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Abstract. Object detection aims to localize and classify the objects in a
given image, and these two tasks are sensitive to different object regions.
Therefore, some locations predict high-quality bounding boxes but low
classification scores, and some locations are quite the opposite. A mis-
alignment exists between the two tasks, and their features are spatially
entangled. In order to solve the misalignment problem, we propose a
plug-in Spatial-disentangled and Task-aligned operator (SALT). By pre-
dicting two task-aware point sets that are located in each task’s sensitive
regions, SALT can reassign features from those regions and align them to
the corresponding anchor point. Therefore, features for the two tasks are
spatially aligned and disentangled. To minimize the difference between
the two regression stages, we propose a Self-distillation regression (SDR)
loss that can transfer knowledge from the refined regression results to the
coarse regression results. On the basis of SALT and SDR loss, we pro-
pose SALT-Net, which explicitly exploits task-aligned point-set features
for accurate detection results. Extensive experiments on the MS-COCO
dataset show that our proposed methods can consistently boost differ-
ent state-of-the-art dense detectors by ∼2 AP. Notably, SALT-Net with
Res2Net-101-DCN backbone achieves 53.8 AP on the MS-COCO test-
dev.

Keywords: Object detection · Misalignment problem · Spatial disen-
tanglement

1 Introduction

The main goal of object detection contains two tasks, one is to give the accurate
location of the object in an image (i.e., regression), and the other is to predict
the category of the object (i.e., classification). During the inference step, the
regression and classification results predicted from the same location are paired
together as the detection result. Then the NMS algorithm is usually applied
to remove redundant detection results by taking the classification scores as the
ranking keywords. For the same instance, the detection result with a high clas-
sification score will be kept, while others are filtered out. However, the natures
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(a)Detection Results (b)Classification (c)IoU

Fig. 1: Illustration of the spatial misalignment of classification and regression. In
(a), the blue box denotes the ground truth, and the other boxes are the detection
results of ATSS [36]. The two points are the locations where the detection results
are predicted. (b) and (c) are the distributions of classification and IoU scores
over all image pixels, and “IoU” denotes the intersection over union between the
predicted box and the ground truth.

of these two tasks are so distinct that they require features from different object
locations. As shown in Figure 1, the classification and regression quality (i.e.,
IoU) scores from the same location can be quite different. Classification focus on
the salient part of the object (e.g., the head of the person), while regression is
sensitive to the whole object, especially for its border part. Therefore, the pre-
diction distributions of the two tasks are misaligned. The detection result with
a high classification score can have low-quality regression prediction and vice
versa.

We model the prediction qualities of the two tasks as two Discrete distribu-
tions. Therefore, the goal of solving the misalignment problem is bridging the
gap between these two distributions (i.e., minimizing the distance of their peak
positions).

CNN-based dense detectors utilize a coupled or decoupled head to conduct
classification and regression. As illustrated in Figure 2 (a), the coupled head
predicts the classification and regression results based on the shared features
[22,17,21]. As a result, the coupled head structure introduces feature conflicts
between the two tasks and makes them compromise each other. To solve this
problem, the decoupled head structure [30] is proposed and has been widely
adopted in recent years [24,18,25]. As shown in Figure 2 (b), the decoupled
head utilizes two parrel sub-networks to perform regression and classification,
respectively. This could alleviate the conflict problem by reducing the shared
parameters. However, the point features (i.e., the two orange points) that predict
the detection result still share the identical receptive field. In conclusion, both
the coupled and decoupled heads predict the classification and regression results
from the spatially identical and entangled features. Considering the difference in
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Fig. 2: Illustration of the entangled features in the coupled and decoupled heads.

their spatial sensitivity, the entangled features inevitably make a location prefer
one task over the other one, thereby compounding the misalignment problem.

In this paper, we propose a plug-in operator to address the misalignment
problem: the Spatial-disentangled and Task-aligned operator (SALT). The first
stage of our network is the coarse regression predictions made by a simple Dirac
delta decoder [36]. After that, SALT predicts two sets of spatial-disentangled
points to represent each task’s sensitive regions, respectively. Then we use bi-
linear interpolation to reassign features from those regions to the corresponding
anchor point. In the second stage, SALT utilizes spatial-disentangled and task-
aligned features to make refined predictions with a General distribution decoder
[14]. Therefore, a single anchor point can obtain accurate regression and clas-
sification predictions simultaneously. Feature reassignment can bring the peak
positions of the two Discrete distributions closer so that SALT can weaken the
impact of the misalignment problem.

In order to minimize the difference between the first and second stage pre-
dictions, we also propose a novel self-distillation regression (SDR) loss, making
the coarse predictions learn from the refined predictions. As a result, the final
performance got improved without any extra inference cost.

1. We propose an operator that can generate spatial-disentangled and task-
aligned features for regression and classification, respectively.

2. The proposed operator can be easily plugged into most dense object detectors
and bring a considerable improvement of ∼2 AP.

