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Abstract. Sample weighting is widely used in deep learning. A large number
of weighting methods essentially utilize the learning difficulty of training sam-
ples to calculate their weights. In this study, this scheme is called difficulty-based
weighting. Two important issues arise when explaining this scheme. First, a uni-
fied difficulty measure that can be theoretically guaranteed for training samples
does not exist. The learning difficulties of the samples are determined by multiple
factors including noise level, imbalance degree, margin, and uncertainty. Never-
theless, existing measures only consider a single factor or in part, but not in their
entirety. Second, a comprehensive theoretical explanation is lacking with respect
to demonstrating why difficulty-based weighting schemes are effective in deep
learning. In this study, we theoretically prove that the generalization error of a
sample can be used as a universal difficulty measure. Furthermore, we provide
formal theoretical justifications on the role of difficulty-based weighting for deep
learning, consequently revealing its positive influences on both the optimization
dynamics and generalization performance of deep models, which is instructive to
existing weighting schemes.

Keywords: Learning difficulty · Generalization error · Sample weighting · Deep
learning interpretability.

1 Introduction

Treating each training sample unequally improves the learning performance. Two cues
are typically considered in designing the weighting schemes of training samples [1].
The first cue is the application context of learning tasks. In applications such as medical
diagnosis, samples with high gains/costs are assigned with high weights [2]. The second
cue is the characteristics of the training data. For example, samples with low-confidence
or noisy labels are assigned with low weights. Characteristic-aware weighting has at-
tracted increasing attention owing to its effectiveness and universality [3,4,5].

Many existing characteristic-aware weighting methods are based on an intrinsic
property of the training samples, i.e., their learning difficulty. The measures for the
samples’ learning difficulty can be roughly divided into five categories.
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– Prediction-based measures. This category directly uses the loss [3,6,7] or the pre-
dicted probability of the ground truth [4,8] as the difficulty measures. This measure
is simple yet effective and is widely used in various studies [3,4]. Their intention is
that a large loss (a small probability) indicates a large learning difficulty.

– Gradient-based measures. This category applies the loss gradient in the measure-
ment of the samples’ learning difficulty [9,10]. Santiagoa et al. [9] uses the norm
of the loss gradient as the difficulty measure. Their intuition is that the larger the
norm of the gradient, the harder the sample.

– Category proportion-based measures. This category is mainly utilized in imbal-
anced learning [11], where the category proportion measures the samples’ diffi-
culty. People believe that the smaller the proportion of a category, the larger the
learning difficulty of samples in this category [11,12].

– Margin-based measures. The term “margin” refers to the distance from the sample
to the oracle classification boundary. The motivation is that the smaller the margin,
the larger the difficulty of a sample [13].

– Uncertainty-based measures. This category uses the uncertainty of a sample to mea-
sure the difficulty. Aguilar et al. [14] identify hard samples based on epistemic un-
certainty and leverage the Bayesian Neural Network [15] to infer it.

Varying difficulty measures have a huge impact on a difficulty-based weighting
strategy. The underlying factors which influence samples’ learning difficulty considered
in the above measures include noise level [6,7], imbalance degree [11,12], margin [13],
and uncertainty [14]. However, each measure only considers a single factor or in part,
and comes from heuristic inspirations but not formal certifications, hindering the appli-
cation scope of the measures. It is desirable to theoretically explore a universal measure
capturing all of the above factors. Based on this measure, the role of difficulty-based
sample weighting can be revealed more concretely. However, neither theoretical nor
empirical investigations have been conducted to investigate a unified measure.

Moreover, despite the empirical success of various difficulty-based weighting meth-
ods, the process of how difficulty-based weighting positively influences the deep learn-
ing models remains unclear. Two recent studies have attempted to investigate the influ-
ence of weights in deep learning. Byrd and Lipton [16] empirically studied the train-
ing of over-parameterized networks with sample weights and found that these sample
weights affect deep learning by influencing the implicit bias of gradient descent-a novel
topic in deep learning interpretability, focusing on why over-parameterized models is
biased toward solutions that generalize well. Existing studies on this topic [17,18,19]
reveal that the direction of the parameters (for linear predictor) and the normalized mar-
gin (for nonlinear predictor) respectively converge to those of a max-margin solution.

