
ar
X

iv
:2

20
4.

04
71

8v
2

 [
cs

.L
G

]
 3

0
Ju

n
20

22

Rethinking Exponential Averaging of the Fisher

Constantin Octavian Puiu[0000−0002−1724−4533]
�

University of Oxford, Mathematical Institute,
constantin.puiu@maths.ox.ac.uk

Abstract. In optimization for Machine learning (ML), it is typical that
curvature-matrix (CM) estimates rely on an exponential average (EA)
of local estimates (giving ea-cm algorithms). This approach has little
principled justification, but is very often used in practice. In this paper,
we draw a connection between ea-cm algorithms and what we call a
“Wake of Quadratic models”. The outlined connection allows us to under-
stand what ea-cm algorithms are doing from an optimization perspective.
Generalizing from the established connection, we propose a new family
of algorithms, KL-Divergence Wake-Regularized Models (kld-wrm). We
give three different practical instantiations of kld-wrm, and show nu-
merically that these outperform k-fac on MNIST.

Keywords: Optimization · Natural Gradient · KL Divergence · Overfit.

1 Introduction

Recent research in optimization for ML has focused on finding tractable approx-
imations for curvature matrices. In addition to employing ingenious approximat-
ing structures ([1,2,3]), curvature matrices are typically estimated as an expo-
nential average (EA) of the previously encountered local estimates ([1,3,4,5,6]).
This is in particular true for Natural Gradient (NG) algorithms, which we focus
on here. These exponential averages emerge rather heuristically, and have so far
only been given incomplete motivations. The main such motivation is “allow-
ing curvature information to depend on much more data, with exponentially less
dependence on older data” [1]. However, it remains unclear what such an EA algo-
rithm is actually doing from an optimization perspective. In this paper, we show
that such EA algorithms can be seen as solving a sequence of local quadratic
models whose construction obeys a recursive relationship - which we refer to as
a “Wake of Quadratic Models”. Inspired by this recursion, we consider a simi-
lar, more principled and general recursion for our local models - which we refer
to as a ”KL-Divergence Wake-Regularized Models” (kld-wrm). We show that
under suitable approximations, kld-wrm gives very similar optimization steps
to ea-ng. This equivalence raises the hope that using better approximations
in our proposed class of algorithms (kld-wrm) might lead to algorithms which
outperform ea-ng. We propose three practical instantiations of kld-wrm (of in-
creasing approx. accuracy) and compare them with k-fac, the most widely used
practical implementation of NG for DNNs. Numerically, kld-wrm outperforms
k-fac on MNIST: higher test accuracy, lower test loss, lower variance.

http://arxiv.org/abs/2204.04718v2

2 C. O. Puiu

2 Preliminaries

2.1 Neural Networks, Supervised Learning and Notation

We very briefly look at fully-connected (FC) nets (we omit CNN for simplicity).
We have ā0 := [x, 1]T (x is the input to the net). The pre-activation at layer
l: zl = Wlāl−1 for l ∈ {1, 2, ..., nL}. The post-activation at layer l: al = φl(zl)
for l ∈ {1, 2, ..., nL}. The augmented post-activation at layer l: āl = [al, 1]

T for
l ∈ {1, 2, ..., nL − 1} (we augment the post-activations to incorporate the bias
into the weight matrix Wl+1 w.l.o.g.; this is standard practice for k-fac [1]).

In the above, we consider nL layers, and φl(·) are nonlinear activation func-
tions. We collect all parameters, namely {Wl}

nL

l=1, in a parameter vector θ ∈ R
d.

Let us consider No ∈ Z
+ neurons in the output layer. The output of the net

is hθ(x) := anL
∈ R

No . The predictive (model) distribution of y|x is pθ(y|x) =
pθ(y|hθ(x)), that is p(y|x) depends on x only through hθ(x).

In supervised learning, where we have labeled pairs of datasetsD = {(xi, yi)}i.
Our objective to minimize is typically some regularized modification of

f(θ) = − log p(D|θ) =
∑

(xi,yi)∈D

(

− log p(yi|hθ(xi))
)

. (1)

Thus, we have our loss function L(yi, xi; θ) := − log p(yi|hθ(xi)), and f(θ) =
∑

(xi,yi)∈D L(yi, xi; θ). This is what we will focus on here, for simplicity of expo-
sition, but our ideas directly apply to different ML paradigms, such as Variational
Inference (VI) in Bayesian Neural Networks (BNNs), and to RL as well.

Let us consider the iterates {θk}k=0,1,..., with θ0 initialized in standard man-
ner (perhaps on the edge of Chaos)1. Let us denote the optimization steps taken
at θk as sk, that is θk+1 = θk+sk. Let g(θ) and H(θ) be the gradient and hessian
of our objective f(θ). We will use the notation gk := g(θk) and Hk := H(θk).

2.2 KL-Divergence and Fisher Information Matrix

The symmetric2 KL-Divergence is a distance measure between two distributions:

DKL(p, q) :=
1

2

[

DKL(q || p)+DKL(p || q)

]

=
1

2
Ex∼p

[

log
p(x)

q(x)

]

+
1

2
Ex∼q

[

log
q(x)

p(x)

]

.

(2)
In our case, we are interested in the symmetric KL-divergence (SKL) between the
data joint distribution with one parameter value and the data joint distribution
with a different parameter value. We have

DKL(θ1, θ2) := DKL

(

pθ1(x, y), pθ2(x, y)
)

. (3)

Since we only model the conditional distribution, we let pθi(x, y) = q̂(x)p(y|hθi(x)),
where q̂(x) is the marginal (empirical) data distribution of x. This gives

1 Note that the initialization issue is orthogonal to our purpose.
2 For convenience, we will refer to the symmetric KL-Divergence as SKL-Divergence.

Rethinking Exponential Averaging of the Fisher 3

DKL(θ1, θ2) =
1

N

∑

xi∈D

DKL

(

pθ1(y|xi), pθ2(y|xi)
)

. (4)

The Fisher has multiple definitions depending on the situation, but here we have

Fk := F (θk) := E x∼q̂(x)
y∼pθ(y|x)

[

∇θ log pθ(y|x)∇θ log pθ(y|x)
T

]

. (5)

This is the Fisher of the joint distribution pθ(x, y) = q̂(x)p(y|hθ(x)). We let
F (θk, x) := Ey∼pθ(y|x)[∇θ log pθ(y|x)∇θ log pθ(y|x)T] be the Fisher of the condi-
tional distribution pθ(y|x). Then, we have Fk = Ex∼q̂[F (θk, x)]. Using the Fisher,
we have the following approximation (see [1,7]) for the SKL-Divergence

DKL

(

pθ1(y|x), pθ2(y|x)
)

≈
1

2
(θ2 − θ1)

TF (θ1, x)(θ2 − θ1), (6)

which is exact as θ2 → θ1. By plugging (6) into (4) and using linearity we get

DKL(θ1, θ2) ≈
1

2
(θ2 − θ1)

TF1(θ2 − θ1). (7)

2.3 Natural Gradient and K-FAC

The natural gradient (NG) is defined as [7]

∇NGf(θk) = F−1
k gk. (8)

The NG descent (NGD) step is then taken to be s
(NGD)
k = −αk∇NGf(θk), for

some stepsize αk. NGD has favorable properties, the most notable of which is re-
parametrization invariance (when the step-size is infinitesimally small) [8]. The
NGD step can be expressed as the solution to the quadratic problem (see [1,8])

s
(NGD)
k := argmin

s
sT gk +

1

2αk

sTFks. (9)

K-FAC Storing and inverting the Fisher is prohibitively expensive. k-fac is
a practical implementation of NG which bypasses this problem by approximat-
ing the Fisher as a block-diagonal3 matrix, with each diagonal block further
approximated as the Kronecker product of two smaller matrices [1]. That is, we
have

F
(KFAC)
k := blockdiag

(

{A
(l)
k ⊗ Γ

(l)
k }l=1,...,nL

)

, (10)

where each block corresponds to a layer and ⊗ denotes the Kronecker product
[1]. For example, for FC nets, the Kronecker factors are given by

A
(l)
k := Ex,y∼p[āl−1ā

T
l−1], Γ

(l)
k := Ex,y∼p[∇zlL∇zlL

T]. (11)

Note that the Kronecker factors depend on θk which influences both the forward

and backward pass. Also, note they can be efficiently worked with since (A
(l)
k ⊗

Γ
(l)
k)−1 = [A

(l)
k]−1⊗ [Γ

(l)
k]−1, and

(

[A
(l)
k]−1⊗ [Γ

(l)
k]−1

)

v = vec
(

[Γ
(l)
k]−1V [A

(l)
k]−1

)

,
where v maps to V in the same way vec(Wl) maps to Wl [1].

