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Abstract. Convolutional neural networks (CNNs) have made resound-
ing success in many computer vision tasks such as image classification
and object detection. However, their performance degrades rapidly on
tougher tasks where images are of low resolution or objects are small. In
this paper, we point out that this roots in a defective yet common de-
sign in existing CNN architectures, namely the use of strided convolution
and/or pooling layers, which results in a loss of fine-grained information
and learning of less effective feature representations. To this end, we pro-
pose a new CNN building block called SPD-Conv in place of each strided
convolution layer and each pooling layer (thus eliminates them alto-
gether). SPD-Conv is comprised of a space-to-depth (SPD) layer followed
by a non-strided convolution (Conv) layer, and can be applied in most if
not all CNN architectures. We explain this new design under two most
representative computer vision tasks: object detection and image classi-
fication. We then create new CNN architectures by applying SPD-Conv
to YOLOv5 and ResNet, and empirically show that our approach sig-
nificantly outperforms state-of-the-art deep learning models, especially
on tougher tasks with low-resolution images and small objects. We have
open-sourced our code at https://github.com/LabSAINT/SPD-Conv.

1 Introduction

Since AlexNet [18], convolutional neural networks (CNNs) have excelled at many
computer vision tasks. For example in image classification, well-known CNN
models include AlexNet, VGGNet [30], ResNet [13], etc.; while in object detec-
tion, those models include the R-CNN series [9,28], YOLO series [26,4], SSD [24],
EfficientDet [34], and so on. However, all such CNN models need “good quality”
inputs (fine images, medium to large objects) in both training and inference. For
example, AlexNet was originally trained and evaluated on 227×227 clear images,
but after reducing the image resolution to 1/4 and 1/8, its classification accu-
racy drops by 14% and 30%, respectively [16]. The similar observation was made
on VGGNet and ResNet too [16]. In the case of object detection, SSD suffers
from a remarkable mAP loss of 34.1 on 1/4 resolution images or equivalently 1/4
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smaller-size objects, as demonstrated in [11]. In fact, small object detection is a
very challenging task because smaller objects inherently have lower resolution,
and also limited context information for a model to learn from. Moreover, they
often (unfortunately) co-exist with large objects in the same image, which (the
large ones) tend to dominate the feature learning process, thereby making the
small objects undetected.

In this paper, we contend that such performance degradation roots in a defec-
tive yet common design in existing CNNs. That is, the use of strided convolution
and/or pooling, especially in the earlier layers of a CNN architecture. The ad-
verse effect of this design usually does not exhibit because most scenarios being
studied are “amiable” where images have good resolutions and objects are in
fair sizes; therefore, there is plenty of redundant pixel information that strided
convolution and pooling can conveniently skip and the model can still learn fea-
tures quite well. However, in tougher tasks when images are blurry or objects are
small, the lavish assumption of redundant information no longer holds and the
current design starts to suffer from loss of fine-grained information and poorly
learned features.

To address this problem, we propose a new building block for CNN, called
SPD-Conv, in substitution of (and thus eliminate) strided convolution and pool-
ing layers altogether. SPD-Conv is a space-to-depth (SPD) layer followed by a
non-strided (i.e., vanilla) convolution layer. The SPD layer downsamples a fea-
ture map X but retains all the information in the channel dimension, and thus
there is no information loss. We were inspired by an image transformation tech-
nique [29] which rescales a raw image before feeding it into a neural net, but
we substantially generalize it to downsampling feature maps inside and through-
out the entire network; furthermore, we add a non-strided convolution operation
after each SPD to reduce the (increased) number of channels using learnable
parameters in the added convolution layer. Our proposed approach is both gen-
eral and unified, in that SPD-Conv (i) can be applied to most if not all CNN
architectures and (ii) replaces both strided convolution and pooling the same
way. In summary, this paper makes the following contributions:

1) We identify a defective yet common design in existing CNN architectures
and propose a new building block called SPD-Conv in lieu of the old design.
SPD-Conv downsamples feature maps without losing learnable information,
completely jettisoning strided convolution and pooling operations which are
widely used nowadays.

2) SPD-Conv represents a general and unified approach, which can be easily
applied to most if not all deep learning based computer vision tasks.