3. Our proposed SDR loss can also boost the overall performance in an inference
cost-free fashion.

4. Without bells and whistles, our best single-scale model (Res2Net-101-DCN)
yields 51.4 AP on the COCO test-dev set, which is very competitive results
among dense object detectors.

2 Related Work

Misalignment: Dense detectors, such as IoU-aware [29], FCOS [25] and PAA
[12] apply an extra branch to predict the regression confidence and combine it
with the classification confidence as the detection score. Different from previ-
ous methods, GFL [15] and VFNet [33] propose a joint representation format
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Fig. 3: Architecture of SALT-Net. Our proposed architecture consists of a back-
bone, an FPN (P3-P7), and two subnetworks for classification and regression,
respectively. “ϕ" and “γ" denote Equations (2) and (5), respectively. “/" denotes
the gradient flow detachment. “KD" denotes our proposed self-distillation ap-
proach. “R-points" and “C-Points" denote the regression-aware and classification-
aware points, respectively.

by merging the regression confidence and classification result to eliminate the
inconsistency between training and inference. TOOD [7] proposes a prediction
alignment method that predicts the offset between each location and the best an-
chor and then readjusts the prediction results. Guided Anchoring [27], RefineDet
[37], and SRN [4] learn an offset field for the preset anchor and then utilize a
feature adaption module to extract features from the refined anchors. RepPoints
[31] and VFNet [33] utilize the deformable convolution [5] to extract accurate
point feature. However, all the aforementioned methods extract features for re-
gression and classification from the same locations, without considering their
spatial preference. That is, the features for these tasks are spatially entangled,
which leads to inferior performance.

Self-distillation: Model distillation [8] usually refers to transferring knowledge
from a pre-trained heavy teacher network to a compact student network. DML
[38] provides a new paradigm that a pre-trained teacher is no longer needed and
all the student counterparts are trained simultaneously in a cooperative peer-
teaching manner. Following this paradigm, many self-distillation approaches
[34,32,10,16] are proposed for classification knowledge transfer learning. How-
ever, transferring regression knowledge of object detection has been proven to
be difficult [11,28], as different locations of an image have different contribu-
tions to the regression task. LGD [35] is the only self-distillation approach for
general object detection, which proposes an intra-object knowledge mapper that
generates a better feature pyramid and then performs distillation with feature
imitation. This approach provides performance gains but also introduces too
many auxiliary layers.
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3 Proposed Approach

In this section, we first detail the proposed operator SALT. Then we introduce
our self-distillation approach that enables the first-stage decoder to learn from
the second-stage decoder. Finally, we introduce the loss function of SALT-Net.
The network architecture (Figure 3) and inference details can be found in the
supplementary material.

3.1 SALT: Regression-aware Points

Scale Factors: 𝑆

Coarse Bounding Box: 𝐶

Regression-aware
Points:∆𝑃%

𝜑

Misaligned 
R-Features:ℱ%

left
top

right

bottom

Fig. 4: Illustration of the regression-
aware points. “ϕ" and the white box
denotes Equation (2) and the coarse
bounding box prediction, respectively.

As shown in Figure 4, given the mis-
aligned regression features Fr from
the last layer of the regression tower
(i.e., the 3× convolutions shown in
Figure 3), SALT first predicts the
coarse bounding box C with the Dirac
delta decoder, as in [25,36]. The coarse
bounding box is represented by the
top-left corner and its width and
height (i.e., (xmin, ymin,w, h)).

Then SALT predicts the scale Fac-
tors S that measures the normalized
distances between the top-left corner
of the coarse bounding box and the
regression-sensitive regions (i.e., regression-aware points ∆Pr). Scale factors S
and the coarse bounding box C are obtained by only two convolution layers, i.e.:{

C = δ(convc(Fr))
S = σ(convs(Fr))

(1)

where σ and δ are Sigmoid and ReLU, respectively. C ∈ RH×W×4, S ∈
RH×W×2N−4 and N is the number of the regression-aware points. Then the
location of i-th regression-aware point ∆pi can be obtained with Equation (2):{

xi = xmin + w ∗ Six
yi = ymin + h ∗ Siy

(2)

where (xmin, ymin) is the location of the top-left corner of the coarse bounding
box C, and (Six,Siy) are scale factors that measure the normalized distance be-
tween the i-th point and top-left corner. Therefore, the location of the regression-
aware points ∆Pr can be represented by:

∆Pr = {∆pri }Ni=1 (3)

Note that all coordinates are represented by taking the location that pre-
dicts the detection result as the coordinate origin. Therefore, the coordinates
mentioned in this section are relative locations, not absolute coordinates.
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The total number of the regression-aware points is N , the channels of scale
factors S and the regression-aware points ∆Pr are 2N − 4 and 2N , respectively.
The reason for this inconstancy is that we want to ensure that the sampled
regression-aware points contain the four extreme points (i.e., left-most, right-
most, top-most, bottom-most), which encode the location of the object. On this
account, four points are sampled on the four bounds of the coarse bounding box
(i.e., the green points in Figure 4), respectively. As the location of the bounding
box has been predicted, four axial coordinates of the extreme points are preset
and do not need to be learned (i.e., xmin, ymin, xmin+ w, ymin+ h).