3 Block tri-diagonal approximation is also possible - but this lies outside our scope.

4 C. O. Puiu

2.4 Curvature in Practice: Exponential Averaging

In practice, many algorithms (including adam and k-fac) do not use the curva-
ture matrix estimate as computed. Instead, they maintain an exponential average
(EA) of it (eg. [3,4,5,6]). In the case of NG, this EA is

F̄k := ρkF0 + (1 − ρ)
k
∑

i=1

ρk−iFi, (12)

where ρ ∈ [0, 1) is the exponential decay parameter. Let us refer to NG algo-
rithms which replace the Fisher, Fk, with its exponential average, F̄k, as ea-ng.

In a similar spirit, k-fac maintains an EA of the Kronecker factors

Ā
(l)
k := ρkA

(l)
0 +(1−ρ)

k
∑

i=1

ρk−iA
(l)
i , Γ̄

(l)
k := ρkΓ

(l)
0 +(1−ρ)

k
∑

i=1

ρk−iΓ
(l)
i , (13)

and in practice, A
(l)
k and Γ

(l)
k in (10) are replaced with Ā

(l)
k and Γ̄

(l)
k respectively.

We will refer to the practical implementation of k-fac which uses EA for the k-
fac matrices as ea-kfac, to emphasize the presence of the EA aspect. However,
this is the norm in practice rather than an exception, and virtually any algorithm
referred to as k-fac (or as using k-fac) is in fact an ea-kfac algorithm.

3 A Wake of Quadratic Models (WoQM)

The idea behind woqm is simple. Instead of taking a step sk, at θk which relies
only on the local quadratic model, sk = argmins g

T s + (1/2)sTBks, we take a
step which relies on an EA of all previous local models. Formally, let us define

M
(Q)
k (s) := gTk s+

λk

2
sTBks, (14)

for an arbitrary symmetric-positive definite curvature matrix Bk (typically an
approximation of Hk or Fk). Note that 1/λk is a step-size (or learning rate)
parameter. Our woqm step, sk, is then defined as the solution to

min
s

k
∑

i=0

ρk−iM
(Q)
i

(

s+

k−1
∑

j=i

sj

)

, with (15)

λ0 = λ, and λk = (1− ρ)λ, ∀k ∈ Z
+, (16)

where we set
∑k−1

j=k sj = 0 by convention, ρ ∈ [0, 1) is an exponential decay
parameter, and λ > 0 is a hyperparameter. While (15) does not appear to be
a proper exponential averaging, missing a 1 − ρ factor in terms where i ≥ 1, it

can be easily rearranged as such by slightly modifying the definition of M
(Q)
0 (to

disobey (14)). To see this, multiply (15) by (1 − ρ) and then absorb the 1 − ρ

Rethinking Exponential Averaging of the Fisher 5

factor in the definition of M
(Q)
0 . Our stated definition makes the exposition more

compact while preserving intuition.
For our choice of model (14), the woqm step sk (at θk) is the solution of

min
s

sT
[k
∑

i=0

ρk−i

(

gi + λκ(i)Bi

k−1
∑

j=i

sj

)]

+
λ

2
sT

[k
∑

i=0

κ(i)ρk−iBi

]

s, (17)

where we dropped all the constant terms, and have κ(i) := exp(I{i>0} log(1−ρ)),
where IE is the indicatior function of event E . We use the κ(i) term for notational
compactness. Note that definition (15) can be used for general models Mi (rather

than quadratic M
(Q)
i), leading to a larger family of algorithms for which woqm

represents a particular instantiation: the Wake of Models (WoM) family.

3.1 Connection with Exponential-Averaging in Curvature Matrices

We now look at how the woqm step relates to Exponential-Averaging Curvature
matrices (ea-cm). ea-cm is standard practice in stochastic optimization, and in
particular in training DNNs (see for example [1,3,4,5,6]). Formally, using ea-cm
boils down to taking a step based on (14), but with Bk replaced by

B̄k := ρkB0 + (1 − ρ)
k
∑

i=1

ρk−iBi =
k

∑

i=0

κ(i)ρk−iBi. (18)

Note that we used the same exponential decay parameter for convenience,
but this is not required.

It is obvious from (17) that we can get an analytic solution for woqm step sk,
as a function of {sj}

k−1
j=0 , {(gj , Bj)}kj=0, ρ and λ. Thus, by using the relationship

recursively we can get an analytic solution for sk as a function of {(gj , Bj)}kj=0,
ρ and λ. When doing this, the connection between woqm and ea-cm is revealed.
The result is presented in Proposition 3.1.

Proposition 3.1: Analytic Solution of woqm step. The woqm step sk at
iterate θk can be expressed as

sk = −λ−1B̄−1
k gk, ∀k ∈ Z

+. (19)

Proof. Relies on simple inductive argument. See supplementary material. �
Proposition 3.1 tells us that the woqm step is exactly the step obtained by

using an EA curvature matrix B̄k in a simple quadratic model of the form (14).
That is, woqm (15)-(16) is the principled optimization formulation of a ea-cm
step4, when the ea-cm stepsize is constant and equal to 1/λ. Thus, we see what
ea-cm is actually doing from an optimization perspective: instead of perfectly
solving for the local quadratic model, it solves for a trade-off between all previ-
ously encountered models, where the weights of the trade-off are (almost5) given
by an exponential average (older models receive exponentially less “attention”).

4
woqm with ρ = 0 and Bk based on quantities at θk only is also the principled
optimization formulation of no-EA CM algorithms, with steps of the form (14).

5 Can modify the definition of M
(Q)
0 s.t. woqm is a proper EA of quadratic models.

6 C. O. Puiu

There are two observations to make at this point. First, we began by noting
that the justification for ea-cm is largely heuristic, but we ended up explaining
ea-cm through some optimization model which involved an EA of local models
(the woqm model). Since the EA was the difficult part to justify in the first place,
it might seem that we are sweeping the problem from under one rug to another.
However, this is not the case. The woqm formulation aims to reveal a different
perspective on ea-cm algorithms, rather than explain the presence of EA itself.
It is indeed true that we did not justify why one should use EA and thus get the
woqm family, but this is not required to enhance our understanding and draw
conclusions. We can draw conclusions purely based on the established equiva-
lence. This leads us to the second observation, which is why ea-cm improves
stability from a stochastic optimization perspective. Rather than conferring sta-
bility because it “uses more data” ([1,4]), ea-cm can alternatively be thought of
as conferring stability because it uses the collection of all previous noisy local
models to build a better model6 (in terms of both noise and functional form).

Note that what we have discussed so far applies when using any curvature
matrix Bk. In particular, Proposition 3.1 can be directly applied to establish an
equivalence between ea-ng algorithms and fisher-woqm algorithms (woqm al-
gorithms with Bk = Fk). In fact, we can replace the Fisher by any approximation
and still have the equivalence holding, if the EA is done as in (12).

3.2 Fisher-WoQM and Practical K-FAC Equivalence

We have seen (in Section 2.4) that k-fac holds an EA for the Kronecker factors
(see (13)), rather than for the k-fac approximation to Fk (as in (12)). Thus, the

EA scheme employed by k-fac is not the same as (12) with Fk ← F
(KFAC)
k .

Therefore, we cannot directly apply Proposition 3.1 to obtain an equivalence

between ea-kfac and kfac-woqm (woqm with Bk ← F
(KFAC)
k). We can loosely

establish this equivalence by viewing the EA over the Kronecker factors as a

convenient (but coarse) approximation to the EA over F
(KFAC)
k (see Section 4 in

the supplementary material). Indeed, carrying an EA for F
(KFAC)
k is impractical.

