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Abstract. Recent research on the robustness of deep learning has shown
that Vision Transformers (ViTs) surpass the Convolutional Neural Net-
works (CNNs) under some perturbations, e.g., natural corruption, ad-
versarial attacks, etc. Some papers argue that the superior robustness of
ViT comes from the segmentation on its input images; others say that the
Multi-head Self-Attention (MSA) is the key to preserving the robustness
[30]. In this paper, we aim to introduce a principled and unified theoreti-
cal framework to investigate such argument on ViT’s robustness. We first
theoretically prove that, unlike Transformers in Natural Language Pro-
cessing, ViTs are Lipschitz continuous. Then we theoretically analyze the
adversarial robustness of ViTs from the perspective of Cauchy Problem,
via which we can quantify how the robustness propagates through layers.
We demonstrate that the first and last layers are the critical factors to
affect the robustness of ViTs. Furthermore, based on our theory, we em-
pirically show that unlike the claims from existing research, MSA only
contributes to the adversarial robustness of ViTs under weak adversar-
ial attacks, e.g., FGSM, and surprisingly, MSA actually compromises the
model’s adversarial robustness under stronger attacks, e.g., PGD attacks.
We release our code via https://github.com/TrustAI/ODE4RobustViT

Keywords: Adversarial Robustness · Cauchy Problem · Vision Trans-
former

1 Introduction

Since Transformers have been transplanted from Natural Language Processing
(NLP) to Computer Vision (CV), great potential has been revealed by Vision
Transformers for various CV tasks [19]. It is so successful that some papers
even argue that CNNs are just a special case of ViTs [9]. Recently, the robust-
ness of ViTs has been studied, for example, some research showed that ViT has
superior robustness than CNNs under natural corruptions [31]. Very recently,
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some researchers have also begun to investigate the robustness of ViTs against
adversarial perturbations [26].

However, existing research on adversarial robustness for ViTs mainly focuses
on adversarial attacks. The main idea is to adopt the attacks on CNNs to ViTs,
e.g., SAGA [26] and IAM-UAP [18]. Meanwhile, some pioneering studies demon-
strate that ViTs are more robust than CNNs against adversarial patch attacks,
arguing that the dynamic receptive field of MSA is the key factor to its superior
robustness [30]. On the other hand, some others argue that the tokenization of
ViTs plays an essential role in adversarial robustness [1]. While some researchers
say the patch embedding method is a critical factor to contribute the adversarial
robustness of ViTs [28]. However, most existing works concerning the superior ro-
bustness of ViTs are purely based on empirical experiments in an ad-hoc manner.
A principled and unified theoretical framework that can quantify the adversarial
robustness of ViT is still lacking in the community.

In our paper, instead of analyzing the robustness of Vision Transformer
purely based on empirical evidence, a theoretical framework has been proposed
to examine whether MSA contributes to the robustness of ViTs. Inspired by
the fact that ViTs and ResNets share a similar structure of residual additions,
we show that, ViTs, under certain assumptions, can be regarded as a Forward
Euler approximation of the underlying Ordinary Differential Equations (ODEs)
defined as

dx

dt
= F(x, t).

With this approximation, each block in transformer can be modeled as the
nonlinear function F(x). Based on the assumption that function F(x) is Lip-
schitz continuous, we then can theoretically bridge the adversarial robustness
with the Cauchy Problem by first-order Taylor expansion of F(x). With the
proposed theoretical framework, this paper is able to quantify how robustness
is changing among each block in ViTs. We also observe that the first and last
layers are vital for the robustness of ViTs.

Furthermore, according to our theoretical and empirical studies, different to
the existing claim made by Naseer et al. [30] that MSA in ViTs strengthens
the robustness of ViTs against patch attacks. We show that MSA in ViTs is not
always improving the model’s adversarial robustness. Its strength to enhance the
robustness is minimal and even compromises the adversarial robustness against
strong Lp norm adversarial attacks. In summary, the key contributions of this
paper are listed below.

1. To our knowledge, this is the first work to formally bridge the gap between
the robustness problem of ViTs and the Cauchy problem, which provides a
principled and unified theoretical framework to quantify the robustness of
transformers.