3.2 SALT: Classification-aware Points

Disentanglement 
Vectors: 𝐷

Classification-aware
Points : ∆𝑃$

𝛾

Regression-aware
Points:∆𝑃&

Misaligned 
C-Features:ℱ$

Fig. 5: Illustration of the spatial disen-
tanglement method. “γ" denotes Equa-
tion (5).

Regression and classification are sen-
sitive to different areas of the ob-
ject. For this reason, extracting fea-
tures from the regression-interested-
locations hinders the detection per-
formance. Therefore, SALT contains
a spatial disentangle module to guide
the classification branch to generate a
set of classification-aware points. As
shown in Figure 5, the regression-
aware points act as the shape hypoth-
esis of the object to be classified. In
other words, we take the regression-
aware points as a point-set anchor for predicting the classification-aware points.

Similar to the scale factors, this module also consists of only one convolution
layer. As shown in Figure 5, given the feature map Fc from the last layer of the
classification tower, the disentanglement vectors D are obtained by:

D = δ(convd(Fc)) (4)

With the regression-aware points ∆Pr taken as the point-set anchor, we
propose two functions to generate the classification-aware points, as illustrated
by Equation (5) and (6). We choose Equation (5) as the final prediction strategy.
Details and analysis can be found in Sec. 4.2.

∆Pc = eD ·∆Pr (5)

∆Pc = D +∆Pr (6)

To make sure the learning process of classification and regression are inde-
pendent of each other. The gradient flow of the regression-aware points ∆Pr is
detached from the classification branch. ∆Pr only serves as the prior knowledge
in this module. Therefore, the supervision of the classification task does not
affect the learning of regression-aware points.
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3.3 SALT: Feature Alignment

The regression-aware and classification-aware points are located in each task’s
sensitive regions, and they are spatially misaligned. Therefore, we aggregate
features from those regions to the same anchor point (shown in Figure 6). Given
the learned point set ∆P = {∆pi}Ni=1, we use the bilinear interpolation to make
it differentiable. Let {pi}Ni=1 be the sampling window of a regular grid, where N
is the number of points. The new irregular sampling locations can be represented
by Equation (7), and the bilinear interpolation is formulated as Equation (8),

P̂ = {p+ pi +∆pi | i = 1, . . . , N} (7)

F̂(p) =
∑
p̂

G(p̂, p) · F(p̂) (8)

Feature
Alignment

Fig. 6: Illustration of the feature align-
ment method. The red point denotes
the location that predicts the detection
result.

where F(·) and F̂(·) are the input and
output feature maps, and G(·, ·) is the
bilinear interpolation kernel. p̂ ∈ P̂,
and p is the location that predicts the
detection result.

The aligned task features are ex-
tracted from the locations of the task-
aware points, and then they are used
for classification and regression refine-
ment. Different from the first stage,
the second regression stage utilizes the
General distribution decoder [15] that
outputs the discrete representation of the bounding box.

3.4 Self-distillation

Fig. 7: The red and green boxes are
the ground truth and the bounding
box prediction made by our stage-
two decoder, respectively.

As Figure 7 shows, the bottom boundary
of the handcrafted annotation is inaccurate
and ambiguous, which can misguide and
hurt the training process. However, the net-
work’s prediction results sometimes provide
better and clearer regression targets that
are easier for the network to learn. For this
reason, we propose a self-distillation regres-
sion loss (SDR) that could transfer regres-
sion knowledge from the refined predictions
to the coarse ones.

As Equation 9 shows, R1, R2, and y
are the output of the stage-one, stage-
two decoders, and the classification score.
IoU1 and IoU2 denote the Intersection over
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Union between the ground truth label and the corresponding regression results,
and GIoU is the Generalized Intersection over Union as in [23]. As the stage-two
decoder is fed with better features, we take its outputs as the regression upper
bound of the stage-one decoder. That is, we utilize the integral results from the
Discrete distribution decoder as the soft target for the Dirac delta decoder. Here,
y · IoU2 denotes the confidence score of the refined regression result, and its gra-
dient is detached. Thus, SDR loss pays more attention to the high-confidence
prediction results. Notably, SDR loss only penalizes the network when the pre-
dictions of the stage-two decoder are better than the stage-one decoder (i.e.,
IoU2 > IoU1). Our proposed SDR loss enables the coarse predictions to learn
from the refined results and bridges the gap between them. Better stage-one pre-
dictions lead to better stage-two predictions and promote the training process
into positive circulation.