Inspired by the finding of Byrd and Lipton [16], Xu et al. [20] dedicated to studying
how the understandings for the implicit bias of gradient descent adjust to the weighted
empirical risk minimization (ERM) setting. They concluded that assigning high weights
to samples with small margins may accelerate optimization. In addition, they estab-
lished a generalization bound for models that implement learning by using sample
weights. However, they only discussed the measurement of difficulty by using one of
the indicators (i.e., margin), resulting in that their conclusion is limited and inaccurate
in some cases. Furthermore, their generalization bound cannot explicitly explain why
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hard samples are assigned with large weights in many studies. More analyses based on
a universal difficulty measure are in urgent demand.

In this study, the manner of how the difficulty-based weighting affects the deep
model training is deeply investigated. First, our analyses support that the generalization
error of the training sample can be regarded as a universal difficulty measure for captur-
ing all of the four factors described above. Second, based on this unified measure, we
characterize the role of difficulty-based weighting on the implicit bias of gradient de-
scent, especially for the convergence speed. Third, two new generalization bounds are
constructed to demonstrate the explicit relationship between the sample weights and the
generalization performance. The two bounds illuminate a new explanation for existing
weighting strategies. Our study takes the first step of constructing a formal theory for
difficulty-based sample weighting. In summary, our contributions are threefold.

– We theoretically prove the high relevance of the generalization error with four main
factors influencing the samples’ learning difficulty, further indicating that the gen-
eralization error can be used as a universal difficulty measure.

– We reveal how the difficulty-based sample weighting influences the optimization
dynamics and the generalization performance for deep learning. Our results indi-
cate that assigning high weights on hard samples can not only accelerate the con-
vergence speed but also enhance the generalization performance.

– We bring to light the characteristics of a good set of weights from multiple perspec-
tives to illuminate the deep understanding of numerous weighting strategies.

2 Preliminaries

2.1 Description of Symbols

Let X denote the input space and Y a set of classes. We assume that the training and
test samples are drawn i.i.d according to some distributions Dtr and Dte over X × Y .
The training set is denoted as T = {x, y} = {(xi, yi)}ni=1 that contains n training
samples, where xi denotes the i-th sample’s feature, and yi is the associated label.
Let di and w (di) be the learning difficulty and the difficulty-based weight of xi. The
learning difficulty can be approximated by several values, such as loss, uncertainty and
generalization error which will be explained in Section 3.

The predictor is denoted by f (θ,x) andF = {f (θ, ·) |θ ∈ Θ ⊂ Rd}. For the sake
of notation, we focus on the binary setting yi ∈ {−1, 1} with f (θ,x) ∈ R. The sign
of the model’s output f (θ,xi) is the predicted label. However, as to be clarified later,
our results can be easily extended to the multi-class setting where yi ∈ {1, 2, · · · , C}.
For multi-class setting, the softmax function is used to get the probability, and the log-
its are given by {fyj (θ,x)}Cj=1. Given a non-negative loss ` and a classifier f (θ, ·),
the empirical risk can be expressed as L(θ,w) = 1

n

∑n
i=1 w (di) · ` (yif (θ,xi)). We

focus particularly on the exponential loss ` (u) = exp (−u) and logistic loss ` (u) =
log (1 + exp (−u)). Let∇l(u) be the loss gradient and f (x|T ) is the trained model on
T . The margin is denoted as γi(T ) = yif (θ,xi|T ) for the binary setting, where it is
equivalently denoted as γi(T ) = fyi (θ,xi|T ) − maxi6=j fyj (θ,xi|T ) for the multi-
class setting.
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2.2 Definition of the Generalization Error

Bias-variance tradeoff is a basic theory for the qualitative analysis of the generalization
error [22]. This tradeoff is initially constructed via regression and mean square error,
which is given by

Err = Ex,yET [||y − f(x|T )||22]
≈ Ex,y[||y − f(x)||22]︸ ︷︷ ︸

Bias

+Ex,yET [||f(x|T )− f(x)||22]︸ ︷︷ ︸
V ariance

, (1)

where f (x) = ET [f (x|T )]. Similarly, we define the generalization error of a single
sample xi as

erri = ET [` (f (xi|T ) , yi)] ≈ B (xi) + V (xi) , (2)

where B (xi) and V (xi) are the bias and variance of xi.

2.3 Conditions and Definitions

Our theoretical analyses rely on the implicit bias of gradient descent. The gradient de-
scent process is denoted as

θt+1 (w) = θt (w)− ηt∇L (θt [w(d [t])]) , (3)

where ηt is the learning rate which can be a constant or step-independent,∇L (θt [w(d [t])])
is the gradient of L, and w(d [t]) is the difficulty-based weight of difficulty d at time
t. The weight may be dynamic with respect to time t if difficulty measures, such as
loss [3] and predicted probability [4], are used. To guarantee the convergence of the
gradient descent, two conditions following the most recent study [20] are shown below.