2. We theoretically prove that ViTs are Lipschitz continuous on vision tasks,
which is an important requisite to building our theoretical framework.
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3. Based on our proposed framework, we observe that the first and last layers
in the encoder of ViTs are the most critical factors to affect the robustness
of the transformers.

4. Unlike existing claims, surprisingly, we observe that MSA can only improve
the robustness of ViTs under weak attacks, e.g., FGSM attack, and it even
compromises the robustness of ViTs under strong attacks, e.g., PGD attack.

2 Related Work

2.1 Vision Transformers and Its Variants

To the best of our knowledge, the first work using the transformer to deal with
computer vision tasks is done by Carion et al. [6], since then, it has quickly be-
come a research hotspot, though it has to be pre-trained on a larger dataset to
achieve comparable performance due to its high complexity and lack of ability to
encode local information. To reduce the model complexity, DeiT [36] leverages
the Knowledge Distillation [17] technique, incorporating information learned by
Resnets [15]; PvT [37] and BoTNet [34] adopt more efficient backbones; Swim
Transformer [24] and DeepViT [38] modifies the MSA. Other variants, e.g.,
TNT, T2T-ViT, CvT, LocalViT and CeiT manage to incorporate local infor-
mation to the ViTs [19].

2.2 Robustness of Vision Transformer

Many researchers focus on the robustness of ViTs against natural corruptions
[16] and empirically show that ViTs are more robust than CNNs [31]. The ad-
versarial robustness of ViTs has also been empirically investigated. Compared
with CNNs and MLP-Mixers under different attacks, it claims that for most of
the white-box attacks, some black-box attacks, and Universal Adversarial Per-
turbations (UAPs) [29], ViTs show superior robustness [30]. However, ViTs are
more vulnerable to simple FGSM attacks [5]. The robustness of variants of ViTs
is also investigated and shown that the local window structure in Swim-ViT
harms the robustness and argues that positional embedding and the complete-
ness/compactness of heads are crucial for performance and robustness [27].

However, the reason for the superior robustness of ViTs is rarely investigated.
Most of the research concentrate on frequency analysis [31]. Benz et al. argue
that shift-invariance property [4] harms the robustness of CNNs. Naseer et al.
say the flexible receptive field is the key to learning more shape information
which strengthens the robustness of ViTs by studying the severe occlusions [30].
And yet Mao et al. argue that ViTs are still overly reliant on the texture, which
could harm their robustness against out-of-distribution data [27]. Qin et al. in-
vestigate the robustness from the perspective of robust features and argue ViTs
are insensitive to patch-level transformation, which is considered as non-robust
features [32].



4 Z. Wang et al.

2.3 Deep Neural Network via Dynamic Point of View

The connection between differential equations and neural networks is first intro-
duced by S. Grossberg [14] to describe a continuous additive RNN model. After
ResNet had been proposed, new relations appeared that regard forward proroga-
tion as Euler discretization of the underlying ODEs [33]. And many variants of
ResNets can also be analyzed in the framework of numerical schemes for ODEs,
e.g., PolyNet, FracalNet, RevNet and LMResNet [25]. Instead of regarding neu-
ral networks as discrete methods, Neural ODE has been proposed [7], replacing
the ResNet with its Underlying ODEs, and the parameters are calculated by a
black-box ODE solver. However, E. Dupont et al. [11] argue that neural ODEs
hardly learn some representations. In addition to ODEs, PDEs and even SDEs
are also involved in analyzing the Neural Network [35].