Our equivalence reveals that ea-ng is actually solving an exponentially de-
caying wake of quadratic models (woqm) where the curvature matrix (meant
to be a Hessian approximation) is taken to be an approximate Fisher. This is
in contrast with the typical ea-ng interpretation which says that we take NG
steps by solving quadratic models of the form (14) with Bk = Fk, but then we
further approximate Fk as an EA based on {F̂j}

k−1
j=1 . While ea-kfac does not

do the exact same thing, it can be seen as a (very crude) approximation to it.

6 Although it is still not clear why putting the previous local models together in
an exponentially-averaged fashion is “right” for conferring further stability - and
this aspect remains heuristic. While this could be informally and partly explained
by “older models should matter less”, the complete explanation remains an open
question.

Rethinking Exponential Averaging of the Fisher 7

Dealing with Infrequent Updates In practice, the curvature matrix is not
computed at each location, and the EA update is typically performed every
Nu ≈ 100 steps7 to save computation cost (at least in supervised learning8)
[1]. In this circumstance, the final implementation of ea-ng would actually be
equivalent to a woqm algorithm where we set

Bk =

{

F̂k, if mod (k,Nu) = 0

B̄q, where q := Nu

⌊

k
Nu

⌋

, otherwise
. (20)

In (20), F̂k represents an approximation for the Fisher Fk, whose computation

has an associated cost. Recall that B̄k =
∑k

j=0 κ(j)ρ
k−jBj . Note that (20) is

well defined since B̄0 = B0 = F̂0, then B1 = B2 = ... = BNu−1 = B0, and hence
B̄1 = B̄2 = ... = B̄Nu−1 = B0, and so on. Further note that by (19), defining
our woqm curvature matirx as in (20) gives us the ea-ng matrix that we want,
since we can easily see that: B̄Nu

= ρB̄0 + (1 − ρ)F̂Nu
= ρF̂0 + (1 − ρ)F̂Nu

. We

can then easily extend the argument to show B̄qNu
=

∑q

j=0 κ(j)ρ
q−jF̂

(KFAC)
jNu

which is exactly the form of EA that ea-ng employs when updating statistics
every Nu steps. Note that we can apply Proposition 3.1 irrespectively of our
choice of Bk, so in particular, it must hold for Bk as defined in (20).

By extending our reasoning, we see that any heuristic which adapts Nu as
a function of observations up until k can be transformed into an equivalent
heuristic of picking between Bk = B̄q (where q is now more generally the previous

location where we computed F̂k) and Bk = F̂k. Thus, the equivalence between
woqm and ea-ng holds irrespectively of the heuristic which decides when to
update the ea-ng matrix. The exact same reasoning holds for generic ea-cm
algorithms.

3.3 Fisher-WoQM: A Different Perspective

Since we have the following approximation9 for k ≥ i [8]

DKL(θi, θk + s) ≈ D̃KL(θi, θk + s) :=
1

2

(

s+

k−1
∑

j=i

sj

)T

Fi

(

s+

k−1
∑

j=i

sj

)

, (21)

one might think that a woqm model with Bk = Fk and ρ ∈ (0, 1) would in fact
be some form of approximate “KL-Divergence Wake-Regularized10 model”. This
is indeed true, as we can write our fisher-woqm as

min
s

[k
∑

i=0

ρk−igi

]T

s+ λ

k
∑

i=0

κ(i)ρk−i
D̃KL(θi, θk + s). (22)

Note that D̃KL(θi, θk + s) in (21) is a second-order approximation of the
7 More complicated heuristics can be designed, see [9].
8 In RL we may prefer updating the k-fac EA-matrix at each step [10].
9 Which is exact in the limit as θk + s → θi, but would nevertheless be very crude in

practice, particularly for large k − i, since the steps taken might be relatively large.
10 Regularizing w.r.t. SKL divergences relative to all previous distributions, as opposed

to just the most recent one - as the quadratic model associated with NG step does.

8 C. O. Puiu

SKL-Divergence between pθi(x, y) and pθk+s(x, y). Thus, we see that fisher-
woqm (same as ea-ng by Prop. 3.1) is in fact solving a regularized linear model,
where the model gradient is taken to be the momentum gradient (with parameter
ρ), and the regularization term is an exponentially decaying wake of (crudely)
approximate SKL-divergences relative to previously encountered distributions.

This equivalence raises scope for a new family of algorithms: perhaps using
another model for the objective f , rather than a simple linear model based on
momentum-gradient, and/or using a better approximation for the KL divergence
could lead to better performance. This is the main topic of this paper, explored
formally in Section 4 and numerically in Section 5. We now note that woqm
(and thus also ea-ng by Proposition 3.1, and approximately so, ea-kfac) is in
fact a particular instantiation of the family proposed in the next section.

4 A KL-Divergence Wake-Regularized Models Approach

We now propose a new family of algorithms, which we call KL-Divergence Wake-
Regularized Models (kld-wrm; reads: “Cold-Worm”). At each location θk, the
kld-wrm step sk is defined as the solution to the problem

min
s

M(s;Fk) + λ

k
∑

i=0

ζ(i)ρk−i
DKL(θi, θk + s), (23)

where ρ ∈ [0, 1), M(s;Fk) is a model of the objective which uses at most all
the information (Fk) encountered up until and including θk, and ζ(i) allows for
different ’λ’s ’ at different i’s. Simple choices would be ζ(i) ≡ 1, or ζ(i) = κ(i).

The motivation behind kld-wrm is two-fold. First, a wake of SKL regular-
ization allows us to stay close (in a KL sense) to all previously encountered dis-
tributions, rather than only to the most recent one. Thus, we might expect kld-
wrm to give more conservative steps in terms of distribution (pθ(y|x)) change.
Second, kld-wrm can be seen as a generalization11 of ea-ng (which is also
fisher-woqm), which also “undoes” the approximation12 of SKL.

Note that (23) is the most general formulation of kld-wrm, but in order
to obtain practical algorithms we have to make further approximations and
definitions (of M and ζ). For example, we could set

M(s;Fk) =

k
∑

i=0

νk−iMi

(

s+

k−1
∑

j=i

sj

)

(24)

where the models Mi(s) are general models (not necessary quadratic), con-
structed only based on local information at θi. This would be a Wake of Models

11 The linear model
[
∑k

i=0 ρ
k−igi

]T
s in (22) becomes arbitrary, and κ(i) is replaced

by a general ζ : Z+ → R.
12 For small ‖s‖ we have D(θ, θ+ s) ≈ D(θ||θ+ s) ≈ D(θ+ s||θ) ≈ (1/2)sTF (θ)s. Thus,

the generalization towards our family could use ξD(θ||θ + s) + (1 − ξ)D(θ + s||θ)
∀ξ ∈ R, instead of the SKL (i.e. ξ = 1/2). We choose SKL for simplicity.

Rethinking Exponential Averaging of the Fisher 9

kld-wrm (wom-kld-wrm). We could make this even more particular, for exam-
ple by considering instantiations where ν = 0, but ρ ∈ [0, 1) in (24). This would
give a Local-Model kld-wrm (lm-kld-wrm), whose steps sk are the solution
to

min
s

Mk(s) + λ

k
∑

i=0

ζ(i)ρk−i
DKL(θi, θk + s), (25)

In this paper, we focus on lm-kld-wrm instantiations (a particular sub-family
of kld-wrm), and leave the general case as future work. We give three instan-
tiations of lm-kld-wrm of increasing complexity, and discuss the links with
already existing methods. We investigate their performance in Section 5.

4.1 Connection between KLD-WRM and Fisher-WoQM

It is easy to see that setting ν = ρ, ζ(i) = κ(i), Mi(s) = sT gi and approximating
DKL(θi, θk + s) ≈ D̃KL(θi, θk + s) (defined in (21)) in a wom-kld-wrm gives
the woqm family. Note that woqm is not an lm-kld-wrm model as Mk(s) can
only include information local to θk (eg. cannot include gk−1). However, the
simplest instantiation of lm-kld-wrm takes steps which are formally similar to
fisher-woqm (and thus ea-ng) steps. We investigate this in Section 4.2.