LSDR(R1, R2, y) =

{
y · IoU2 · (1−GIoU(R1, R2)), if IoU2 > IoU1

0 otherwise (9)

3.5 Loss Function

The proposed SALT-Net is optimized in an end-to-end fashion, and both the
coarse and the refined detection stages utilize ATSS [36] as the positive and
negative targets assignment strategy. The training loss of SALT-Net is defined
as follows:

L =
1

Npos

∑
z

λ0LQ

+
1

Npos

∑
z

1{c∗z>0} (λ1LR1
+ λ2LR2

+ λ3LD + λ4LSDR)
(10)

where LQ is the Quality Focal loss [15] for the classification task. LR1
and LR2

are both GIoU loss [23], one for the coarse bounding box prediction and the
other for the refined regression result. LD is the Distribution Focal Loss [15]
for optimizing the general distribution representation of the bounding box, and
LSDR is the proposed self-distillation loss. λ0 ∼ λ4 are the hyperparameters used
to balance different losses, and they are set as 1, 1, 2, 0.5, and 1, respectively.
Npos denotes the number of selected positive samples, and z denotes all the
locations on the pyramid feature maps. 1{c∗z>0} is the indicator function, being
1 if c∗z > 0 and 0 otherwise.

4 Experiments

Figure 3 presents the network of our proposed SALT-Net. We take state-of-the-
art dense detectors ATSS [36] and GFLv2 [14] as our baseline, and they serve as
the stage-one and stage-two decoders, respectively. Our SALT-Net is evaluated
on the challenging MS-COCO benchmark [19]. Following the common practice,
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Table 1: Ablation study of SALT on the COCO val2017 split. S1 and S2 de-
note the stage-one and stage-two regression results. “R-Points" and “C-Points"
denote the regression-aware and Classification-aware points, respectively. “P-
anchor" denotes utilizing the regression-aware points as the point-set anchor for
generating the Classification-aware points. “skip" denotes the skip connection of
the classification tower, as shown in Figure 3.

Method R-Points C-Points P-anchor skip AP AP50 AP75 APS APM APL

baseline
S1[36] 39.9 58.5 43.0 22.4 43.9 52.7
S2[14] 40.9 58.3 44.4 23.9 44.7 53.5
S2 X 41.3 58.7 44.9 23.3 45.0 54.2
S2 X X 41.6 59.1 45.6 23.7 45.4 54.7
S2 X X X 42.1 59.6 45.6 24.8 45.4 55.5
S2 X X X X 42.5 60.1 46.2 25.1 45.9 56.4
S1 X X X X 41.3 58.6 44.9 23.2 45.1 54.2

Fig. 8: Visualization of the regression-aware (upper row) and classification-aware
(lower row) points. Different task-aware points are located on the different areas
of the object, and their sensitive regions (i.e., the bounding boxes) are distinct.

we use the COCO train2017 split (115K images) as the training set and the
COCO val2017 split (5K images) for the ablation study. To compare with state-
of-the-art detectors, we report the COCO AP on the test-dev split (20K images)
by uploading the detection result to the MS-COCO server.

4.1 Performance of SALT’s component parts

To validate the effectiveness of different component parts of our proposed opera-
tor SALT, we gradually add the proposed modules to the baseline. As shown in
Table 1, the second and third rows are the baseline performances of the stage-
one and stage-two decoders, respectively. Note that the stage-one decoder utilizes
joint representation of IoU and classification scores instead of its original cen-
ternesss branch, as in [15]. The baseline performances of the two stages are 39.9
AP and 40.9 AP, respectively.
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Table 2: Spatial disentanglement strategies. “exp" and “+" denotes utilizing
Equation (5) and (6) to generate the classification-aware points, respectively.

Method AP AP50 AP75 APS APM APL

w/ + 42.3 60.1 46.1 24.7 46.0 56.1
w/ exp 42.5 60.1 46.2 25.1 45.9 56.4

Table 3: Performance of implementing our proposed approach in popular dense
detectors.

Method AP AP50 AP75

FCOS 38.6 57.2 41.7
SALT-FCOS 40.9 (+2.3) 59.3 44.2
RepPoints w/ GridF 37.4 58.9 39.7
SALT-RepPoints 39.0 (+1.6) 60.5 41.6

As presented in the fourth row, the first experiment investigates the effect
of implementing the regression-aware points. Therefore, SALT only predicts the
scale factors S for generating the regression-aware points. Both subnetworks
utilize aligned features from the locations of the regression-aware points for the
refined detection results. The AP is improved to 41.3, which indicates that the
aligned features do improve the detection accuracy, even though features for the
two tasks are still spatially entangled.

As shown in the fifth row, to test the effect of spatial disentanglement, SALT
predicts the disentanglement vectors D for generating the classification-aware
points. Note that these points are learned without the regression-aware points
acting as the point-set anchor (i.e., ∆Pc = D), yet the AP is still boosted to
41.6. These classification-aware points are located in different regions from the
regression-aware points, and higher accuracy is obtained (41.6 vs. 41.3). There-
fore, spatial disentanglement does raise the detection performance by eliminating
their spatial feature conflicts.