– The loss ` has an exponential tail whose definition is shown in the supplementary
file. Thus, limu→∞ `(−u) = limu→∞∇`(−u) = 0.

– The predictor f(θ,x) is α-homogeneous such that f(c·θ,x) = cαf(θ,x),∀c > 0.

It is easy to verify that losses including the exponential loss, log loss, and cross-entropy
loss satisfy the first condition. The second condition implies that the activation functions
are homogeneous such as ReLU and LeakyReLU, and bias terms are disallowed. In
addition, we need certain regularities from f(θ,x) to ensure the existence of critical
points and the convergence of gradient descent:

– For ∀x∈X , f(θ,x) is β-smooth and l-Lipschitz on Rd.

The third condition is a common technical assumption whose practical implications are
discussed in the supplementary file.

The generalization performance of deep learning models is measured by the gener-
alization error of the test set L̂ (f) [21], defined as

L̂ (f) = P(x,y)∼Dte [γ(f (x, y)) ≤ 0]. (4)
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Fig. 1. (a) Generalization errors of clean and noisy samples on noisy data. The noise ratio is 10%
(b) Generalization errors of samples in ten categories on imbalanced data. The imbalance ratio is
10:1. CIFAR10 and ResNet32 are used. Other values of noise ratio and imbalance ratio following
Ref. [25] are also experimented with and the same conclusions can be obtained.

2.4 Experiment Setup

Demonstrated experiments are performed to support our theoretical analyses. For the
simulated data, the linear predictor is a regular regression model, and the nonlinear pre-
dictor is a two-layer MLP with five hidden units and ReLU as the activation function.
Exponential loss and standard normal initialization are utilized. CIFAR10 [23] is exper-
imented with, and ResNet32 [24] is adopted as the baseline model. For the imbalanced
data, the imbalance setting follows Ref. [11]. For the noisy data, uniform and flip label
noises are used and the noise setting follows Ref. [25]. The models are trained with a
gradient descent by using 0.1 as the learning rate.

The model uncertainty is approximated by the predictive variance of five predic-
tions. To approximate the generalization error, we adopt the five-fold cross-validation [26]
to calculate the average learning error for each sample.

3 A Universal Difficulty Measure

As previously stated, four factors pointed out by existing studies, namely, noise, imbal-
ance, margin, and uncertainty, greatly impact the learning difficulty of samples. Nev-
ertheless, existing measures only consider one or part of them, and their conclusions
are based on heuristic inspirations and empirical observations. In this section, we theo-
retically prove that the generalization error of samples is a universal difficulty measure
reflecting all four factors. All proofs are presented in the supplementary file. Without
increasing the ambiguity, the generalization error of the samples is termed as error for
brevity.

3.1 Noise Factor

Noise refers to data that is inaccurate in describing the scene. Numerous studies devoted
to reducing the influence of noisy samples in the dataset on the deep learning models
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and these literature intuitively consider noisy samples as hard ones without formal cer-
tification [7,27]. The two kinds of noise are feature noise [31] and label noise [27]. We
offer two propositions to reveal the relationship between the generalization error and
the noise factor. For feature noise, we offer the following proposition:

Proposition 1. Let ∆xi be the perturbation of sample (xi, yi), which is extremely
small in that o(∆xi) can be omitted. Let ∠ϕ be the angle between the direction of
∆xi and the direction of ET [f ′ (xi|T )]. If ET [f ′ (xi|T ) ·∆xi] < 0 (i.e., ∠ϕ > 90◦),
then the error of the noisy sample is increased relative to the clean one. Alternatively,
the direction of the perturbation∆xi and that ofET [f ′ (xi|T )] are contradictory. Oth-
erwise, if ET [f ′ (xi|T ) ·∆xi] > 0, then ∠ϕ < 90◦, and the error of the noisy sample
is decreased.

According to Proposition 1, feature noise can be divided into two categories, which
increase or decrease the learning difficulty (generalization error) of the samples, respec-
tively. In this paper, noise that increases the error is called the adversarial type, which is
always used in the field of adversarial learning; otherwise, it is a promoted type, which
refers to noise that decrease the learning difficulty of samples. Therefore, the variation
of the error under feature noise is determined by the noise type. For example, as all
feature noises are adversarial in adversarial learning [32], all of the samples’ errors are
increased with feature noise. For label noise, we offer the following proposition:

Proposition 2. Let π be the label corruption rate (i.e., the probability of each label
flipping to another one). Denote the probability of correct classification for the original
samples as p. If p > 0.5, then the errors of the noisy samples are larger than those of
the clean ones.