3 Preliminaries

The original ViTs are generally composed of Patch Embedding, Transformer
Block and Classification Head. We follow the definition from [10]. Let x ∈
RH×W×C stands for the input image. Hence, Each image is divided equally into
a sequence of N = HW/P 2 patches, and each one is denoted as xp ∈ RN×(P 2·C).

z0 = [xclass,x
1
pE,x

2
pE, ...,x

N
p E] +Epos,

z
′

l = MSA(LN(zl−1)) + zl−1,

zl = MLP (LN(z
′

l)) + z
′

l ,

y = LN(z0L),

where E ∈ RP 2·C×D,Epos ∈ R(N+1)×D and l = 1, 2, ..., L. LN denotes Layer
Normalization, MSA is Multihead Self-Attention and MLP represents Multilayer
Perceptron. MSA is the concatenation of Self-Attentions (SA) before linear trans-
formation by W (O) ∈ RD×D defined by

MHA :=
(
SA1 SA2 ... SAH

)
W (O),

where H is the number of heads and SA is defined by

SA := PzW (V ) = softmax

(
zW (Q)W (K)TzT

)
W (V ),

where W (Q),W (K),W (V ) ∈ RD×(D/H), and z ∈ RN×D defines the inputs of
transformers.

4 Theoretically Analysis

4.1 Vision Transformers are Lipschitz

To model the adversarial robustness to Cauchy Problem, we first prove that
ViTs are Lipschitz functions. Unlike the conclusion drawn by Kim et al. [21]
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that Dot-product self-attention is not Lipschitz, it can be proved that Vision
Transformers are Lipchitz continuous since inputs are bounded between [0, 1].
We follow the same definition from [21] that a function f : X → Y is called
Lipschitz continuous if ∃K ≥ 0 such that ∀x ∈ X ,y ∈ Y we have

dY(f(x), f(x0)) ≤ KdX (x,x0), (1)

where (X , dX ), (Y, dY) are given metric spaces, and given p-norm distance, the
Lipschitz constant K is given by

Lipp(f) = sup
x6=x0

‖f(x)− f(x0)‖p
‖x− x0‖p

. (2)

Similar to the analysis by Kim et al. [20], since Linear transformation by W (V )

is Lipchitz and does not impact our analysis, we will drop it and focus on the
non-linear part of Pz.

Since Patch embeddings are conducted by convolutional operations and the
classification heads are fully connected layers, they are Lipchitz continuous [20].
Therefore as long as the transformer blocks are Lipschitz continuous, ViTs are
Lipschitz continuous because the composite Lipchitz functions, i.e., f ◦ g, are
also Lipschitz continuous [12]. To this end, we have the Theorem (1).

Theorem 1. (Transformer Blocks in ViTs are Lipschitz continuous)
Given vision transformer block with trained parameters w and convex bounded

domain Zl−1 ⊆ RN×D, we show that the transformer block Fl : Zl−1 → RN×D
mapping from zl−1 to zl is Lipchitz function for all l = 1, 2, ..., L.

Proof. For simplicity, we only prove the case that the number of heads H and
the dimension of patch embedding D are all equal to 1. The general case can be
found in Appendix.

Because the composition of the transformer block includes an MLP layer that
is Lipchitz continuous, as argued by Kim et al. [20], it is the non-linear part of
MSA that need to be proved Lipchitz continuous. We formulated the non-linear
part as mapping f : Z → RN×1 shown in Equation (3)

f(z) = softmax(azzT )z = Pz =

 p1(u1) · · · pN (u1)
...

. . .
...

p1(uN ) · · · pN (uN )

 z
(3)

where a = W (Q)W (K)T ∈ R, z ∈ Z which is a bounded convex set and belongs
to RN×1, P is defined by softmax operator. Each row in P defines a discrete
probability distribution. Therefore P can be regarded as the transition matrix
for a finite discrete Markov Chain with z1, ..., zn as observed value for random
valuables. Since f has continuous first deviates, Mean Value Inequality can be
used to find Lipchitz constant. Let z, z0 ∈ Z and ‖·‖p denote the p-norm distance
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for vectors and induced norm for matrices. Specifically, when p = 2, the induce
norm coincides with spectral norm, then we have

‖f(z)− f(z0)‖2 ≤ ‖Jf (ξ)‖2‖(z − z0)‖2, (4)

where ξ ∈ Z is on the line through x and x0, and Jf (·) denotes the Jacobian of
f . As long as the Jacobian Jf is bounded for Z, f is Lipschitz continuous. The
Jacobian Jf is shown in Equation (5) (see detail in Appendix).