3) Using two most representative computer vision tasks, object detection and
image classification, we evaluate the performance of SPD-Conv. Specifically,
we construct YOLOv5-SPD, ResNet18-SPD and ResNet50-SPD, and evalu-
ate them on COCO-2017, Tiny ImageNet, and CIFAR-10 datasets in compar-
ison with several state-of-the-art deep learning models. The results demon-
strate significant performance improvement in AP and top-1 accuracy, espe-
cially on small objects and low-resolution images. See Fig. 1 for a preview.
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(b) Large-scale models.

Fig. 1: Comparing AP for small objects (APS). “SPD” indicates our approach.

4) SPD-Conv can be easily integrated into popular deep learning libraries such
as PyTorch and TensorFlow, potentially producing greater impact. Our source
code is available at https://github.com/LabSAINT/SPD-Conv.

The rest of this paper is organized as follows. Section 2 presents background
and reviews related work. Section 3 describes our proposed approach and Sec-
tion 4 presents two case studies using object detection and image classification.
Section 5 provides performance evaluation. This paper concludes in Section 6.

2 Preliminaries and Related Work

We first provide an overview for this area, focusing more on object detection
since it subsumes image classification.

Current state-of-the-art object detection models are CNN-based and can be
categorized into one-stage and two-stage detectors, or anchor-based or anchor-
free detectors. A two-stage detector firstly generates coarse region proposals
and secondly classifies and refines each proposal using a head (a fully-connected
network). In contrast, a one-stage detector skips the region proposal step and
runs detection directly over a dense sampling of locations. Anchor-based methods
use anchor boxes, which are a predefined collection of boxes that match the
widths and heights of objects in the training data, to improve loss convergence
during training. We provide Table 1 that categorizes some well-known models.

Generally, one-stage detectors are faster than two-stage ones and anchor-
based models are more accurate than anchor-free ones. Therefore, later in our
case study and experiments we focus more on one-stage and anchor-based mod-
els, i.e., the first cell of Table 1.

A typical one-stage object detection model is depicted in Fig. 2. It consists
of a CNN-based backbone for visual feature extraction and a detection head
for predicting class and bounding box of each contained object. In between, a
neck of extra layers is added to combine features at multiple scales to produce
semantically strong features for detecting objects of different sizes.

 https://github.com/LabSAINT/SPD-Conv
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Table 1: A taxonomy of OD models.
Model Anchor-based Anchor-free

One-stage

Faster R-CNN [27],
SSD [24],

RetinaNet [21],
EfficientDet [34],
YOLO [26,4,14,36]

FCOS [35],
CenterNet [7],
DETR [5],
YOLOX [8]

Two-stage
R-CNN [10],

Fast R-CNN [9]
RepPoints,
CenterNet2

Fig. 2: A one-stage object detection pipeline.

   

2.1 Small Object Detection

Traditionally, detecting both small and large objects is viewed as a multi-scale
object detection problem. A classic way is image pyramid [3], which resizes in-
put images to multiple scales and trains a dedicated detector for each scale. To
improve accuracy, SNIP [31] was proposed which performs selective backpropa-
gation based on different object sizes in each detector. SNIPER [32] improves
the efficiency of SNIP by only processing the context regions around each object
instance rather than every pixel in an image pyramid, thus reducing the train-
ing time. Taking a different approach to efficiency, Feature Pyramid Network
(FPN) [20] exploits the multi-scale features inherent in convolution layers us-
ing lateral connections and combine those features using a top-down structure.
Following that, PANet [22] and BiFPN [34] were introduced to improve FPN
in its feature information flow by using shorter pathways. Moreover, SAN [15]
was introduced to map multi-scale features onto a scale-invariant subspace to
make a detector more robust to scale variation. All these models unanimously
use strided convolution and max pooling, which we get rid of completely.

2.2 Low-Resolution Image Classification

One of the early attempts to address this challenge is [6], which proposes an
end-to-end CNN model by adding a super-resolution step before classification.
Following that, [25] proposes to transfer fine-grained knowledge acquired from
high-resolution training images to low-resolution test images. However, this ap-
proach requires high-resolution training images corresponding to the specific
application (e.g., the classes), which are not always available.

This same requirement of high-resolution training images is also needed by
several other studies such as [37]. Recently, [33] proposed a loss function that
incorporate attribute-level separability (where attribute means fine-grained, hi-
erarchical class labels) so that the model can learn class-specific discriminative
features. However, the fine-grained (hierarchical) class labels are difficult to ob-
tain and hence limit the adoption of the method.
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Fig. 3: Illustration of SPD-Conv when scale = 2 (see text for details).