4.2 Simplest KLD-WRM Instantiation: Smallest Order KLD-WRM

The simplest practical instantiation of kld-wrm, Smallest Order kld-wrm (so-
kld-wrm), uses the most crude approximations to lm-kld-wrm (25) and sets
ζ(i) = κ(i). The so-kld-wrm step sk (at θk) is given by

min
s

gTk s+ λ

k
∑

i=0

κ(i)ρk−i
D̃KL(θi, θk + s), (26)

It is trivial to see that so-kld-wrm differs from fisher-woqm (22) only through

replacing
[
∑k

i=0 ρ
k−igi

]

with gk. Since fisher-woqm is equivalent to ea-ng,
one might expect that so-kld-wrm steps are formally similar to ea-ng steps.
Proposition 4.1 formalizes this result.

Proposition 4.1: Analytic Solution of so-kld-wrm step. The so-kld-
wrm step sk at iterate θk can be expressed as

sk = −λ−1F̄−1
k [gk − ρgk−1], (27)

∀k ∈ Z
+, where F̄k :=

∑k
i=0 κ(i)ρ

k−iFi and we set g−1 := 0 by convention.

Proof. By induction. See the supplementary material. �
Note that we set g−1 = 0 to avoid providing two separate cases (for k = 0

and for k ≥ 1). Proposition 4.1 tells us that the so-kld-wrm step is formally
similar to the fisher-woqm step (which we have seen is the ea-ng step). The
only (formal) difference between the so-kld-wrm step and the ea-ng step is
that gk gets replaced by gk−ρgk−1 in (19). By “formally” here, we mean that the
expressions look very similar. However, when considering the two implemented
algorithms, the paths taken can be very different.

10 C. O. Puiu

We have seen that ea-ng (being equivalent to fisher-woqm) algorithms are
in fact a sub-family of the kld-wrm family, and obviously so-kld-wrm is also a
sub-family of kld-wrm. Thus, the formal difference in the steps between so-kld-
wrm and ea-ng tells us these two sub-families are distinct. The formal similarity
between so-kld-wrm and ea-ng, combined with the fact that both are members
of the kld-wrm family raises hopes that more accurate instantiations kld-wrm
might lead to better performance than ea-ng.

Note that basing our so-kld-wrm step computation on Proposition 4.1 gives
a tractable algorithm, while solving (26) directly gives an intractable algorithm.
To see this, review definition (21), and realize that solving equation (26) directly
requires storing all previous F̄jsj matrix-vector products as a minimum (if the
algorithm is written efficiently). Thus, we have an exploding number of vectors
that need to be stored when solving (26) directly, which eventually will overflow
the memory - giving an untractable algorithm. Conversely, using Proposition
4.1 only requires storing at most 2 matrices (F̄k and Fk) and 2 gradient-shaped
vectors at any one moment in time. Thus, using Proposition 4.1 with tractable
approximations for Fk gives a tractable algorithm.

Reconsidering Gradient Momentum in EA-KFAC By comparing (22)
and (26), we see that fisher-woqm (which is also ea-ng) can almost be seen as
so-kld-wrm with added momentum for the gradient. The equivalence would be
exact if we would have a κ(i) inside the sum of the linear term of (22). In ea-kfac,
gradient momentum is not added in the standard fashion. A different way to add
momentum is proposed13 and presented as successful, perhaps because trying to
add gradient momentum in the standard fashion gives worse performance [1].
From our discussion, this could be because ea-kfac can be interpreted as an
approximate ea-ng, and ea-ng is a so-kld-wrm algorithm which already has
included gradient momentum. Thus, further adding momentum does not make
sense. Note that by adding momentum to gradient in the standard fashion we
mean replacing gk by

∑k
i=0 κ(i)ρ

k−igk (see [3]).

SO-KLD-WRM in practice When implementing so-kld-wrm in practice,
we use the k-fac approximation of the Fisher. Note that Proposition 4.1 tells
us that we need not store all previous k-fac matrices. Instead, we can only save
the ea-kfac matrix. As we have discussed in Section 3, we can skip computing
the k-fac matrix at some locations to save on computation. To do that, we
just pretend the new k-fac matrix at θk is the ea-kfac that we currently have
stored. For example, if we want to compute k-fac matrices only once in Nu

steps, we use (20), but different heuristics can also be used (for eg. as in [9]). Of
course, in practice we store an EA for the Kronecker factors (instead of an EA
for the k-fac matrix), as is standard with practical k-fac implementation [1].

13 More akin to a subspace method rather than a standard momentum method (see
[1]).

Rethinking Exponential Averaging of the Fisher 11

4.3 Second KLD-WRM Instantiation: Q-KLD-WRM

The Quadratic kld-wrm (q-kld-wrm) is an lm-kld-wrm instantiation which
uses a second-order approximation for both the Model and the SKLs, and sets
ζ(i) = κ(i). The q-kld-wrm step sk (at θk) solves

min
s

gTk s+
1

2
sTBks+ λ

k
∑

i=0

κ(i)ρk−i
D̃KL(θi, θk + s), (28)

where Bk is a curvature matrix which aims to approximate the Hessian Hk. That
is, q-kld-wrm sets Mk in (25) to be a quadratic model. Since (28) is overall a
quadratic, we can obtian an analytic solution for the q-kld-wrm step.

Proposition 4.2: Analytic Solution of q-kld-wrm step. The q-kld-
wrm step sk at location θk is given by the solution to the problem

min
s

sT ĝk +
λ

2
sT

[

F̄k +
1

λ
Bk

]

s (29)

where ĝk is given by the one-step recursion

ĝk+1 = gk+1 + ρ(I − M̂k)ĝk − ρgk, ∀k ∈ Z
+, (30)

with ĝ0 := g0, F̄k :=
∑k

i=0 κ(i)ρ
k−iFi, and M̂k :=

[

I + 1
λ
BkF̄

−1
k

]−1
. That is, the

q-kld-wrm step is formally given by sk = − 1
λ

[

F̄k + 1
λ
Bk

]−1
ĝk.

Proof. By induction. See the supplementary material. �
By comparing Propositions 4.1 and 4.2, we see that, unlike so-kld-wrm,

the q-kld-wrm step deviates significantly from the fisher-woqm step (also
the ea-ng step). Note that setting Bk = 0 in Proposition 4.2 gives Proposition
4.1. That is, so-kld-wrm is a particular case of q-kld-wrm (with Bk ≡ 0).

Note that {ĝk} could explode with k, leading to divergence. A sufficient

condition for {ĝk} to stay bounded is ρ
∥

∥

∥
I − M̂k

∥

∥

∥

2
≤ δ, ∀k ∈ Z

+, with δ ∈ (0, 1)

and that ‖∇f(θ)‖2 ≤ Kg, ∀θ. Under this condition, one can see that ‖ĝk‖2 ≤
‖gk − ρgk−1‖2 + δ ‖ĝk−1‖2. Applying this inequality recursively, and noting that
‖gk − ρgk−1‖2 ≤ (1 + ρ)Kg, we get that our sufficient condition yields ‖ĝk‖2 ≤
2

1−δ
Kg, ∀k ∈ Z

+. The condition ρ
∥

∥

∥
I − M̂k

∥

∥

∥

2
= ρ

∥

∥

∥
I −

[

I + 1
λ
BkF̄

−1
k

]−1
∥

∥

∥

2
≤ δ

can always be achieved in practice, since taking λ→∞ or ρ→ 0 gives δ = 0.
In a similar fashion to the role of Proposition 4.1, the role of Proposition

4.2 (besides highlighting any similarity or dissimilarity to ea-ng) is to give a
tractable algorithm. Again, as with so-kld-wrm, q-kld-wrm is not tractable
if we implement it by solving (28) directly for the same reasons. On the other
hand, implementing Proposition 4.2 requires simultaneous storage of at most 3
matrices and 3 gradient-shaped vectors at any one point in time - that is, the
storage cost does not explode with k. However, because we now have two dif-
ferent sets of matrices involved: {Fk} and {Bk}, the situation is more subtle.