Jf (z) = a
{
diag(z)Pdiag(z)− Pdiag(z)diag(µ) + diag(σ2)

}
+ P, (5)

where µ = Pz define the mean vector for the Finite Markov Chain and the
variance are defined by

σ2 =


∑N
k=1 pk(u1)x2k −

(∑N
k=1 pk(u1)xk

)2
...∑N

k=1 pk(uN )x2k −
(∑N

k=1 pk(uN )xk
)2
 =

σ
2
1
...
σ2
N

 , (6)

Since every component on the right-hand-side in (5) is bounded since z is
bounded. We conclude that Jf (z) is also bounded, therefore the Lipchitz con-
tinuous.

Remark 1. The use of the Mean Value Theorem requires the domain Z to be
convex, however as long as Z is bounded, we can always find a larger convex set
Z ′ ⊇ Z.

Remark 2. Different from the conclusion drawn by Kim et al. [20] that the trans-
former is not Lipschitz continuous, ViTs are Lipschitz continuous due to the
bounded input.

4.2 Model Adversarial Robustness as Cauchy Problem

Since there exists the Residual Structure in the Transformer Encoder, just like
ResNet, which can be formulated as Euler Method [25], the forward propagation
through Transformer Encoder can also be regarded as a Forward Euler Method
to approximate the underlying Ordinary Differential Equations (ODEs).

Let f : X → Y denote the ViTs, where X ⊆ Rn denotes the input space and
Y = {1, 2, ..., C} refers to the labels, and Fi, i = 1, ..., L denote the basic blocks.
Notice that for simplicity, let F1(x0;w0) + x0 refer to the patch embedding
and FL(xL−1;wL−1) + xL−1 be the classification head, the rest are transformer
blocks. Hence, the forward propagation can be described in Equation (7).

xk = Fk(xk−1;wk−1) + xk−1, k = 1, ..., L

ylogit = softmax(LP (xL))

y = arg maxY ylogit,

(7)
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Fig. 1. Illustration of ρ?(f, x). For better illustration L1-norm is taken while calculating
the ρ(f, x).

where x0 ∈ X , LP (·) stands for Linear Projection, ylogit shows the likelihood for
each class and y ∈ Y denote the classification result. As argued by Liao, et al.
[23], the Transformer blocks in Equation (7) can be regarded as Forward Euler
approximation of the underlying ODE shown below.

d

dt
x(t) = F(x, t), t ∈ [t0, T ] (8)

where F(·) corresponds to the basic blocks in ViTs and t ∈ [t0, T ] refers to the
continuous indexing of those blocks.

The backward-propagation of Equation (8) can be regarded as an estimation
problem for parameters w of given boundary conditions defined by X and Y,
which leads to Neural ODEs [7].

Before the main theorem that models the adversarial robustness as Cauchy
problem, we first define the adversarial robustness metrics. Given neural network
f , and the fixed input x ∈ X , the local Adversarial Robustness proposed by
Bastani et al. [3] is defined as

ρ(f,x)
def
= inf{ε > 0|∃x̂ : ‖x̂− x‖ ≤ ε, f(x̂) 6= f(x)},

where ‖·‖ defines the general Lp norm. Usually, p is taken as 1, 2 and ∞.
The adversarial robustness is defined as the minimum radius that the classifier
can be perturbed from their original corrected result. As illustrated in figure
(1), considering the the fact that even in the final laryer ∆x(T )1 < ∆x(T )2,
it is still possible that softmax(LP (x(T ) + ∆x(T )1)) has been perturbed but
softmax(LP (x(T ) + ∆x(T )2)) is not, we use the minimal distortion to define
the robustness as

ρ?(f,x)
def
= inf
‖x̂(T )−x(T )‖

ρ(f,x), (9)

where x̂(T )− x(T ) = ∆x(T ).

Lemma 1. (Existence and Uniqueness for the Solution of Underlying ODE)
Since the continuous mapping F defined in ODE (8) satisfies the Lipschitz con-
dition on z ∈ Z for t ∈ [t0, T ] as claimed in Theorem (1), where Z is a bounded
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closed convex set. There exists and only exists one solution for the underlying
ODE defined in (8).