3 A New Building Block: SPD-Conv

SPD-Conv is comprised of a Space-to-depth (SPD) layer followed by a non-
strided convolution layer. This section describes it in detail.

3.1 Space-to-depth (SPD)

Our SPD component generalizes a (raw) image transformation technique [29] to
downsampling feature maps inside and throughout a CNN, as follows.

Consider any intermediate feature map X of size S × S × C1, slice out a
sequence of sub feature maps as
f0,0 = X[0 : S : scale, 0 : S : scale], f1,0 = X[1 : S : scale, 0 : S : scale], . . . ,

fscale−1,0 = X[scale− 1 : S : scale, 0 : S : scale];
f0,1 = X[0 : S : scale, 1 : S : scale], f1,1, . . . ,

fscale−1,1 = X[scale− 1 : S : scale, 1 : S : scale];
...

f0,scale−1 = X[0 : S : scale, scale− 1 : S : scale], f1,scale−1, . . . ,
fscale−1,scale−1 = X[scale− 1 : S : scale, scale− 1 : S : scale].

In general, given any (original) feature map X, a sub-map fx,y is formed by all
the entries X(i, j) that i + x and j + y are divisible by scale. Therefore, each
sub-map downsamples X by a factor of scale. Fig. 3(a)(b)(c) give an example
when scale = 2, where we obtain four sub-maps f0,0, f1,0, f0,1, f1,1 each of which
is of shape (S2 ,

S
2 , C1) and downsamples X by a factor of 2.

Next, we concatenate these sub feature maps along the channel dimension
and thereby obtain a feature mapX ′, which has a reduced spatial dimension by a
factor of scale and an increased channel dimension by a factor of scale2. In other
words, SPD transforms feature map X(S, S,C1) into an intermediate feature
map X ′( S

scale ,
S

scale , scale
2C1). Fig. 3(d) gives an illustration using scale = 2.
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3.2 Non-strided Convolution

After the SPD feature transformation layer, we add a non-strided (i.e., stride=1)
convolution layer with C2 filters where C2 < scale2C1, and further transforms
X ′( S

scale ,
S

scale , scale
2C1) → X ′′( S

scale ,
S

scale , C2). The reason we use non-strided
convolution is to retain all the discriminative feature information as much as
possible. Otherwise, for instance, using a 3 × 3 filer with stride=3, feature maps
will get “shrunk” yet each pixel is sampled only once; if stride=2, asymmetric
sampling will occur where even and odd rows/columns will be sampled differ-
ent times. In general, striding with a step size greater than 1 will cause non-
discriminative loss of information although at the surface, it appears to convert
feature map X(S, S,C1)→ X ′′( S

scale ,
S

scale , C2) too (but without X ′).

4 How to Use SPD-Conv: Case Studies

To explain how to apply our proposed method to redesigning CNN architectures,
we use two most representative categories of computer vision models: object de-
tection and image classification. This is without loss of generality as almost all
CNN architectures use strided convolution and/or pooling operations to down-
sample feature maps.

4.1 Object Detection

YOLO is a series of very popular object detection models, among which we
choose the latest YOLOv5 [14] to demonstrate. YOLOv5 uses CSPDarknet53 [4]
with a SPP [12] module as its backbone, PANet [23] as its neck, and the YOLOv3
head [26] as its detection head. In addition, it also uses various data augmenta-
tion methods and some modules from YOLOv4 [4] for performance optimization.
It employs the cross-entropy loss with a sigmoid layer to compute objectness and
classification loss, and the CIoU loss function [38] for localization loss. The CIoU
loss takes more details than IoU loss into account, such as edge overlapping, cen-
ter distance, and width-to-height ratio.

YOLOv5-SPD. We apply our method described in Section 3 to YOLOv5
and obtain YOLOv5-SPD (Fig. 4), simply by replacing the YOLOv5 stride-
2 convolutions with our SPD-Conv building block. There are 7 instances of
such replacement because YOLOv5 uses five stride-2 convolution layers in the
backbone to downsample the feature map by a factor of 25, and two stride-2
convolution layers in the neck. There is a concatenation layer after each strided
convolution in YOLOv5 neck; this does not alter our approach and we simply
keep it between our SPD and Conv.