12 C. O. Puiu

In particular, if Bk and Fk
14 are block-diagonal, then we can see that all in-

volved matrices are block-diagonal, and thus tractably storable and invertable

(eg. choose Bk = Fk, and approximate Fk ≈ F̂
(KFAC)
k

15). On the contrary, Bk

and Fk might be tractably storable and invertible in isolation, but if they have
different structures, computing sk from Proposition 4.2 might be intractable.

Q-KLD-WRM in practice In practice, we can employ one of two approxi-
mations for Bk. The first option is to use a BFGS approximation ([11], [12]).
The second option is to replace Bk by the k-fac matrix. This latter approxima-
tion can be justified through the qualified equivalence between the Fisher and
the Generalized Gauss-Newton (GGN) matrix, the latter of which is an approx-
imation to the Hessian. However, in order for the qualified equivalence to hold,
we need our predictive distribution p(y|hθ(x)) to be in the exponential family
with natural parameters hθ(x) (thinking of each conditional y|x as a different
distribution with its own parameters; see [8]). This qualified equivalence holds
for most practically used models (see [8]), so is not of huge practical concern.

As we have discussed, it is not obvious how one could get a tractable algo-
rithm from Proposition 4.2 if the structures of Bk and Fk are dissimilar. Thus,

in this paper we focus on instantiations where Bk := Fk ≈ F
(KFAC)
k . In our ex-

periments, we will choose p(y|hθ(x)) s.t. the qualified equivalence between Fisher

and GGN matrix holds, and thus use Bk ≈ F
(KFAC)
k , Fk ≈ F

(KFAC)
k . As is typ-

ical with k-fac, we also maintain an EA for the Kronecker factors, rather than
for the block-diagonal matrix. With these choices, the q-kld-wrm step can be
efficiently computed form Proposition 4.2 (see the supplementary material).

4.4 Third KLD-WRM Instantiation: QE-KLD-WRM

The Quadratic Objective Approximation Exact SKL16 kld-wrm (qe-kld-wrm)
is the final instantiation of lm-kld-wrm which we propose here. The qe-kld-
wrm step sk (at θk) solves

min
s

gTk s+
1

2
sTBks+ λ

k
∑

i=0

ζ(i)ρk−i
DKL(θi, θk + s), (31)

where Bk is a curvature matrix at θk, treated the same as we did in q-kld-wrm.

Practical QE-KLD-WRM for Regression To be able to work with the
exact SKL, we restrict ourselves to a class of pθ(y|x) models where the SKL can
be expressed in terms of euclidean norms of differences in the network output
space. Consider equation (4). For predictive distributions of the form (which are
used in regression)

p(y|hθk(xj)) = N (y|hθk(xj); I), (32)

14 Of course, F̄k will have the same structure as Fk.
15 Using k-fac further reduces the storage and computation cost through the K-factors.
16 Note there is no tilde on D in (31

Rethinking Exponential Averaging of the Fisher 13

we have a special form for DKL

(

p(y|hθ1(xj)), p(y|hθ2(xj))
)

, namely

DKL

(

p(y|hθ1(xj)), p(y|hθ2(xj))
)

=
1

2
‖hθ1(xj)− hθ2(xj)‖

2
2 . (33)

See the supplementary material for derivation details. Note that predictive distri-
butions of the form (32) are the most frequently used in practice with regression.
For this choice of predictive distribution, DKL(θ1, θ2) becomes

DKL(θ1, θ2) =
1

2N

N
∑

j=0

‖hθ1(xj)− hθ2(xj)‖
2
2 . (34)

Thus, the qe-kld-wrm step solves

min
s

gTk s+
1

2
sTBks+

λ

2N

k
∑

i=0

ζ(i)ρk−i

N
∑

j=0

‖hθi(xj)− hθk+s(xj)‖
2
2 . (35)

Practical QE-KLD-WRM for Classification A similar practical computa-
tion of DKL is also available for classification (see the supplementary material).

QE-KLD-WRM in Practice While the KL-regularization term in (35) is in
principle computable, the amount of associated storage would explode with k
(storing old parameters). To bypass this problem, we have two options. We could
either choose to discard very old regularization terms, or model them through
the approximation (21) (as we did for q-kld-wrm, but now only do so for
old terms). The latter approach, while convenient, is not well principled - we
should really use second-order approximation when we are close (so for recent
distributions), not when we are far away. This can be improved, but is left as
future work. In this paper, we focus on implementations that use the former
approach. Note that we now need to iteratively solve (35) (for eg. with sgd),
and get an approximate qe-kld-wrm step. Further note that the q-kld-wrm
step given by Proposition 4.2 is an approximation of the solution to (35), where
the SKL-divergence is approximated by its second-order Taylor expansion (21).
Thus, the q-kld-wrm step is a good initial guess for (35), and we exploit this
fact in practice.

Extension to Variable Stepsize For woqm, so-kld-wrm and q-kld-wrm,
we have so far considered only cases when the “step-size” 1/λ is fixed across
different locations θk. Indeed, our established equivalence between fisher-woqm
and ea-ng holds for fixed λ only. However, we may desire variable λ← λ(k) in our
kld-wrm algorithms. To incorporate variable λ(k) in q-kld-wrm, all one has
to do is to merely replace (30) with ĝk+1 = gk+1+(λ(k+1)/λ(k))ρ[ĝk−gk−M̂kĝk]
and all λ’s in Proposition 4.2 with λ(k). The version of Proposition 4.2 which
includes variable λ(k) can be found in the supplementary material. Proposition
4.1 with variable λ(k) then follows trivially as a particular case with Bk ≡ 0.

14 C. O. Puiu

4.5 Connection with Second Order Methods (SOM)

The particular kld-wrm instantiation in equation (28), most simply illustrates
the connection between our proposed class of algorithms and SOM. Setting λ← 0
in (28) reverses q-kld-wrm back to a simple second order algorithm. More gen-
erally, from (23) we see that relative to SOM, kld-wrm generalizes the local
second order model to an arbitrary model that may also include previous informa-
tion (in principle), and more importantly, it adds a wake of DKL regularization.
The connection between NG and Generalized Gauss-Newton can be found in [8].

5 Numerical Results

We compare our proposed kld-wrm instantiations (so, q and qe) with k-
fac, on the MNIST classification problem. We investigated 4 different hyper-
parameter settings for each solver, but only present the best ones here. The
complete results, implementation details, as well as more in depth discussion
can be found in Section 8 of the supplementary material. Figures 1 and 2 show
test loss and test accuracy for our considered solvers. Ten runs were performed
for each solver. Table 1 shows important summary statistics of these result.

Hyper-parameters: The values of ρ and λ are specified in Figures 1 and
2. We used ζ(i) = κ(i)/330 for qe, and ζ(i) = κ(i) for the other solvers, because
the qe estimates of the SKL term were larger. The qe-specific hyper-parameters
are: ω/λ – the learning rate of the inner SGD solving (35), NIS – the number of
inner SGD steps per iteration, and NCAP – the total number of networks stored.
For the results presented here, these were set to 7 · 10−4, 10 and 4 respectively.

Test Accuracy and Loss: All kld-wrm variants exceed 97.5% mean test
accuracy, outperforming k-fac by about 1.5%. The SD is 4-5 times lower for
kld-wrm variants, which is desirable. Analogous observations hold for the test
loss. Since higher variance may more frequently yield “favorable” outliers, we
show relevant metrics for this aspect in Columns 2-6 of Table 1. We see that
even from the favorable outliers point of view, kld-wrm is mostly preferable.

Robustness and Overall Performance: If we can only run the training
a few times (perhaps once), it is preferable (in terms of epochs; both from a
test accuracy and test-loss point of view) to use kld-wrm rather than k-fac.

Table 1. MNIST results summary. so, q and qe refer to kld-wrm variants. “Accuracy”

and “loss” are the test-set ones. µacc and σacc are the mean and SD of the empirical
distribution of accuracy at the end of epoch 50. Notation is analogous for µloss and
σloss, which refer to the loss. NC is the number of runs for which condition C is satisfied.