Lemma 2. (Error Bound for Forward Euler approximation) Given Forward Eu-
ler approximation shown in Equation (7) and its underlying ODE in Equation
(8). Let K > 0 denotes the Lipschitz constant for the underlying ODE, and
‖F̂(x, t)−F(x, t)‖ ≤ δ, hence the error of solution is given by

‖∆x‖ ≤ δ

K
(eK|t−t0| − 1)

Since F(x, t) is continuous, δ can be arbitrary small as long as step for Euler
approximation is small enough, namely, neural network is deep enough. The
proof of lemma (1) and (2) can be found in [8].

Theorem 2. Let f and g be two neural networks defined in Equation (7), which
have the underlying ODEs as shown in Equation (8), and denote the basic blocks
of g as Gk, k = 1, ..., L

′
with its corresponding ODE defined as G to show the dif-

ference. Given point x ∈ X and robustness metric ρ?(·) defined in (9), classifier
f is more robust than g, such that

ρ?(f,x) ≤ ρ?(g,x), (10)

if ∀t ∈ [t0, T ]
σmax(JF (t)) ≤ σmax(JG(t)) (11)

where Jf (t) and Jg(t) refers to the Jacobian of the basic blocks F and G w.r.t.
x and σmax(·) denotes the largest singular value .

Proof. Consider 2 solutions x(t), x̂(t) of ODE defined in (8) such that for ε > 0

‖x̂(t0)− x(t0)‖2 ≤ ε

and let ∆x(t) = x̂(t)− x(t), t ∈ [t0, T ] hence

d

dt
∆x = F(x̂, t)−F(x, t) = JF (t)∆x+ rF (∆x), (12)

where rF (∆x) is the residual of Taylor Expansion of F w.r.t. x, such that
‖rF (∆x)‖ = O(‖∆x‖2) [2]. Instead of ∆x, ‖∆x‖2 is more of our interest, hence

d

dt
‖∆x‖2 ≤ ‖

d

dt
∆x‖2 ≤ ‖JF (t)‖2‖∆x‖2 +O(‖∆x‖22), (13)

since ‖∆x(t0)‖2 = 0 is trivial, we assume ‖∆x(t0)‖2 > 0. And because there
exist unique solution for the ODE system, we have ‖∆x(t)‖2 > 0, t ∈ [t0, T ]
therefore Equation (13) becomes

1

‖∆x‖2
d

dt
‖∆x‖2 ≤ ‖JF (t)‖2 +O(‖∆x‖2). (14)
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After integral of the both sides from t0 to T we have∫ T

t0

1

‖∆x‖2
d‖∆x‖2 ≤

∫ T

t0

‖JF (t)‖2 +Mεdt,

where M > 0 is a given large number. The integral for [t0, T ] is given by

‖∆x(T )‖2≤ εe
∫ T
t0
‖JF (t)‖2dt+(T−t0)Mε

. (15)

It is obvious that the perturbed output of neural network ∆x(T ) is actually
bounded by the right-hand-side of Equation (15) which is determined by the
‖JF (t)‖2, t ∈ [t0, T ], namely the largest singular value of JF (t), denoted as
σmax(JF (t)). The rest of the proof is simple, since if ∀t ∈ [t0, T ] (11) holds and
(T − t0)Mε is negligible, we have

‖∆xF (T )‖2≤ εe
∫ T
t0
‖JF (t)‖2dt ≤ εe

∫ T
t0
‖JG(t)‖2dt,

therefore for any ‖∆xF (t0)‖2 ≤ ρ?(g,x) the classification result will also not
change for f , hence the Equation (10).

Remark 3. Theorem (2) is particularly useful for adversarial perturbation since
the approximation in Equation (15) relies on the narrowness of ε. If it is too
large, the first-order approximation may fail.

Remark 4. Theorem (2) assumes that the approximation error induced in lemma
(2) is small enough to neglect. For very shallow models, e.g., ViT-S1, ViT-S2,
the relation is violated, as is shown in Table (2).