Scalability. YOLOv5-SPD can suit different application or hardware needs
by easily scaling up and down in the same manner as YOLOv5. Specifically,
we can simply adjust (1) the number of filters in every non-strided convolution
layer and/or (2) the repeated times of C3 module (as in Fig. 4), to obtain
different versions of YOLOv5-SPD. The first is referred to as width scaling which
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Fig. 4: Overview of our YOLOv5-SPD. Red boxes are where the replacement
happens.

changes the original width nw (number of channels) to dnw × width_factore8
(rounded off to the nearest multiple of 8). The second is referred to as depth
scaling which changes the original depth nd (times of repeating the C3 module;
e.g., 9 as in 9 × C3 in Fig. 4) to dnd × depth_factore. This way, by choosing
different width/depth factors, we obtain nano, small, medium, and large versions
of YOLOv5-SPD as shown in Table 2, where factor values are chosen the same
as YOLOv5 for the purpose of comparison in our experiments later.

Table 2: Scaling YOLOv5-SPD to obtain different versions that fit different use
cases.

Models Depth_Factor Width_Factor

YOLOv5-SPD-n 0.33 0.25
YOLOv5-SPD-s 0.33 0.50
YOLOv5-SPD-m 0.67 0.75
YOLOv5-SPD-l 1.00 1.00
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Table 3: Our ResNet18-SPD and ResNet50-SPD architecture.
Layer Name ResNet18-SPD ResNet50-SPD

spd1 SPD-Conv
conv1 3× 3 kernel, 64 output channels

conv2
[
3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

spd2 SPD-Conv

conv3
[
3× 3, 128
3× 3, 128

]
× 2

1× 1, 128
3× 3, 128
1× 1, 512

× 4

spd3 SPD-Conv

conv4
[
3× 3, 256
3× 3, 256

]
× 2

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

spd4 SPD-Conv

conv5
[
3× 3, 512
3× 3, 512

]
× 2

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

fc (fully conn.) Global avg. pooling + fc(no. of classes) + softmax

4.2 Image Classification

A classification CNN typically begins with a stem unit that consists of a stride-2
convolution and a pooling layer to reduce the image resolution by a factor of
four. A popular model is ResNet [13] which won the ILSVRC 2015 challenge.
ResNet introduces residual connections to allow for training a network as deep
as up to 152 layers. It also significantly reduces the total number of parameters
by only using a single fully-connected layer. A softmax layer is employed at the
end to normalize class predictions.

ResNet18-SPD and ResNet50-SPD. ResNet-18 and ResNet-50 both use
a total number of four stride-2 convolutions and one max-pooling layer of stride
2 to downsample each input image by a factor of 25. Applying our proposed
building block, we replace the four strided convolutions with SPD-Conv; but on
on the other hand, we simply remove the max pooling layer because, since our
main target is low-resolution images, the datasets used in our experiments have
rather small images (64 × 64 in Tiny ImageNet and 32 × 32 in CIFAR-10) and
hence pooling is unnecessary. For larger images, such max-pooling layers can still
be replaced the same way by SPD-Conv. The two new architectures are shown
in Table 3.

5 Experiments

This section evaluates our proposed approach SPD-Conv using two representa-
tive computer vision tasks, object detection and image classification.
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5.1 Object Detection

Dataset & Setup. We use the COCO-2017 dataset [1] which is divided into
train2017 (118,287 images) for training, val2017 (5,000 images; also called
minival) for validation, and test2017 (40,670 images) for testing. We use a
wide range of state-of-the-art baseline models as listed in Tables 4 and 5. We
report the standard metric of average precision (AP) on val2017 under different
IoU thresholds [0.5:0.95] and object sizes (small, medium, large). We also report
the AP metrics on test-dev2017 (20,288 images) which is a subset of test2017
with accessible labels. However, the labels are not publicly released but one needs
to submit all the predicted labels in JSON files to the CodaLab COCO Detection
Challenge [2] to retrieve the evaluated metrics, which we did.

