribution of a node to form an edge with another in a

community present in different levels in the hierarchy. This param-

eter plays a key role in determining themodularity of the generated

graph using the communities formed by the hierarchical structure.

Further, the degrees associated with the nodes in the graph use a

power distribution to model the behavior of real-world networks.

Other properties that we tune are the maximum degree of a node,

number of levels in the hierarchical tree structure, branching factor

of nodes in the intermediate levels, the number of leaves, among

others.

Synthetic Label Generation Procedure. To aid us in the node clas-

sification task, we generate labels for the nodes such that they

correlate with the hierarchical structure of the graph. For each

node, we create a probability distribution over the unique commu-

nities present in the second last level of the hierarchy. The weight

corresponding to each community in this probability distribution is

determined by the frequency of nodes in that community the node

is connected to. Using this probability distribution, we sample a

community id which serves as its label. The total number of labels

is, thus, equal to the number of communities in the second last level

in the hierarchical structure.
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