Nacc≥98% Nacc>98% Nacc≥98.5% Nloss≤0.25 Nloss≤0.2 µacc σacc µloss σloss

k-fac 3 3 1 5 2 96.19% 3.2% 0.26 0.10

so 4 2 0 7 0 97.60% 0.85% 0.25 0.04

q 5 4 0 4 0 97.69% 0.69% 0.26 0.04

qe 8 7 2 9 0 98.01% 0.64% 0.23 0.02

Rethinking Exponential Averaging of the Fisher 15

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for K-FAC, ρ= 0.95, λ= 100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for SO-KLD-WRM, ρ=0.33, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40
Lo

ss
Test Loss for Q-KLD-WRM, ρ= 0.5, λ= 100

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss: QE-KLD-WRM, ρ=0.5,ω=0.07,Ncap=4,NIS=10

0.25 Loss
0.2 Loss

Fig. 1. MNIST test-loss results for k-fac, and our three kld-wrm variants.

That is because all our kld-wrm variants more robustly achieve good test met-
rics. Conversely, if we can run the training many times (and choose the best run)
k-fac’s large variance may eventually play to our advantage (not guaranteed).

kld-wrm variant selection: so-kld-wrm and q-kld-wrm have virtually
the same computation cost per epoch as k-fac. Conversely, qe-kld-wrm has
the same data acquisition and linear algebra costs as k-fac, but 3-10 times higher
oracle cost (fwd. and bwd. pass cost), owing to approximately solving (35). Thus,
when data cost is relatively low, so-kld-wrm and q-kld-wrm will be preferable,
as they will have the smallest wall-time per epoch (while having almost the same
performance per epoch as qe-kld-wrm). Conversely, when data cost dominates,
all 4 solvers will have the same wall-time per epoch. In this case, qe-kld-wrm
is preferable as it gives the best performance per epoch17.

6 Conclusions and Future Work

We established an equivalence between ea-cm algorithms (typically used in ML)
and woqm algorithms (which we defined in Section 3). The equivalence revealed
what ea-cm algorithms are doing from a model-based optimization point of view.
Generalizing from woqm, we defined a broader class of algorithms in Section 4 :
kld-wrm. We then focused our attention on a different subclass of kld-wrm,
lm-kld-wrm, and provided three practical instantiations of it. Numerical results
on MNIST showed that performance-metrics distributions have better mean and
lower variance for our kld-wrm algorithms, indicating they are preferable to k-
fac in practice due to higher robustness.

Future work: (a) kld-wrm for VI BNNs and RL; (b) convergence theory;
(c) investigate q and qe variants when Bk and Fk have different structures; (d)
consider kld-wrm algorithms outside the lm-kld-wrm subfamily (include info.
at {θj}j<k in M(s;Fk); see (23)); (e) consider arbitrary ξ ∈ R (see footnote 12).

17 Codes repo: https://github.com/ConstantinPuiu/Rethinking-EA-of-the-Fisher

16 C. O. Puiu

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for K-FAC, ρ=0.95, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for SO-KLD-WRM, ρ= 0.33, λ= 100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu
ra
cy

Test Accuracy for Q-KLD-WRM, ρ=0.5, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Acc.: QE-KLD-WRM, ρ= 0.5,ω= 0.07,Ncap = 4,NIS = 10

96% accuracy
98% accuracy
98.5% accuracy

Fig. 2. MNIST test-accuracy results for k-fac, and our three kld-wrm variants.

Acknowledgments Thanks to Jaroslav Fowkes for very useful discussions. I
am funded by the EPSRC CDT in InFoMM (EP/L015803/1) in collaboration
with Numerical Algorithms Group and St. Anne’s College (Oxford).

References

1. Martens, J.; Grosse, R. Optimizing neural networks with Kronecker-factored ap-
proximate curvature, In: arXiv:1503.05671 (2015).

2. Yang, M.; Xu, D; Wen, Z.; Chen, M.; Xu, P. Sketchy empirical natural gradient
methods for deep learning, In: arXiv:2006.05924 (2021).

3. Ba, J.; Kingma, D. Adam: A method for stochastic optimization, ICLR (2015).
4. LeCun, Y.; Bottou, L.; Orr, G.; Muller, K. Efficient backprop. Neural networks:

Tricks of the trade, pages 546-546 (1998).
5. Schaul, T.; Zhang, S.; LeCun, Y. No more pesky learning rates. In ICML (2013).
6. Park, H.; Amari, S.-I.; Fukumizu, K. Adaptive natural gradient learning algorithms

for various stochastic models. Neural Networks, 13(7):755-764 (2000).
7. Amari, S. I. Natural gradient works efficiently in learning, Neural Computation,

10(20), pp. 251-276 (1998).
8. Martens, J. New insights and perspectives on the natural gradient method,

arXiv:1412.1193 (2020).
9. Osawa, K.; Yuichiro Ueno, T.; Naruse, A.; Foo, C.-S.; Yokota, R. Scalable and

practical natural gradient for large-scale deep learning, arXiv:2002.06015 (2020).
10. Wu, Y.; Mansimov, E.; Grosse, R. B.; Liao, S.; Ba, J. Scalable trust-region method

for deep reinforcement learning using kronecker-factored approximation. In Ad-
vances in neural information processing systems, pages 5285-5294 (2017).

11. Bottou, L.; Curtis, F. E.; Nocedal, J. Optimization methods for large-scale machine
learning (2018).

12. Goldfarb, D.; Ren, Y.; Bahamou, A. Practical Quasi-Newton methods for training
deep neural networks, arXiv:2006.08877, (2021).

http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/2006.05924
http://arxiv.org/abs/1412.1193
http://arxiv.org/abs/2002.06015
http://arxiv.org/abs/2006.08877

ar
X

iv
:2

20
4.

04
71

8v
2

 [
cs

.L
G

]
 3

0
Ju

n
20

22

Supplementary Material: Rethinking Exponential Averaging of the Fisher

Constantin Octavian Puiu

1. Proof of Proposition 3.1

We reiterate the statement of Proposition 3.1 and the

WoQM definition for convenience. Recall that the WoQM

step at θk solves

min
s

sT
[k
∑

i=0

ρk−i

(

gi + λκ(i)Bi

k−1
∑

j=i

sj

)]

+
λ

2
sT

[

ρkB0 + (1 − ρ)

k
∑

i=1

ρk−iBi

]

s,

(1)

Proposition 3.1: Analytic Solution of WoQM step. The

WoQM step sk at iterate θk can be expressed as

sk = −
1

λ

(

ρkB0 + (1− ρ)

k
∑

j=1

ρk−jBj

)−1

gk, ∀k ∈ N.

(2)

Proof. We use induction.

Induction check. First, check (2) holds for k = 0, k =
1 and k = 2. Since we have new sum terms starting to

appear1 at k = 1 and also at k = 2 (and keep on being

present thereafter), we also need to check for k = 1.

For k = 0 we have the model in (1) reducing to

min
s

sT g0 +
λ

2
sTB0s, (3)

which has solution

s0 = −
1

λ
B−1

0 g0, (4)

which satisfies (2).

For k = 1 we have the model in (1) reducing to

min
s

sT [ρg0 + g1 + ρλB0s0] +
λ

2
sT

[

ρB0 + (1− ρ)B1

]

s.

(5)

But, ρg0 + ρλB0s0 = 0 by (4). Thus, we have

s1 = −
1

λ

[

ρB0 + (1 − ρ)B1

]−1
g1, (6)

1Because κ(i) = 1 for i = 0, and κ(i) = 1− ρ for i ≥ 1 but

the terms (1− ρ)Bi

∑k−1

j=i
sj only start appearing after k ≥ 2.

which satisfies (2).

For k = 2, we have the model in (1) reducing to

min
s

λ

2
sT

[

ρ2B0 + (1− ρ)ρB1 + (1− ρ)B2

]

s+

sT
[

ρ2g0 + ρg1 + g2 + ρ2λB0(s0 + s1) + ρλ(1− ρ)B1s1

]

.

(7)

Now, ρ2g0 + ρ2λB0s0 = 0 using (4). We also have ρg1 +
ρλ(ρB0 + (1 − ρ)B1)s1 = 0 by (6). Thus, we get

s2 = −
1

λ

[

ρ2B0 + (1− ρ)ρB1 + (1− ρ)B2

]−1
g2, (8)

which satisfies (2).