Training. We train different versions (nano, small, medium, and large) of
YOLOv5-SPD and all the baseline models on train2017. Unlike most other
studies, we train from scratch without using transfer learning. This is because
we want to examine the true learning capability of each model without being
disguised by the rich feature representation it inherits via transfer learning from
ideal (high quality) datasets such as ImageNet. This was carried out on our own
models (∗-SPD-n/s/m/l) and all the existing YOLO-series models (v5, X, v4,
and their scaled versions like nano, small, large, etc.). The other baseline models
still used transfer learning because of our lack of resource (training from scratch
consumes an enormous amount of GPU time). However, note that this simply
means that those baselines are placed in a much more advantageous position
than our own models as they benefit from high quality datasets.

We choose the SGD optimizer with momentum 0.937 and a weight decay
of 0.0005. The learning rate linearly increases from 0.0033 to 0.01 during three
warm-up epochs, followed by a decrease using the Cosine decay strategy to a final
value of 0.001. The nano and smallmodels are trained on four V-100 32 GB GPU
with a batch size of 128, while medium and large models are trained with batch
size 32. CIoU loss [38] and cross-entropy loss are adopted for objectness and
classification. We also employ several data augmentation techniques to mitigate
overfitting and improve performance for all the models; these techniques include
(i) photometric distortions of hue, saturation, and value, (ii) geometric distor-
tions such as translation, scaling, shearing, fliplr and flipup, and (iii) multi-image
enhancement techniques such as mosaic and cutmix. Note that augmentation is
not used at inference. The hyperparameters are adopted from YOLOv5 without
re-tuning.

Results
Table 4 reports the results on val2017 and Table 5 reports the results on

test-dev. The APS,APM,APL in both tables mean the AP for small/medium/
large objects, which should not be confused with model scales (nano, small,
medium, large). The image resolution 640 × 640 as shown in both tables is not
considered high in object detection (as opposed to image classification) because
the resolution on the actual objects is much lower, especially when the objects
are small.
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Table 4: Comparison on MS-COCO validation dataset (val2017).
Model Backbone Image AP APS Params Latency (ms)

size (small obj.) (M) (batch_size=1)

YOLOv5-SPD-n - 640× 640 31.0 16.0 (+13.15%) 2.2 7.3
YOLOv5n - 640× 640 28.0 14.14 1.9 6.3
YOLOX-Nano - 640× 640 25.3 - 0.9 -

YOLOv5-SPD-s - 640× 640 40.0 23.5 (+11.4%) 8.7 7.3
YOLOv5s - 640× 640 37.4 21.09 7.2 6.4
YOLOX-S - 640× 640 39.6 - 9.0 9.8

YOLOv5-SPD-m - 640× 640 46.5 30.3 (+8.6%) 24.6 8.4
YOLOv5m - 640× 640 45.4 27.9 21.2 8.2
YOLOX-M - 640× 640 46.4 - 25.3 12.3

YOLOv5-SPD-l - 640× 640 48.5 32.4 (+1.8%) 52.7 10.3
YOLOv5l - 640× 640 49.0 31.8 46.5 10.1
YOLOX-L - 640× 640 50.0 - 54.2 14.5

Faster R-CNN R50-FPN - 40.2 24.2 42.0 -
Faster R-CNN+ R50-FPN - 42.0 26.6 42.0 -
DETR R50 - 42.0 20.5 41.0 -
DETR-DC5 ResNet-101 800× 1333 44.9 23.7 60.0 -
RetinaNet ViL-Small-RPB 800× 1333 44.2 28.8 35.7 -

Results on val2017. Table 4 is organized by model scales, as separated by
horizontal lines (the last group are large-scale models). In the first category of
nano models, our YOLOv5-SPD-n is the best performer in terms of both AP and
APS: its APS is 13.15% higher than the runner-up, YOLOv5n, and its overall
AP is 10.7% higher than the runner-up, also YOLOv5n.

In the second category, small models, our YOLOv5-SPD-s is again the best
performer on both AP and APS, although this time YOLOX-S is the second
best on AP.

In the third, medium model category, the AP performance gets quite close
although our YOLOv5-SPD-m still outperforms others. On the other hand, our
APS has a larger winning margin (8.6% higher) than the runner-up, which is a
good sign because SPD-Conv is especially advantageous for smaller objects and
lower resolutions.

Lastly for large models, YOLOX-L achieves the best AP while our YOLOv5-
SPD-l is only slightly (3%) lower (yet much better than other baselines shown
in the bottom group). On the other hand, our APS remains the highest, which
echos SPD-Conv’s advantage mentioned above.