5 Empirical Study

In order to verify the proposed theorem and find out whether self-attention
indeed contributes to the adversarial robustness of ViTs, we replace the self-
attention with a 1-D convolutional layer, as shown in figure (2). And we name
the modified model CoViT, which stands for Convolutional Vision Transformer.
We use Average Pooling instead of the classification token since the classification
token can only learn the nearest few features rather than the whole feature maps
for CoViT.

Both ViTs and CoViTs are trained from sketches without any pertaining to
ensure that they are comparable. Sharpness-Aware Minimization (SAM) [13]
optimizer is used throughout the experiments to ensure adequate clear accurate.

5.1 Configuration and Training Result

The configurations for Both ViTs and CoViTs have an input resolution of 224
and embedding sizes of 128 and 512. The use of a smaller embedding size of 128 is
to calculate the maximum singular value exactly. An upper bound is calculated
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Fig. 2. Illustration of ViT and CoViTs. After Patch Embedding, the Transformer En-
coder is composed of L× Transformer Blocks, of which in each K,Q and V stands
for Key, Query and Value are computed as linear projection from former tokens zl−1,
hence Self-Attention is calculated as softmax(QKT

√
D

)V . In order to better understand
whether self-attention indeed contributes to adversarial robustness, it is replaced by
1-D convolution layers where different kernel are used and the intermediates, denoted
by z∗l , are generated before concatenation and linearly projecting to z

′
l . The kernel size

can be different for each convolutional projection.

instead for models with a larger embedding size since the exact calculation is
intractable. We change the number of heads for ViTs, the kernels for CoViTs,
the depth, and the patch size for the experiment. All the models are divided
into four groups: S, M, L, T, standing for Small, Medium, Large, and Tiny of
parameter size. The tiny model uses an embedding size of 128. The detailed
configuration is shown in Appendix.

All the models are trained on CIFAR10, and the base optimizer for SAM is
SGD with the One-cycle learning scheduler of maximum learning rate equals to
0.1. In order to have a better performance, augmentations, including Horizontal
Flipping, Random Corp and Color Jitter, are involved during training. We resize
the image size to the resolution of 224×224. The model with an embedding size
of 512 is trained by 150 epochs, and the tiny model with an embedding size
of 128 is trained by 300 to achieve adequate performance. The performance of
models within the same group is similar, and the shallow networks, e.g., ViT-S1,
ViT-S2, CoViT-S1, CoViT-S2, are harder to train and may need extra training
to be converged. This may be due to the optimizer used, i.e., SAM, since SAM
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will try to find shallow-wide optima instead of a deep-narrow one, which requires
a stronger model capacity.

The experiments are conducted on Nvidia RTX3090 with python 3.9.7, and
realized by PyTorch 1.9.1. Torchattacks [20] is used for adversarial attacks.

5.2 Study for Small Scale Models

In order to find out whether MSA contributes to the adversarial robustness
of ViTs and verify Theorem (2), tiny models with an embedding size of 128 are
employed and attacked by L2-norm PGD-20 and CW. The threshed of successful
attacks for CW is set to 260. The corresponding average and standard deviation
of the exact maximum singular value for the Jacobian is calculated over layers
and images to indicate the overall magnitude of σmax(t) over the interval [t0, T ].
In other words, we calculate the mean value of

∫ T
t0
‖JF (t)‖2dt for 500 images to

indicate the global robustness of the classifier. The PGD-20(L2) and CW share
the same setting with large-scale experiments in Table (2), except that the total
iteration for PGD is 20 instead of 7.

Verification of Theorem The result, as shown in Table (1), generally
matches our theoretic analysis since the most robust model has the lowest av-
erage maximum singular value. It is worth mentioning that the smaller value
of σ̄max cannot guarantee stronger robustness for ViTs in Table (1), since the
standard deviations of σmax are much larger, e.g., 11.66, than that of CoViTs.

Contribution of MSA Another observation is that CoViTs are generally
more robust than ViTs. In other words, without enough embedding capacity,
Self-Attention could even hurt both the robustness and generalization power. In
addition, increasing the models’ depth will enhance both generalization power
and robustness.