Induction main body. Assume for the inductive hypothesis

that we have for some k ≥ 2

sl = −
1

λ

(

ρlB0+(1−ρ)
l

∑

j=1

ρl−jBj

)−1

gl, ∀l ≤ k ∈ N.

(9)

We need to prove that at k + 1, for all k ≥ 2, we have

sk+1 = −
1

λ

(

ρk+1B0 + (1 − ρ)
k+1
∑

j=1

ρk+1−jBj

)−1

gk+1,

(10)

and since the inductive check holds at k ∈ {0, 1, 2}, this

would imply (2).

To begin, consider (1) evaluated at k + 1. We have that the

WoQM step at k + 1, sk+1 is given by

min
s

λ

2
sT

[

ρk+1B0 + (1 − ρ)
k+1
∑

i=1

ρk+1−iBi

]

s

+sT
[k+1
∑

i=0

ρk+1−i

(

gi + λκ(i)Bi

k
∑

j=i

sj

)]

.

(11)

Let us now consider the coefficient of the linear term in

http://arxiv.org/abs/2204.04718v2

Supplementary Material: Rethinking Exponential Averaging of the Fisher

(11). It reads

k+1
∑

i=0

ρk+1−i

(

gi + λκ(i)Bi

k
∑

j=i

sj

)

=

gk+1 + ρ

[k
∑

i=0

ρk−i

(

gi + λκ(i)Bi

k
∑

j=i

sj

)]

=

gk+1 + ρ

[k
∑

i=0

ρk−igi + λ

k
∑

i=0

κ(i)ρk−i

(

Bi

k
∑

j=i

sj

)]

.

(12)

Now we prove that the bracket on the third line of (12) is

zero. Once we have that, we can very easily see from (11)

that we have the desired result. To show the term is zero,

consider

λ

k
∑

i=0

κ(i)ρk−i

(

Bi

k
∑

j=i

sj

)

= λ

k
∑

i=0

k
∑

j=i

κ(i)ρk−iBisj

(13)

Now, inverting the i and j sums, we get

λ

k
∑

i=0

κ(i)ρk−i

(

Bi

k
∑

j=i

sj

)

= λ

k
∑

j=0

j
∑

i=0

κ(i)ρk−iBisj =

λ
k
∑

j=0

ρk−j

(j
∑

i=0

ρj−iκ(i)Bi

)

sj .

(14)

Now, explicitly writing that κ(0) = 1 and κ(i) = 1− ρ for

all i ≥ 1, we get that

(j
∑

i=0

ρj−iκ(i)Bi

)

sj =

(

ρjB0 +(1− ρ)

j
∑

i=1

ρj−iBi

)

sj .

(15)

Substituting the inductive hypothesis (9) into (15), we get

(j
∑

i=0

ρj−iκ(i)Bi

)

sj = −
1

λ
gj (16)

Plugging (16) into (14), we see that

λ
k

∑

i=0

κ(i)ρk−i

(

Bi

k
∑

j=i

sj

)

= −
k
∑

j=0

ρk−jgj . (17)

Finally, plugging (17) into the last line of (12), we see that

k+1
∑

i=0

ρk+1−i

(

gi + λBi

k
∑

j=i

sj

)

= gk+1, (18)

which means the linear coefficient in (11) is just gk+1.

Thus, differentiating (11) and setting to zero gives us the

global solution2 of the WoQM model as

2Since Bk are positive definite by assumption.

sk+1 = −
1

λ

[

ρk+1B0 + (1− ρ)

k+1
∑

i=1

ρk+1−iBi

]−1

gk+1.

(19)

Equation (19) is the same as (10), which completes the

proof �.

2. Proof of Proposition 4.1

We reiterate the statement of Proposition 4.1 and the SO-

KLD-WRM definition for convenience. Recall that the SO-

KLD-WRM step at θk solves

min
s

gTk s+ λ

k
∑

i=0

κ(i)ρk−i
D̃KL(θi||θk + s), (20)

That is, the SO-KLD-WRM step at θk solves

min
s

sT
[

gk +

k−1
∑

i=0

ρk−i

(

λκ(i)Fi

k−1
∑

j=i

sj

)]

+
λ

2
sT

[k
∑

i=0

κ(i)ρk−iFi

]

s.

(21)

Proposition 4.1: Analytic Solution of SO-KLD-WRM

step. The SO-KLD-WRM step sk at iterate θk can be ex-

pressed as

sk = −
1

λ

(

ρkF0 + (1− ρ)
k

∑

j=1

ρk−jFj

)−1

[gk − ρgk−1],

(22)

∀k ∈ N, where we set g−1 := 0 by convention.

Proof. We use induction. The proof is very similar to the

prof of Proposition 3.1.

Induction check. First, check (22) holds for k = 0, k =
1 and k = 2. Since we have new sum terms starting to

appear3 at k = 1 and also at k = 2 (and keep on being

present thereafter), we also need to check for k = 1.

For k = 0 we have the model in (21) reducing to

min
s

sT g0 +
λ

2
sTF0s, (23)

which has solution

s0 = −
1

λ
F−1
0 g0, (24)

which satisfies (22).

3Because κ(i) = 1 for i = 0, and κ(i) = 1− ρ for i ≥ 1 but

the terms (1− ρ)Bi

∑k−1

j=i
sj only start appearing after k ≥ 2.

Page 2 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

For k = 1 we have the model in (1) reducing to

min
s

sT [g1 + ρλF0s0] +
λ

2
sT

[

ρF0 + (1 − ρ)F1

]

s. (25)

But, g1 + ρλB0s0 = g1 − ρg0 by (24). Thus, we have

s1 = −
1

λ

[

ρF0 + (1 − ρ)F1

]−1
[g1 − ρg0], (26)

which satisfies (22).

For k = 2, we have the model in (1) reducing to

min
s

λ

2
sT

[

ρ2F0 + (1− ρ)ρF1 + (1− ρ)F2

]

s+

sT
[

g2 + ρ2λF0(s0 + s1) + ρλ(1− ρ)F1s1

]

.
(27)

Now, ρ2λF0s0 = −ρ2g0 using (24). We also have

ρλ[ρF0 + (1 − ρ)F1]s1 = −ρ[g1 − ρg0] by (22). Thus,

we get that the linear term of (27) is sT [g2 − ρg1]. That is,

s2 = −
1

λ

[

ρ2F0 + (1− ρ)ρF1 + (1− ρ)F2

]−1
[g2 − ρg1],

(28)

which satisfies (22).

Induction main body. Assume for the inductive hypothesis

that we have for some k ≥ 2

sl = −
1

λ

(l
∑

j=0

κ(j)ρl−jFj

)−1

[gl − ρgl−1], ∀l ≤ k.

(29)

We need to prove that at k + 1, for all k ≥ 2, we have

sk+1 = −
1

λ

(k+1
∑

j=0

κ(j)ρk+1−jFj

)−1

[gk+1 − ρgk], (30)

and since the inductive check holds at k ∈ {0, 1, 2}, this

would imply (22).

To begin, consider (21) evaluated at k+1. We have that the

SO-KLD-WRM step at k + 1, sk+1 is given by

min
s

λ

2
sT

[

ρk+1F0 + (1 − ρ)

k+1
∑

i=1

ρk+1−iFi

]

s

+sT
[

gk+1 +

k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)]

.

(31)

Let us now consider the coefficient of the linear term in

(31). It reads

gk+1 +
k

∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + λ

k
∑

i=0

k
∑

j=i

ρk+1−iκ(i)Fisj =

gk+1 + λ

k
∑

j=0

[(j
∑

i=0

ρk+1−iκ(i)Fi

)

sj

]

.

(32)

In the last line, we interchanged the summation over i and

j. But the square bracket in the second term of (32) is given

by

(j
∑

i=0

ρk+1−iκ(i)Fi

)

sj = ρk+1−j

(j
∑

i=0

ρj−iκ(i)Fi

)

sj

(33)

Now, plugging the inductive hypothesis (29) in (33) - which

we can do as the outer-sum over j in (32) is up until k - we

get

(j
∑

i=0

ρk+1−iκ(i)Fi

)

sj = −
1

λ
ρk+1−j [gj − ρgj−1] (34)

Finally, plugging (34) into (32), we get

gk+1 +

k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + λ

k
∑

j=0

[

−
1

λ
ρk+1−j [gj − ρgj−1]

]

= gk+1 − ρgk.