Results on test-dev2017. As presented in Table 5, our YOLOv5-SPD-n is
again the clear winner in the nano model category on APS, with a good winning
margin (19%) over the runner-up, YOLOv5n. For the average AP, although
it appears as if EfficientDet-D0 performed better than ours, that is because
EfficientDet has almost double parameters than ours and was trained using high-
resolution images (via transfer learning, as indicated by “Trf” in the cell) and AP
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Table 5: Comparison on MS-COCO test dataset (test-dev2017).
Model ImgSize Params AP AP50 AP75 APS APM APL

(M) (small obj.)

YOLOv5-SPD-n 640× 640 2.2 30.4 48.7 32.4 15.1(+19%) 33.9 37.4
YOLOv5n 640× 640 1.9 28.1 45.7 29.8 12.7 31.3 35.4
EfficientDet-D0 512× 512 3.9 33.8(Trf) 52.2 35.8 12.0 38.3 51.2

YOLOv5-SPD-s 640× 640 8.7 39.7 59.1 43.1 21.9(+9.5%) 43.9 49.1
YOLOv5s 640× 640 7.2 37.1 55.7 40.2 20.0 41.5 45.2
EfficientDet-D1 640× 640 6.6 39.6 58.6 42.3 17.9 44.3 56.0
EfficientDet-D2 768× 768 8.1 43.0(Trf) 62.3 46.2 22.5(Trf) 47.0 58.4

YOLOv5-SPD-m 640× 640 24.6 46.6 65.2 50.8 28.2(+6%) 50.9 57.1
YOLOv5m 640× 640 21.2 45.5 64.0 49.7 26.6 50.0 56.6
YOLOX-M 640× 640 25.3 46.4 65.4 50.6 26.3 51.0 59.9
EfficientDet-D3 896× 896 12.0 45.8 65.0 49.3 26.6 49.4 59.8
SSD512 512× 512 36.1 28.8 48.5 30.3 - - -

YOLOv5-SPD-l 640× 640 52.7 48.8 67.1 53.0 30.0 52.9 60.5
YOLOv5l 640× 640 46.5 49.0 67.3 53.3 29.9 53.4 61.3
YOLOX-L 640× 640 54.2 50.0 68.5 54.5 29.8 54.5 64.4
YOLOv4-CSP 640× 640 52.9 47.5 66.2 51.7 28.2 51.2 59.8
PP-YOLO 608× 608 52.9 45.2 65.2 49.9 26.3 47.8 57.2

YOLOX-X 640× 640 99.1 51.2 69.6 55.7 31.2 56.1 66.1
YOLOv4-P5 896× 896 70.8 51.8 70.3 56.6 33.4 55.7 63.4
YOLOv4-P6 1280× 1280 127.6 54.5 72.6 59.8 36.8 58.3 65.9
RetinaNet 1280× 1280 66.9 50.7 70.4 54.9 33.6 53.9 62.1
(w/ SpineNet-143)

is highly correlated with resolution. This training benefit is similarly reflected in
the small model category too.

In spite of this benefit that other baselines receive, our approach reclaims its
top rank in the next category, medium models, on both AP and APS. Finally
in the large model category, our YOLOv5-SPD-l is also the best performer on
APS, and closely matches YOLOX-L on AP.

Summary. It is clear that, by simply replacing the strided convolution and
pooling layers with our proposed SPD-Conv building block, a neural net can
significantly improves its accuracy, while maintaining the same level of parameter
size. The improvement is more prominent when objects are small, which meets
our goal well. Although we do not constantly notch the first position in all the
cases, SPD-Conv is the only approach that consistently performs very well; it
is only occasionally a (very close) runner-up if not performing the best, and is
always the winner on APS which is the chief metric we target.

Lastly, recall that we have adopted YOLOv5 hyperparameters without re-
tuning, which means that our models will likely perform even better after dedi-
cated hyperparameter tuning. Also recall that all the non-YOLO baselines (and
PP-YOLO) were trained using transfer learning and thus have benefited from
high quality images, while ours do not.
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(a) Purple boxes: YOLOv5m predictions. (b) Green boxes: YOLOv5-SPD-m predic-
tions.

(c) Purple boxes: YOLOv5m predictions. (d) Green boxes: YOLOv5-SPD-m predic-
tions.

Fig. 5: Object detection examples from val2017. Blue boxes indicate the ground
truth. Red arrows highlight the differences.