Distribution of Maximum Singular Value in Each Layer In order
to know which layer contributes most to the non-robustness, the distribution of
σmax is calculated. The layer that has the highest value of σmax may dominate
the robustness of the network. As is shown in figure (3), maximum singular
values for the CoViTs are much concentrated around the means, reflecting more
stable results for classification. And the maximum singular values for the first
and last layer of all tiny models are significantly higher than that for in-between
layers, indicating that the first and last layers in the transformer encoder are
crucial for adversarial robustness.

5.3 Contribution of MSA to Robustness for Large Scale Models

We attack both ViTs and CoViTs with FGSM, PGD, and CW for large-scale
models and compare the robust accuracy. And since it is intractable to compute
exact maximum singular value for the matrix of size (128 · 512)× (128 · 512), an
upper bound of maximum singular value is calculated as

‖J‖2 ≤
(
‖J‖1‖J‖∞

) 1
2

, (16)



12 Z. Wang et al.

Table 1. Attack result and the average maximum singular value for tiny model. All
the models have embedding size of 128 with different depth and head or kernels. The
cleaning accuracy and the robust accuracy for PGD-20 and CW attack are shown in the
Table. The mean of exact maximum singular value σmax for over layers and 500 input
images are calculated with standard deviation shown in square. The highest accuracy
and lowest maximum singular value are marked in bold.

Net-name Depth
#Head/

Clear Acc. PGD-20(L2) CW(L2) σ̄maxKernel

ViT-T1 4 1 0.819 0.397 0.0305 10.45(4.125)
ViT-T2 4 4 0.820 0.407 0.039 18.18(11.66)
CoViT-T1 4 K3 0.849 0.492 0.083 9.25(0.822)
CoViT-T2 4 4×K3 0.852 0.492 0.036 9.186(1.088)

ViT-T3 8 1 0.836 0.442 0.040 7.17(1.52)
ViT-T4 8 4 0.834 0.463 0.048 10.03(2.73)
CoViT-T3 8 K3 0.860 0.514 0.076 6.413(0.562)
CoViT-T4 8 4×K3 0.860 0.515 0.065 6.662(0.386)

Fig. 3. Violin plot for maximum singular value for each layer of the ViTs/CoViTs. The
y-axis shows the maximum singular value.

which is used as an approximation to the maximum singular value of the Jaco-
bian. ‖J‖1 and ‖J‖∞ denotes L1 and L∞ induced norm for the Jacobian. The
mean value for 50 images is taken.
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Table 2. Summary of attacking results and corresponding estimated largest singular
value. The attacks are employed for both ViTs and CoViTs with FGSM, PGD-7 and
CW, and the robust accuracy are shown for each attack. The models with patch size
32× 32 are marked with ∗. ‖J‖1 and ‖J‖∞ are the L1 and L∞ norm respectively. The
highest accuracy and lowest estimated maximum singular value are marked in bold.

Clean Acc. FGSM PGD-7(L∞) PGD-7(L2) CW(L2) (‖J‖1‖J‖∞)
1
2

ViT-S1 0.676 0.213 0.135 0.267 0.059 812.69
ViT-S2 0.739 0.273 0.162 0.348 0.067 1003.20
CoViT-S1 0.734 0.254 0.173 0.341 0.144 242.78
CoViT-S2 0.737 0.244 0.163 0.328 0.143 206.78

ViT-S3 0.847 0.369 0.221 0.444 0.053 296.48
ViT-S4 0.863 0.392 0.240 0.448 0.065 462.12
CoViT-S3 0.882 0.320 0.179 0.413 0.104 146.48
CoViT-S4 0.876 0.306 0.170 0.401 0.088 150.02
CoViT-S5 0.868 0.341 0.192 0.424 0.082 163.50