The sixth row shows the performance when taking the regression-aware points
as the point-set anchor for generating the classification-aware points. It can be
observed that a notable performance gain is achieved (i.e., 0.5 AP improvement).
That thereby proves the effectiveness of utilizing the regression-aware points as
the shape hypothesis and the importance of task disentanglement. Figure 8 is
the visualization of task-aware points and their sensitive regions. This figure
indicates that classification and regression are sensitive to different locations of
the object, which also gives the interpretability of spatial disentanglement.

As shown in the seventh row, the long-range skip connection (i.e., the residual
connection on the classification tower) can also bring a considerable performance
boost and gain 0.4 AP. Note that the overall performance has been improved
by 1.6 AP and 2.9 APL compared with the strong baseline. More details about
the skip connection experiments can be found in the supplementary material.
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Table 4: The effect of SDR loss
Method SDR AP AP50 AP75 APS APM APL

S1 41.3 58.6 44.9 23.2 45.1 54.2
S2 42.5 60.1 46.2 25.1 45.9 56.4
S1 X 42.1(+0.8) 60.5 45.9 24.8(+1.6) 45.7 54.9
S2 X 42.8(+0.3) 60.6 46.7 25.1 46.4 56.0

Finally, the last row indicates that the coarse regression results with the refined
classification results can also improve the baseline performance by 1.4 AP.

4.2 The Selection of Spatial Disentanglement Strategies

We propose two disentanglement functions to generate the classification-aware
points, as illustrated in Equation (5) and (6). In Equation (5), the disentangle-
ment vector set D is taken as the exponent, whereas D is directly aggregated
with ∆Pr in Equation (6). As illustrated in Table 2, the “exp" strategy performs
better than that of “+." The reason is that predicting log-space transforms (i.e.,
D = ln ∆Pc

∆Pr ), instead of directly predicting the distance (i.e., D = ∆Pc−∆Pr),
prevents unstable gradients during training. Therefore, it is easier to be learned.

4.3 Generality of SALT

Our proposed SALT can act as a plug-in operator for dense detectors. Therefore,
we plug SALT into popular detectors [25] and [31], to validate its generality. As
shown in Table 3, the performance gain is 2.3 AP on FCOS, which is a consid-
erable improvement. Compared with RepPoints, our SALT-RepPoints performs
better than it and gains 1.6 AP. One can see that SALT can significantly improve
the accuracy of different detectors, which demonstrates its generality.

4.4 Self-distillation Regression Loss

The baseline for this ablation study is the best model of Table 1. Here, both
stages utilize the refined classification scores as the NMS ranking keywords. As
Table 4 shows, after applying the SDR loss to the SALT-Net, the performance
of both stages got improved. The performance gain of the stage-one decoder is
an absolute 0.8 AP score. Notably, the performance on small objects has been
improved by 1.6 AP, which is a relatively large margin compared with the strong
baseline. Furthermore, the improvement of the stage-one decoder also brings
positive feedback to the stage-two decoder and leads to the highest performance
of our SALT-Net (i.e., 42.8 AP).
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(a)Classification (b)S2 (c)S1+SDR

Fig. 9: Prediction distributions (Figure 1) after applying SALT and SDR loss.
The locations of their distribution peaks are identical.

4.5 Evaluations for Task-alignment of SALT-Net

Figure 9 (a) and (b) are the distributions of the refined detection results when
implementing SALT, whereas Figure 1 (b) and (c) are the original coarse pre-
diction distributions made by the stage-one decoder. The green arrows point to
the distribution peaks, and one can see that they are spatially aligned (i.e., at
the same location). Therefore, the detection result with the highest classification
score also has the best regression result, and the misalignment gap is bridged.
Figure 9 (c) is the IoU distribution of the stage-one decoder after applying the
SDR loss. Its quality distributions become very close to the stage-two decoder
(i.e., Figure 9 (b)), which proves the effectiveness of the regression knowledge
transfer. In Figure 10, the qualitative results show that SALT can align the
regression and detection tasks and thereby suppress some low IoU but high clas-
sification score results.

Baseline-S2

Baseline-S2
+

SALT

Fig. 10: Comparisons between the stage-two baseline decoder and our SALT-Net.

4.6 Comparisons with State-of-the-arts

The multi-scale training strategy (i.e., input images are resized from [400, 1333]
to [960, 1333]) and the 2 × schedule [2] are adopted as they are commonly used
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Table 5: SALT-Net vs. State-of-the-art Detectors. All test results are reported
on the COCO test-dev set. “DCN2, DCN”-applying Deformable Convolutional
Network [40] on the last two and three stages of the backbone, respectively.
“DCNp”-applying DCN on both the backbone and the FPN. “*” indicates ap-
plying SDR loss and “†” indicates test-time augmentations, including horizontal
flip and multi-scale testing.