This proposition implies that the errors of the samples with label noises are larger
than those of the clean ones on the average. Specifically, if a sample is more likely to be
predicted correctly, its generalization error is increased due to label noise. Let L∗ be the
global optimum of the generalization error of the clean dataset and y′ be the corrupted
label. When the noise in Proposition 2 is added, the empirical error L′ is

L′ = (1− π)L∗ + πL (f (x) , y′) , (5)

where we have taken expectations over the noise. When π → 0, the noise disappears,
and the optimal generalization is attained. Proposition 2 is consistent with the empirical
observation shown in Fig. 1(a), where the noisy samples have larger errors than the
clean ones on the average.

3.2 Imbalance Factor

Besides noise, imbalance is another common deviation of real world datasets. The cat-
egory distribution of the samples in the training set is non-uniform. Various methods
solve this issue by assigning high weights on samples in tail categories which are con-
sidered to be hard ones [4,11]. Nevertheless, a theoretical justification about why these
samples are harder lacks. The imbalance ratio is denoted by cr=max{c1, c2, · · · , cC} :
min{c1, c2, · · · , cC}. Then, we offer the following proposition.
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Fig. 2. (a) Correlation between generalization error and average margin. (b) Correlation between
generalization error and epistemic uncertainty. CIFAR10 and ResNet32 are used in this experi-
ment. All values are normalized.

Proposition 3. If a predictor on an imbalanced dataset (cr > e : 1) is an approximate
Bayesian optimal classifier (as the exponential loss is an approximation for the zero-
one loss), which is to minimize the total risk, then the average probability of the ground
truth of the samples in the large category is greater than that of the samples in the small
category.

With Proposition 3, it is easy to obtain Proposition A.1 shown in the supplemen-
tary file that the average error of samples in the small category is larger than that of
the samples in the large category, indicating there are more hard samples in the small
category. This proposition is verified by the experiments, as shown in Fig. 1(b). The
tail categories contain more samples with larger errors. To enhance the performance
of the classification model, samples with larger errors should be assigned with higher
weights, as most methods do [11]. Further experiments in Section 5 (Fig. 6) indicate
that the classification performance of the small category can be improved by increasing
its sample weights.

3.3 Margin Factor

The samples’ margins measure the distances of the samples from the decision boundary.
Some literature intuitively consider a small margin indicates a large learning difficulty
and corresponds to a low confidence of the prediction [33,13]. However, a formal justi-
fication is lacking. We offer the following proposition.

Proposition 4. Let µi be the true margin of xi corresponding to the oracle decision
boundary. The condition is that the functional margins of a sample trained on random
datasets obey a Gaussian distribution. In other words, for sample xi, its functional
margin γi obey a Gaussian distribution N (µi, σ

2
i ). For sample xj , γj ∼ N (µj , σ

2
j ).



8 Xiaoling Zhou et al.

Fig. 3. The distributions of samples’ margins.

when the margin variances of the two samples are same (i.e., σ2
i = σ2

j ), if µi ≤ µj ,
then erri≥errj . Similarly, when the true margins of the two samples are the same (i.e.,
µi=µj), if σ2

i ≥σ2
j , then erri≥errj .

Proposition 5 indicates a fact that even a sample with a large true margin, as long
as the margin variance is large, it may also have a high learning difficulty. Specifically,
the true margin (i.e., the mean of the functional margin distribution) of a sample and
error are negatively correlated when the margin variances of the samples are equal. By
contrast, the margin variance and error are positively correlated when the true margins
are equal. This illumination revises the current wisdom. The conclusion in which sam-
ples close to the oracle decision boundary are hard ones [20] is not completely correct.
Indeed, the relation between the margin and error of sample xi conforms with the fol-
lowing formula:

erri = ET [e
−γi(T )] = e−µi+

1
2σ

2
i , (6)

where erri, µi, and σi refer to the generalization error, the true margin, and the margin
variance of sample xi, respectively. For the two samples xi and xj , if µi < µj and
σ2
i < σ2

j , then we cannot judge whether erri is greater than errj . As shown in Fig. 2(a),
the average margin and error are negatively correlated for most samples, but it is not
absolute, which accords with the above analyses. Although it is intuitive that the func-
tional margin trained on random datasets obeys a Gaussian distribution, we evaluate it
via the Z-scores of the distributions’ Kurtosis and Skewness [34] which is shown in
Fig 3. More margin distribution curves and all Z-score values of the distributions are
shown in the supplementary file. As all Z-scores are in [−1.96, 1.96], under the test
level of α = 0.05, the distribution of margin obeys the Gaussian distribution.