Visual comparison. For a visual and intuitive understanding, we provide
two real examples using two randomly chosen images, as shown in Fig. 5. We
compare YOLOv5-SPD-m and YOLOv5m since the latter is the best performer
among all the baselines in the corresponding (medium) category. Fig. 5(a)(b)
demonstrates that YOLOv5-SPD-m is able to detect the occluded giraffe which
YOLOv5m misses, and Fig. 5(c)(d) shows that YOLOv5-SPD-m detects very
small objects (a face and two benches) while YOLOv5m fails to.

5.2 Image Classification

Dataset & Setup. For the task of image classification, we use the Tiny Im-
ageNet [19] and CIFAR-10 datasets [17]. Tiny ImageNet is a subset of the
ILSVRC-2012 classification dataset and contains 200 classes. Each class has
500 training images, 50 validation images, and 50 test images. Each image is
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of resolution 64×64×3 pixels. CIFAR-10 consists of 60,000 images of resolution
32× 32× 3, including 50,000 training images and 10,000 test images. There are
10 classes with 6,000 images per class. We use the top-1 accuracy as the metric
to evaluate the classification performance.

Training. We train our ReseNet18-SPD model on Tiny ImageNet. We per-
form random grid search to tune hyperparameters including learning rate, batch
size, momentum, optimizer, and weight decay. Fig. 6 shows a sample hyper-
parameter sweep plot generated using the wandb MLOPs. The outcome is the
SGD optimizer with a learning rate of 0.01793 and momentum of 0.9447, a
mini batch size of 256, weight decay regularization of 0.002113, and 200 training
epochs. Next, we train our ResNet50-SPD model on CIFAR-10. The hyperpa-
rameters are adopted from the ResNet50 paper, where SGD optimizer is used
with an initial learning rate 0.1 and momentum 0.9, batch size 128, weight de-
cay regularization 0.0001, and 200 training epochs. For both ReseNet18-SPD
and ReseNet50-SPD, we use the same decay function as in ResNet to decrease
the learning rate as the number of epochs increases.

Fig. 6: Hyperparameter tuning in image classification: a sweep plot using wandb.

Testing. The accuracy on Tiny ImageNet is evaluated on the validation
dataset because the ground truth in the test dataset is not available. The accu-
racy on CIFAR-10 is calculated on the test dataset.

Results. Table 6 summarizes the results of top-1 accuracy. It shows that
our models, ResNet18-SPD and ResNet50-SPD, clearly outperform all the other
baseline models.

Finally, we provide in Fig. 7 a visual illustration using Tiny ImageNet. It
shows 8 examples misclassified by ResNet18 and correctly classified by ResNet18-
SPD. The common characteristics of these images is that the resolution is low and
therefore presents a challenge to the standard ResNet which loses fine-grained
information during its strided convolution and pooling operations.
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Table 6: Image classification performance comparison.
Model Dataset Top-1 accuracy (%)

ResNet18-SPD Tiny ImageNet 64.52
ResNet18 Tiny ImageNet 61.68
Convolutional Nystromformer for Vision Tiny ImageNet 49.56
WaveMix-128/7 Tiny ImageNet 52.03

ResNet50-SPD CIFAR-10 95.03
ResNet50 CIFAR-10 93.94
Stochastic Depth CIFAR-10 94.77
Prodpoly CIFAR-10 94.90

Fig. 7: Green labels: ground truth. Blue labels: ResNet18-SPD predictions. Red
labels: ResNet-18 predictions.

6 Conclusion

This paper identifies a common yet defective design in existing CNN architec-
tures, which is the use of strided convolution and/or pooling layers. It will result
in the loss of fine-grained feature information especially on low-resolution images
and small objects. We then propose a new CNN building block called SPD-Conv
that eliminates the strided and pooling operations altogether, by replacing them
with a space-to-depth convolution followed by a non-strided convolution. This
new design has a big advantage of downsampling feature maps while retaining
the discriminative feature information. It also represents a general and unified
approach that can be easily applied to perhaps any CNN architecture and to
strided conv and pooling the same way. We provide two most representative use
cases, object detection and image classification, and demonstrate via extensive
evaluation that SPD-Conv brings significant performance improvement on detec-
tion and classification accuracy. We anticipate it to widely benefit the research
community as it can be easily integrated into existing deep learning frameworks
such as PyTorch and TensorFlow.
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