Method Backbone Epoch AP AP50 AP75 APS APM APL

multi-stage
GuidedAnchor[27] R-50 12 39.8 59.2 43.5 21.8 42.6 50.7
DCNV2 [40] X-101-32x8d-DCN 24 44.5 65.8 48.4 27.0 48.5 58.9
BorderDet[20] X-101-64x4d-DCN 24 48.0 67.1 52.1 29.4 50.7 60.5
RepPointsV2[3] X-101-64x4d-DCN 24 49.4 68.9 53.4 30.3 52.1 62.3
TSD†[24] SE154-DCN 24 51.2 71.9 56.0 33.8 54.8 64.2
VFNet[33] X-101-32x8d-DCN 24 50.0 68.5 54.4 30.4 53.2 62.9
LSNet[6] R2-101-DCNp 24 51.1 70.3 55.2 31.2 54.3 65.1
one-stage
CornerNet [13] HG-104 200 40.5 59.1 42.3 21.8 42.7 50.2
SAPD[39] X-101-32x8d-DCN 24 46.6 66.6 50.0 27.3 49.7 60.7
ATSS[36] X-101-32x8d-DCN 24 47.7 66.5 51.9 29.7 50.8 59.4
GFL[15] X-101-32x8d-DCN 24 48.2 67.4 52.6 29.2 51.7 60.2
FCOS-imprv [26] X-101-32x8d-DCN 24 44.1 63.7 47.9 27.4 46.8 53.7
PAA [12] X-101-64x4d-DCN 24 49.0 67.8 53.3 30.2 52.8 62.2
GFLV2 [14] R-50 24 44.3 62.3 48.5 26.8 47.7 54.1
GFLV2 [14] X-101-32x8d-DCN2 24 49.0 67.6 53.5 29.7 52.4 61.4
TOOD [7] X-101-64x4d-DCN 24 51.1 69.4 55.5 31.9 54.1 63.7
SALT-Net∗ R-50 24 46.1 64.0 50.3 28.0 49.5 57.2
SALT-Net X-101-32x8d-DCN2 24 49.8 68.5 54.2 30.6 53.2 62.6
SALT-Net X-101-32x8d-DCN 24 50.2 68.8 54.9 31.2 53.4 63.1
SALT-Net R2-101-DCN2 24 51.1 69.7 55.7 32.3 54.5 64.0
SALT-Net∗ R2-101-DCN 24 51.5 70.0 56.2 32.1 55.1 64.8
SALT-Net∗† R2-101-DCN 24 53.8 71.1 59.9 36.3 56.9 65.1

strategies in state-of-the-art methods. GFLV2 only applies DCN on the last two
stages of the backbone, whereas the common practices [26,33] usually apply it on
the last three stages. Therefore, for a fair comparison, the results of the proposed
method with both settings are reported. As Table 5 shows, our model achieves
a 46.1 AP with ResNet-50, which outperforms other state-of-the-art methods
with heavier backbones (e.g., FCOS with X-101-32x8d-DCN). With test-time
augmentations and R2-101-DCN as the backbone, our best model achieves a
53.8 AP, which is a very competitive result among dense object detectors.

5 Conclusion

In this work, we presented SALT, a simple yet effective plug-in operator that
can solve the misalignment problem between regression and classification. Our
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new-fashioned framework can disentangle classification and regression from the
spatial dimension by extracting features from each task’s sensitive locations and
aligning them to the same anchor point. We also proposed SDR loss to transfer
the regression knowledge from the stage-two decoder to the stage-one decoder.
The refined detection results also received positive feedback by improving the
coarse regression results, and the final performance improved in an inference cost-
free fashion. Extensive experiments showed that SALT could considerably raise
the performance of various dense detectors, and SALT-Net showed promising
results among the state-of-the-art dense detectors.

References

1. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly
to small image transformations? Journal of Machine Learning Research 20, 1–25
(2019)

2. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu,
Z., Xu, J., et al.: Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155 (2019)

3. Chen, Y., Zhang, Z., Cao, Y., Wang, L., Lin, S., Hu, H.: Reppoints v2: Verification
meets regression for object detection. Advances in Neural Information Processing
Systems 33 (2020)

4. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network
for high performance face detection. In: AAAI. vol. 33, pp. 8231–8238 (2019)

5. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: ICCV. pp. 764–773 (2017)

6. Duan, K., Xie, L., Qi, H., Bai, S., Huang, Q., Tian, Q.: Location-sensitive visual
recognition with cross-iou loss. arXiv preprint arXiv:2104.04899 (2021)

7. Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: Tood: Task-aligned one-
stage object detection. In: 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 3490–3499. IEEE Computer Society (2021)

8. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015)

9. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional
neural networks encode? arXiv preprint arXiv:2001.08248 (2020)