3.4 Uncertainty Factor

Uncertainties [37] in deep learning are classified into two types. The first type is aleatoric
uncertainty (data uncertainty), which is caused by the noise in the observation data. Its
correlation with the error has been discussed in Section 3.1. The second type is epis-
temic uncertainty (model uncertainty). It is used to indicate the consistency of multiple
predictions. We give the analyses of the relationship between the generalization error
and epistemic uncertainty.

Let T be a training set, and let P (θ|T ) be the distribution of the training models
based on T . The predictive variance V ar(f(xi|θ1), · · · , f(xi|θK)) plus a precision
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constant is a typical manner of estimating epistemic uncertainty [35,36]. Take the mean
square loss as an example1, the epistemic uncertainty is

V̂ar [xi] :=τ
−1 +

1

|K|
∑

k
f(xi|θk)ᵀf(xi|θk)−E[f(xi|θk)]ᵀE[f(xi|θk)], (7)

where τ is a constant. The second term on the right side of Eq. (7) is the second raw mo-
ment of the predictive distribution and the third term is the square of the first moment.
When K →∞ and the constant term is ignored, Eq. (7) becomes

V̂ar [xi] :=

∫
θ

||f(xi|θ)− f(xi)||22dP (θ|T ). (8)

If P (θ|T ) is approximated by the distribution of learned models on random training sets
which conform to the Gaussian distribution N (T, δI), Eq. (8) is exactly the variance
term of the error defined in Eq. (2) when the mean square loss is utilized.

As the bias term in the error can capture the aleatoric uncertainty and the variance
term captures the epistemic uncertainty, the overall relationship between uncertainty
and error is positively correlated. Nevertheless, the relationship between epistemic un-
certainty and error is not simply positively or negatively correlated. For some samples
with heavy noises, their epistemic uncertainties will be small as their predictions remain
erroneous. However, their errors are large due to their large bias. This phenomenon is
consistent with the experimental results shown in Fig. 2(b). Epistemic uncertainty and
error are positively correlated for some samples, and the two variables are negatively
correlated for other samples.

3.5 Discussion about Generalization Error

The commonly used difficulty measures, such as loss [3] and gradient norm [9], are
mainly related to the bias term. Shin et al. [27] emphasized that only using loss as the
measurement cannot distinguish clean and noisy samples, especially for uniform la-
bel noise. There are also a few existing studies that use variance [28,29]. For instance,
Agarwal et al. [30] applied the variance of gradient norms as the difficulty measure.
Indeed, both the variance and bias terms should not be underestimated when measur-
ing the samples’ learning difficulty. Our theoretical analyses support that generalization
error including both the two terms can capture four main factors influencing the sam-
ples’ learning difficulty. Thus, the error can be leveraged as a universal measure that
is more reasonable than existing measures. Existing studies generally apply the K-fold
cross-validation method [26] to calculate the generalization error. More efficient error
calculation algorithms are supposed to be proposed which will be our future work.

4 Role of Difficulty-Based Weighting

This section aims to solve the second issue of explaining the difficulty-based weighting
in deep learning. Based on the universal difficulty measure, the impacts of the difficulty-
based weighting schemes on the optimization dynamics and the generalization perfor-
mance in deep learning are investigated. Compared with the most recent conclusions

1 For other losses, other methods can be used to calculate the predictive variance [26].
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Fig. 4. “Cosine distance” represents the cosine of the angle between the decision boundary (at
that epoch) and the max-margin solution. (a), (b) Cosine distance and average margin of equal
weights and inverse margin weights using the linear predictor. (c), (d) Cosine distance and average
margin of equal weights and inverse margin weights using the nonlinear predictor. (e), (f) Cosine
distance and average margin of equal weights and increasing weights of noisy samples using
the nonlinear predictor on the noisy data. (g), (h) Cosine distance and average margin of equal
weights and increasing weights of samples in tail categories using the linear predictor on the
imbalanced data. More results are placed in the supplementary file.

[20] established only on the margin factor, our theoretical findings, which are based on
our universal measure, are more applicable and precise.