ViT-M1 0.877 0.415 0.267 0.467 0.049 236.21
ViT-M2 0.861 0.415 0.260 0.461 0.053 294.06
*ViT-M3 0.853 0.478 0.356 0.519 0.103 139.23
CoViT-M1 0.881 0.336 0.185 0.422 0.051 93.21
CoViT-M2 0.882 0.337 0.197 0.417 0.086 109.79
CoViT-M3 0.870 0.337 0.194 0.424 0.072 131.94
CoViT-M4 0.875 0.357 0.208 0.427 0.093 99.57
*CoViT-M5 0.861 0.416 0.303 0.480 0.152 78.70

*ViT-L 0.848 0.461 0.347 0.499 0.094 111.38
*CoViT-L1 0.867 0.443 0.333 0.505 0.140 59.54
*CoViT-L2 0.853 0.466 0.357 0.528 0.096 37.26

The Robust Accuracy for both ViTs and CoViTs attacked by FGSM, PGD-7
and CW is shown in Table (2). For better comparison, we set ε = 2/225 for both
FGSM and PDG attack with L∞ norm. The step size for L∞ PGD attack is set
to α = 2/255 and it is iterated only for 7 times to represent the weak attack.
The L2 norm PGD-7 is parameterized by ε = 2, α = 0.2. The parameters set
for stronger CW attack is that c = 1, adversarial confidence level kappa = 0,
learning rate for Adam [22] optimizer in CW is set to 0.01 and the total iteration
number is set to 100.

As is shown in Table (2), for weak attacks, i.e., FGSM and PGD-7, ViTs
are generally exhibiting higher robust accuracy within the same group of similar
parameter sizes with only a few exceptions. Also, both for ViTs and CoViTs, the
robustness is strengthened as the model becomes deeper with more parameters.

For a stronger CW attack, the result is almost reversed, CoViT model shows
significantly better robustness and agrees with the approximation of the maxi-
mum singular value for the Jacobian. The ability of Self-Attention to avoid per-
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turbed pixels is compromised as the attacking becomes stronger. And it seems
that the translation invariance of CNNs has more defensive power against strong
attacks. In addition, a larger patch size always induces better adversarial robust-
ness for both ViTs and CoViTs.

6 Conclusion

This paper first proves that ViTs are Lipschitz continuous for vision tasks, then
we formally bridge up the local robustness of transformers with the Cauchy
problem. We theoretically proved that the maximum singular value determines
local robustness for the Jacobian of each block. Both small-scale and large-scale
experiments have been conducted to verify our theories. With the proposed
framework, we open the black box of ViTs and study how robustness changes
among layers. We found that the first and last layers impede the robustness of
ViTs. In addition, unlike existing research that argues MSA could boost robust-
ness, we found that the defensive power of MSA in ViT only works for the large
model under weak adversarial attacks. MSA even compromises the adversarial
robustness under strong attacks.

7 Discussion and Limitation

The major limitations in this paper are embodied by the several approximations
involved. The first one is the approximation of the underlying ODEs to the
forward propagation of neural networks with a residual addition structure. As
is shown in Lemma (2), the approximation is accurate only when the neural
networks are deep enough, and it is hard to know what depth is enough, given
the required error bound. One possible way to make it accurate is to consider the
Difference Equation, which is a discrete parallel theory to ODEs. The second one
is the approximation of the second-order term in Equation (14). For small-size
inputs, we can say that the L2-norm of perturbations of adversarial examples is
smaller enough so that the second term is negligible. However, the larger inputs
may inflate the L2-norm of perturbations since simply up sampling could result
in a larger L2-norm. Therefore, including the second term or choosing a better
norm should be considered. The third approximation is shown in Equation (16).
Since the size of the Jacobian depends on the size of the input image, making
it impossible to directly calculate the singular value of the Jacobian for larger
images, hence, we use an upper bound instead, which inevitably compromises
the validation of the experiment. Moreover, since the adversarial attack can only
get the upper bound of the minimal perturbations, it is also an approximation
of the local robustness, as shown in Table (2).

In the experimental part, we only take into account for the small to moderate
size models because it is necessary to rule out the influence of pre-training, and
we have to admit that the calculation for the singular value of Jacobian w.r.t.
inputs of too large size is hardly implemented.
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