10. Ji, M., Shin, S., Hwang, S., Park, G., Moon, I.C.: Refine myself by teaching my-
self: Feature refinement via self-knowledge distillation. In: CVPR. pp. 10664–10673
(2021)

11. Kang, Z., Zhang, P., Zhang, X., Sun, J., Zheng, N.: Instance-conditional knowledge
distillation for object detection. NeurIPS 34 (2021)

12. Kim, K., Lee, H.S.: Probabilistic anchor assignment with iou prediction for object
detection. In: ECCV. pp. 355–371. Springer (2020)

13. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: ECCV.
pp. 734–750 (2018)

14. Li, X., Wang, W., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss v2:
Learning reliable localization quality estimation for dense object detection. In:
CVPR. pp. 11632–11641 (2021)

15. Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J.: General-
ized focal loss: Learning qualified and distributed bounding boxes for dense object
detection. In: NeurIPS (2020)



Rethinking the Misalignment Problem in Dense Object Detection 15

16. Li, Z., Li, X., Yang, L., Yang, J., Pan, Z.: Student helping teacher: Teacher evolu-
tion via self-knowledge distillation. arXiv preprint arXiv:2110.00329 (2021)

17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR. pp. 2117–2125 (2017)

18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017)

19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV. pp. 740–755.
Springer (2014)

20. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: Borderdet: Border feature for dense object
detection. In: ECCV. pp. 549–564. Springer (2020)

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR. pp. 779–788 (2016)

22. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv (2018)
23. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: General-

ized intersection over union: A metric and a loss for bounding box regression. In:
CVPR. pp. 658–666 (2019)

24. Song, G., Liu, Y., Wang, X.: Revisiting the sibling head in object detector. In:
CVPR. pp. 11563–11572 (2020)

25. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: ICCV. pp. 9627–9636 (2019)

26. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: A simple and strong anchor-free object
detector. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

27. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided an-
choring. In: CVPR. pp. 2965–2974 (2019)

28. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-
grained feature imitation. In: CVPR. pp. 4933–4942 (2019)

29. Wu, S., Li, X., Wang, X.: Iou-aware single-stage object detector for accurate local-
ization. Image and Vision Computing 97, 103911 (2020)

30. Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., Fu, Y.: Rethinking classifi-
cation and localization for object detection. In: CVPR. pp. 10186–10195 (2020)

31. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: ICCV. pp. 9657–9666 (2019)

32. Yao, A., Sun, D.: Knowledge transfer via dense cross-layer mutual-distillation. In:
ECCV. pp. 294–311. Springer (2020)

33. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: An iou-aware
dense object detector. In: CVPR. pp. 8514–8523 (2021)

34. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. In:
ICCV. pp. 3713–3722 (2019)

35. Zhang, P., Kang, Z., Yang, T., Zhang, X., Zheng, N., Sun, J.: Lgd: Label-guided
self-distillation for object detection. arXiv preprint arXiv:2109.11496 (2021)

36. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In: CVPR.
pp. 9759–9768 (2020)

37. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network
for object detection. In: CVPR. pp. 4203–4212 (2018)

38. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR.
pp. 4320–4328 (2018)

39. Zhu, C., Chen, F., Shen, Z., Savvides, M.: Soft anchor-point object detection. In:
ECCV. pp. 91–107. Springer (2020)



16 Authors Suppressed Due to Excessive Length

40. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better
results. In: CVPR. pp. 9308–9316 (2019)



Rethinking the Misalignment Problem in Dense Object Detection 17

FPN

P4
P3

P5
P6 P7

Backbone

C4
C3

C5

Feature
Alignment

Refined
Regression

Feature
Alignment

×3

𝛾

𝜑

×3

Coarse
Regression

R-Points

C-Points

Predicted
Vectors

∕

Scale
Factors

Refined
Classification

KD

Fig. 11: Architecture of SALT-Net.

A Introduction

In this supplementary material, we provide the inference details of SALT-Net
and the skip connection experiment on the regression and classification towers.
Finally, we demonstrate the images of the detection results of SALT-Net on the
MS-COCO [19] val2017 split.

B Network Architecture and Inference

Figure 11 presents the network of our proposed SALT-Net. The input features
from FPN are fed into two parallel subnetworks for the regression and classifica-
tion tasks. We also apply a skip connection on the classification tower because
we find that it can improve the accuracy, and the ablation study is in Sec. C.

First, the regression subnetwork predicts the coarse regression result with
misaligned features. Based on the coarse bounding box, SALT predicts the
normalized scale factors S and then outputs a set of regression-aware points
with Equation (Sec 3.1: 1,2). Features from the locations of the regression-aware
points are extracted for predicting the refined regression result.

By taking the regression-aware points as the point-set anchor, SALT predicts
the disentanglement vectors D and then outputs the classification-aware points
with Equation (Sec 3.2: 5). After extracting the aligned classification features
from the locations of the classification-aware points, the classification subnetwork
outputs the refined classification result.