4.1 Effects on Optimization Dynamics

Linear Predictor We begin with the linear predictors allowing for a more refined
analysis. Xu et al. [20] inferred an upper bound containing the termDKL(p‖w), where
DKL is the Kullback-Leibler divergence and p is the optimal dual coefficient vector. A
smaller value of DKL(p‖w) means that the convergence may be accelerated. There-
fore, to accelerate the convergence, they believe that the weightsw should be consistent
with the coefficients p. Alternatively, the samples with small functional margins will
have large coefficients and thus should be assigned with large weights. However, the
functional margin is not the true margin that corresponds to the oracle boundary. There-
fore, their conclusion that samples close to the oracle classification boundary should be
assigned with large weights [20] cannot be well-drawn according to their inference. We
offer a more precise conclusion with the unified difficulty measure (i.e., generalization
error). As before, we assume that the functional margins of a sample xi obey a Gaus-
sian distribution N (µi, σ

2
i ), where µi is the true margin and σ2

i is the margin variance
of xi. We offer the following proposition:

Proposition 5. For two samples xi and xj , if erri ≥ errj , then we have:
(1) When the optimal dual coefficient pi of xi on a random training set T is a linear

function of its functional margin γi on T , if µi ≤ µj , then ET [pi] ≥ ET [pj ] (i.e.,
ET [wi] ≥ ET [wj ]);
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Fig. 5. (a)-(c) Normalized margin of increasing the weights of noisy samples/samples with small
margins/samples in tail categories. CIFAR10 data is used. Uniform label noise is adopted. The
noise ratio and imbalance ratio are 10% and 10:1. (d) Generalization error of the test set when
the nonlinear model is trained with different weights on simulated imbalanced data with the
imbalance ratio as 10:1. Other noise and imbalance settings are also experimented with and the
same conclusions can be obtained.

(2) When the optimal dual coefficient pi of xi on a random training set T is a
natural exponential function of its functional margin γi on T , ET [pi] ≥ ET [pj ] (i.e.,
ET [wi] ≥ ET [wj ]) always holds. Notably, even when µi > µj , ET [pi] > ET [pj ] may
still hold.

The proof is presented in the supplementary file. ET [pi] > ET [pj ] implies that
wi > wj holds on the average. The conclusion that samples with small true margins
should be assigned with large weights may not hold on some training sets when pi is
not a linear function of γi [17]. A sample with a small true margin may have a smaller
weight than a sample with a large true margin yet a large error. Thus, a more general
conclusion when pi is not a linear function of γi is that increasing the weights of hard
samples (samples with large generalization errors) may accelerate the convergence,
rather than just for samples with small margins. Other factors, including noise, imbal-
ance, and uncertainty also affect samples’ learning difficulty. Notably, the weights of
the hard samples should not be excessively increased, as to be explained in the succeed-
ing section. We reasonably increase the weights of the hard samples shown in Figs. 4
and A-3 in the supplementary file indicating that the optimization is accelerated.

We also prove that difficulty-based weights do not change the convergence direction
to the max-margin solution shown in Theorem A.1 in the supplementary file. As shown
in Fig. 3, the cosine distance and margin value are always increasing during the training
procedure, indicating the direction of the asymptotic margin is the max-margin solution.

Nonlinear Predictor Analyzing the gradient dynamics of the nonlinear predictors is
insurmountable. The main conclusion obtained by Xu et al. [20] can also be established
for difficulty-based weights only if the bound of weights is larger than zero. However,
their theorem has only been proven for binary cases as the employed loss is inapplicable
in multi-class cases. Here, we extend the theory to the multi-class setting with a regu-
larization λ||θ||r on the cross-entropy loss. Let θλ (w)∈argminLλ (θ,w). Formally,
the dynamic regime for the nonlinear predictor can be described as follows:

Theorem 1. Let w ∈ [b, B]n. Denote the optimal normalized margin as

γ∗= max
‖θ(w)‖≤1

min
i
(fyi(θ(w),xi)−max

j 6=i
(fyj (θ(w),xi))) (9)
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Epoch1     Epoch10     Epoch20     

Epoch1     

Epoch30     Epoch50     Epoch80     Epoch100     

Epoch1     Epoch10     Epoch20     Epoch30     Epoch50     Epoch80     Epoch100     

Fig. 6. Top: Equal weights of the two categories. Bottom: Samples in the small category are
assigned with high weights, obtaining better performance for the small (red) category. The im-
balance ratio is set to 10:1. The same conclusions can also be obtained for other imbalance ratios.