Finally, the detection results from all levels of FPN are merged, and we use
NMS to filter out redundant results with the threshold set as 0.6.

B.1 Inference Speed

SALT-Net is a dense object detector that predicts the detection result in a
per-pixel prediction fashion. Figure 12 illustrates the comparisons between the
SALT-Net and other state-of-the-art dense object detectors [15,14,12,36,39,25,20,3].
All test results are reported with a single Titan RTX GPU and a Xeon Gold
6230 CPU. Notably, our prosed approach achieves a new level of accuracy-speed
trade-off.
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Fig. 12: Single-model single-scale speed (ms) vs. accuracy (AP) on COCO test-
dev among state-of-the-art dense object detectors.

Table 6: Different skip connection strategies. “C” and “R” denote classification
and regression tower, respectively. We have tried three kinds of strategies: apply-
ing the long-range skip connection on the regression and the classification tower,
respectively, and without the skip connection in both subnetworks.

C R AP AP50 AP75 APS APM APL

42.1 59.6 45.6 24.8 45.4 55.5
X 41.8 59.4 45.6 23.6 45.6 55.6

X 42.5 60.1 46.2 25.1 45.9 56.4

C Skip Connection

We did an experiment about applying a long-range skip connection (i.e., LS) on
the classification and regression subnetworks. Table 6 is the experiment result,
and it revealed an interesting finding that the effect of LS on the two tasks is
quite the opposite. Here are our explanations for this interesting finding and our
motivation for doing this experiment.

Classification has translation and scale invariance, whereas regression is the
contrary. The “stride” and “zero-padding” of the convolution operation can also
affect the invariance property. However, the cumulative number of stride and
padding times varied in feature maps with different depths of the CNNs. There-
fore, we want to explore how the feature fusion would affect the two tasks,
respectively. The LS is used in our investigation to fuse feature maps with dif-
ferent depths of the network. As shown in Table 6, the implementation of the LS
on the classification tower can improve the AP by 0.4. Nevertheless, applying LS
on the regression tower decreases the AP by 0.3. That indicates that the effect
of the LS on these two tasks is the opposite.
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C.1 Motivation for the Skip Connection Experiment

1. Classification has translation and scale invariance, while regression is quite
the opposite.

2. Feature maps that come from different depths of the network have different
impacts on the invariance property [1].

3. There is a direct correlation between the regression task and the depth of
the feature map [9].

4. The skip connection is almost a cost-free method that can fuse feature maps
with different depths.

C.2 Details

As illustrated in Figure 13, the triangles and rectangles represent the input
images and their output features, respectively. Classification has translation and
scale invariance, that is, the location and size transformations of the object do not
affect the classification result (i.e., Figure 13 (b)). Nevertheless, regression has
translation and scale equivariance, that is, the location and size transformations
of the object have the same effect on the regression result (i.e., Figure 13 (c)).

(a) (b) invariance (c) equivariance

Fig. 13: (a) is the control group. The input images of (b) and (c) have the location
and size transformations.

⋯
𝐿# 𝐿$ 𝐿%

Fig. 14: Feature maps with different "depths".

Our motivation for doing the skip-connection experiment comes from two
studies. First, Convolutional Neural Networks (CNNs) are assumed to be in-
variant to scale and translation changes. However, Azulay and Weiss [1] argued
that it is not the case. The subsampling and stride of the convolution operation
will affect the invariance. The deeper the network, the more significant it is,
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especially for small objects. Let f be the function that measures the cumulative
number of subsampling and stride times of feature map Ln. f is proportional to
the depth of the feature map n, as Equation 11 shows.

f(Ln) ∝ n (11)

Second, Islam et al. [9] revealed that the reason why CNNs can learn absolute
position is because of the commonly used zero-padding operation. However, the
padding times of feature maps with different depths are different. Let g be the
function that measures the cumulative number of zero-padding times of feature
map Ln. g is also proportional to the depth of the feature map n, as Equation
12 shows.

g(Ln) ∝ n (12)

The skip connection can affect the depth of the feature map. Therefore, it also
has an influence on the classification and the position decoding task (regression).
As illustrated in Figure 15, we use LS to fuse features maps from different depths
of the network. The deeper the color, the deeper the feature map is. Experiments
in table 6 show that the effect of the LS for the two tasks is quite the opposite.
The feature fusion process is beneficial to the classification task while harmful
to the regression result.

(a) without LS

+

(b) LS-regression

+

(c) LS-classification

Fig. 15: Illustration of different long-range skip connection strategies. (b) and (c)
denote the regression and classification subnetworks, respectively.

D Refined Regression Results

Figure 16 shows the refined detection results of our proposed method (i.e., the
model with AP 42.5 in Table (Sec 4.1: 1) ). One can see that our SALT-Net
works well in various scenes.



Rethinking the Misalignment Problem in Dense Object Detection 21

Fig. 16: Quantitive results on the val2017 split.
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