Let θλ(w) = θλ(w)/‖θλ(w)‖. Then, it holds that (1) Denote the normalized margin
as

γλ(w)=min
i
(fyi(θλ (w) ,xi)−max

j 6=i
fyj (θλ (w) ,xi)) (10)

Then, γλ (w)→γ∗, as λ→ 0.
(2) There exists a λ := λ (r, a, γ∗,w). For α≤2, let θ′(w) denote a α-approximate

minimizer of Lλ. Thus, Lλ
(
θ′ (w)

)
≤ αLλ (θλ (w)). Denote the normalized margin

of θ′(w) by γ′ (w). Then,γ′ (w) ≥ γ∗

10αa/r
.

The proof is presented in the supplementary file. When λ is sufficiently small, the
difficulty-based weighting does not affect the asymptotic margin. According to Theo-
rem 2, the weights do affect the convergence speed. A good property is that even though
Lλ (θλ (w)) has not yet converged but close enough to its optimum, the corresponding
normalized margin has a reasonable lower bound. A good set of weights can help the
deep learning model to achieve this property faster. However, the conditions in which a
set of weights can accelerate the speed are not clearly illuminated. Notably, as shown in
our experiments in Figs. 4 and A-3 in the supplementary file, assigning large weights for
hard samples increases the convergence speed. The results on the multi-class cases (CI-
FAR10) indicate that assigning large weights on hard samples increases the margin, as
shown in Figs. 5(a-c). However, some particular occasions of difficulty-based weights,
such as SPL [3], do not satisfy the bounding condition because the lower bounds of
these weights are zero instead of a positive real number. The theorem requires further
revision to accommodate this situation.

4.2 Effects on Generalization Performance

Besides the role of difficulty-based weights on optimization dynamics, we are also con-
cerned as to whether and how the difficulty-based weights affect the generalization
performance. The generalization bound of Xu et al. [20] does not contain the sample
weights, thus it cannot explicitly explain why hard samples are assigned with large
weights. In addition, they assume that the source and target distributions are unequal,
restricting the application of their conclusion. The two generalization bounds we pro-
pose offer good solutions to these issues. They illuminate how a weighting strategies
can be designed.
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Let Ps and Pt be the source (training) and target (testing) distributions, respectively,
with the corresponding densities of ps(·) and pt(·). Assume that the two distributions
have the same support. The training and test samples are drawn i.i.d according to dis-
tributions Ps and Pt, respectively. Learning with sample weights w(x) is equivalent
to learning with a new training distribution P̃s. The density of the distribution of the
weighted training set P̃s is denoted as p̃s(x) and p̃s(x) ∼ w(x)ps(x). Pearson χ2-
divergence is used to measure the difference between P̃s and Pt, i.e., Dχ2(Pt‖P̃s) =∫
[(dP̃s/dPt)

2−1]dP̃s. We consider depth-q (q ≥ 2) networks with the activation func-
tion φ. The binary setting is considered, in that the network computes a real value

f (x) :=W qφ (W q−1φ (· · ·φ (W 1x) · · · )) , (11)

where φ(·) is the element-wise activation function (e.g., ReLU). The training set con-
tains n samples. Denote the generalization error for a network f as L̂(f). The general-
ization performance of f with weights can be described as follows.

Theorem 2. Suppose φ is 1-Lipschitz and 1-positive-homogeneous. With a probability
at least of 1− δ, we have

L̂ (f) ≤ 1

n

n∑
i=1

pt(xi)

p̃s(xi)
1(yif(xi) < γ)︸ ︷︷ ︸
I

+

L ·
√
Dχ2

(
Pt‖P̃s

)
+ 1

γ · q(q−1)/2
√
n︸ ︷︷ ︸

(II)

+ ε(γ, n, δ)︸ ︷︷ ︸
(III)

,

(12)

where ε(γ, n, δ) =
√

log log2
4L
γ

n +
√

log(1/δ)
n and L :=supx ‖x‖.

The proof is presented in the supplementary file. Compared with the findings of Xu et
al. [20], the bound of the generalization error is directly related to the sample weights
w(x) contained in p̃s(x). In view of reducing the generalization error, a natural opti-
mization strategy can be implemented as follows: 1) an optimal weight set w(x) (in
p̃s(x)) is obtained according to decreasing the right side of Eq. (12) based on the cur-
rent f ; 2) f is then optimized under the new optimal weights w(x). In the first step,
the reduction of generalization error can come from two aspects. One is to increase
the weights of samples with small margins. The other is to make the test and training
distributions close. Disappointingly, this strategy heavily relies on the current f which
is unstable. Given a fixed training set, f depends on random variables (denoted as V)
such as hyperparameters and initialization. To obtain a more stable weighting strategy,
we further propose the following proposition.

Proposition 6. Suppose φ is 1-Lipschitz and 1-positive-homogeneous. With a proba-
bility of at least 1− δ, we have

EV [L̂ (fV)] ≤
1

n

n∑
i=1

pt(xi)

p̃s(xi)
EV [1(yifV(xi) < γ)]︸ ︷︷ ︸

(I)

+

L ·
√
Dχ2

(
Pt‖P̃s

)
+ 1

γ · q(q−1)/2
√
n︸ ︷︷ ︸

(II)

+(III)

(13)
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Accordingly, increasing the p̃s(xi) of the samples with large EV [1(yifV(xi) < γ)]
will reduce (I). In fact, samples with larger generalization errors will have larger values
of EV [1(yifV(xi) < γ)]. The proof is placed in the supplementary file. Alternatively,
increasing the weights of the hard samples will reduce (I). However, the weights of the
hard samples cannot be increased arbitrarily as Dχ2(Pt‖P̃s) may be large. Therefore, a
tradeoff between (I) and (II) should be attained to obtain a good set of weights. Alterna-
tively, a good set of weights should increase the weights of hard samples while ensuring
that the distributions of the training set and the test set are close.

It is worth mentioning that our two above conclusions are still insightful when Pt=
Ps while the conclusion of Xu et al. [20] assumes Pt 6= Ps. Apparently, even when
Pt=Ps, assigning weights according to the samples’ difficulties is still beneficial as the
tradeoff between (I) and (II) still takes effect.

5 Discussion

Our theoretical analyses in Sections 3 and 4 provide answers to the two concerns de-
scribed in Section 1.

First, the generalization error has been theoretically guaranteed as a generic diffi-
culty measure. It is highly related to noise level, imbalance degree, margin, and uncer-
tainty. Consequently, two directions are worth further investigating. The first direction
pertains to investigating a more efficient and effective estimation method for the gener-
alization error, enhancing its practicality. This will be our future work. As for the second
direction, numerous existing and new weighting schemes can be improved or proposed
using the generalization error as the difficulty measure. Our theoretical findings sup-
plement or even correct the current understanding. For example, samples with large
margins may also be hard-to-classify in some cases (e.g., with heterogeneous samples
in their neighbors).

Second, the existing conclusions on convergence speed have been extended. For
the linear predictors, the existing conclusion is extended by considering our difficulty
measure, namely, the generalization error. For the nonlinear predictors, the conclusion
is extended into the multi-class cases. Furthermore, the explicit relationship between
the generalization gap and sample weights has been established. Our theorem indicates
that assigning large weights on the hard samples may be more effective even when the
source distribution Ps and target distribution Pt are equal.

Our theoretical findings of the generalization bounds provide better explanations to
existing weighting schemes. For example, if heavy noise exists in the dataset, then the
weights of the noisy samples should be decreased. As noisy samples are absent in the
target distribution (i.e., pt(xi) = 0), the weights of the noisy samples in a data set with
heavy noise should be decreased to better match the source and target distributions. The
experiments on the noisy data are shown in Fig. A-5 in which decreasing the weights
of noisy samples obtain the best performance. In imbalanced learning, samples in small
categories have higher errors on the average. Increasing the weights of the hard samples
will not only accelerate the optimization but also improve the performance on the tail
categories, as shown in Figs. 5(d) and 6. These high-level intuitions justify a number
of difficulty-based weighting methods. Easy-first schemes, such as Superloss [7] and
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Truncated loss [6], perform well on noisy data. Hard-first schemes, such as G-RW [12]
and Focal Loss [4], are more suitable for imbalanced data.

6 Conclusion

This study theoretically investigates difficulty-based sample weighting. First, the gen-
eralization error is verified as a universal measure as a means of reflecting the four main
factors influencing the learning difficulty of samples. Second, based on a universal dif-
ficulty measure, the role of the difficulty-based weighting strategy for deep learning is
characterized in terms of convergence dynamics and the generalization bound. Theoret-
ical findings are also presented. Increasing the weights of the hard samples may accel-
erate the optimization. A good set of weights should balance the tradeoff between the
assigning of large weights on the hard samples (heavy training noises are absent) and
keeping the test and the weighted training distributions close. These aspects enlighten
the understanding and design of existing and future weighting schemes.
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