(35)

To get the last equality in (35) we solved the telescopic sum,

and in doing that we recalled our convention g−1 = 0.

Finally, plugging (35) into (31), we see that

sk+1 = −
1

λ

[k+1
∑

i=0

κ(i)ρk+1−iFi

]−1

[gk+1 − ρgk]. (36)

Equation (36) is the same as (30), which completes the

proof �.

3. Proof of Proposition 4.2

We reiterate the Q-KLD-WRM step definition as well as

Proposition 4.2 here for convenience. The Q-KLD-WRM

step at θk is the solution to

min
s

gTk s+
1

2
sTBks+ λ

k
∑

i=0

κ(i)ρk−i
D̃KL(θi||θk + s),

(37)

That is, the Q-KLD-WRM step at θk solves

min
s

sT
[

gk +

k−1
∑

i=0

ρk−i

(

λκ(i)Fi

k−1
∑

j=i

sj

)]

+
λ

2
sT

[k
∑

i=0

κ(i)ρk−iFi +
1

λ
Bk

]

s.

(38)

Of course, we have F̄k =
∑k

i=0 κ(i)ρ
k−iFi, and we will

use that notation most of the times.

Proposition 4.2 is given again below.

Page 3 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

Proposition 4.2: Analytic Solution of Q-KLD-WRM step.

The Q-KLD-WRM step sk at location θk is given by the

solution to the problem

min
s

sT ĝk +
λ

2
sT

[

F̄k +
1

λ
Bk

]

s (39)

where ĝk is given by the one-step recursion

ĝk+1 = gk+1 + ρ(I − M̂k)ĝk − ρgk, ∀k ∈ Z
+, (40)

with ĝ0 := g0, F̄k :=
∑k

i=0 κ(i)ρ
k−iFi, and

M̂k :=
[

I +
1

λ
BkF̄

−1
k

]−1
. (41)

That is, the Q-KLD-WRM step is formally given by

sk = −
1

λ

[

F̄k +
1

λ
Bk

]−1

ĝk. (42)

Proof. By induction. The induction is mainly focused

around finding a form for the linear term of the Q-KLD-

WRM formulation at arbitrary k. The step analytic formula

then follows easily.

Induction check. For k = 0, we have the model in (38)

reducing to

min
s

sT g0 +
λ

2
sT

[

F̄0 +
1

λ
B0

]

s (43)

Now, noting that ĝ0 = g0 by definition, we see that the

Q-KLD-WRM linear4 term obeys Proposition 4.2 at k = 0.

Thus,

s0 = −
1

λ

[

F̄0 +
1

λ
B0

]−1

ĝ0. (44)

For k = 1, we have the model in (38) reducing to

min
s

sT [g1 + ρλF0s0] +
λ

2
sT

[

F̄1 +
1

λ
B1

]

s. (45)

Now, by using (44), we have that

ρλF0s0 = −ρ
[

F−1
0

]−1
[

F̄0 +
1

λ
B0

]−1

ĝ0 (46)

ρλF0s0 = −ρ

[

F̄0F
−1
0 +

1

λ
B0F

−1
0

]−1

ĝ0 = −ρM̂0ĝ0

(47)

where the latter equality holds by the definition of M̂k eval-

uated at k = 0 and the fact that F̄0 = F0. Thus,

g1 + ρλF0s0 = g1 − ρM̂0ĝ0 = g1 + ρ(I − M̂0)ĝ0 − ρg0.
(48)

4The Quadratic term obviously also obeys Propositon 4.2 for-
mulation - but this fact follows trivially from the original Q-KLD-
WRM definition, as we can see.

The latter equality in (48) holds because g0 = ĝ0. Conse-

quently, using the recursive definition of ĝk+1 for k = 0,

we get

g1 + ρλF0s0 = ĝ1, (49)

which shows us that the Q-KLD-WRM linear term obeys

the formulation in Proposition 4.2. Thus the whole Q-KLD-

WRM formulation obeys formulation (39). In particular, we

have

s1 = −
1

λ

[

F̄1 +
1

λ
B1

]−1

ĝ1. (50)

For k = 2, we have the model in (38) reducing to

min
s

λ

2
sT

[

F̄2 +
1

λ
B2

]

s+

sT
[

g2+ρ2λF0(s0 + s1) + ρλ(1− ρ)F1s1

]

.

(51)

The linear term in (51) can be rearranged as

sT
[

g2+ρ2λF0s0 + ρλ[ρF0 + (1 − ρ)F1]s1

]

=

sT
[

g2 + ρ2λF̄0s0 + ρλF̄1s1

]

=

sT
[

g2+ρ(g1 + ρλF̄0s0) + ρλF̄1s1 − ρg1

]

,

(52)

where to get the second equality we used the definition of

F̄k applied at k = 0 and k = 1. We have already seen when

doing the check for k = 1 that

g1 + ρλF̄0s0 = ĝ1 (53)

Thus, we only need to work out the ρλF̄1s1 term. By using

(50), this reads

ρλF̄1s1 = −ρ
[

F̄−1
1

]−1
[

F̄1 +
1

λ
B1

]−1

ĝ1 (54)

ρλF̄1s1 = −ρ

[

F̄1F̄
−1
1 +

1

λ
B1F̄

−1
1

]−1

ĝ1 = −ρM̂1ĝ1

(55)

where the latter equality holds by the definition of Mk eval-

uated at k = 1. Thus, plugging in (55) and (53)5 in the lin-

ear term expression (52), we get that the linear term reads

sT
[

g2+ρ2λF0s0 + ρλ[ρF0 + (1− ρ)F1]s1

]

=

sT
[

g2 + ρ(I − M̂1)ĝ1 − ρg1

]

= sT ĝ2,

(56)

where in the last equality we used the recursive definition

of ĝk+1 from Proposition 4.2, evaluated at k = 1. Thus,

5Or indeed can use (49), we wrote it again for clarity.

Page 4 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

(56) shows us that the Q-KLD-WRM linear term obeys the

formulation in Proposition 4.2. Thus the whole Q-KLD-

WRM formulation obeys formulation (39). In particular, if

we now plug the linear term in (56) back into the full model

(51), we get that the Q-KLD-WRM step satisfies

s2 = −
1

λ

[

F̄2 +
1

λ
B2

]−1

ĝ2. (57)

We are done with the induction check.

Induction main body. Assume for the inductive hypothesis

that we have for some k ≥ 2

sl = − argmin
s

sT ĝl +
λ

2
sT

[

F̄l +
1

λ
Bl

]

s, ∀l ∈ {0, .., k}

(58)

ĝl = gl+ρ(I−M̂l−1)ĝl−1−ρgl−1, ∀l ∈ {1, ..., k}, (59)

with ĝ0 := g0, F̄k :=
∑k

i=0 κ(i)ρ
k−iFi, and

M̂l :=
[

I +
1

λ
BlF̄

−1
l

]−1
. (60)

We need to prove that at k + 1, for all k ≥ 2, we have

ĝk+1 = gk+1 + ρ(I − M̂k)ĝk − ρgk, (61)

with M̂k defined as in (60), and

sk+1 = argmin
s

sT ĝk+1+
λ

2
sT

[

F̄k+1+
1

λ
Bk+1

]

s. (62)

Since the inductive check holds at k ∈ {0, 1, 2}, this would

imply Proposition 4.2 holds.

To begin, consider (38) evaluated at k+1. We have that the

Q-KLD-WRM step at k + 1, sk+1 is the solution to

min
s

λ

2
sT

[

F̄k+1 +
1

λ
Bk+1

]

s

+sT
[

gk+1 +
k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)]

.

(63)

Let us now consider the coefficient of the linear term in

(63). It reads

gk+1 +

k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + λ
k
∑

i=0

k
∑

j=i

ρk+1−iκ(i)Fisj =

gk+1 + λ

k
∑

j=0

[(j
∑

i=0

ρk+1−iκ(i)Fi

)

sj

]

=

gk+1 + λ

k
∑

j=0

ρk+1−jF̄jsj = gk+1 + ρ

k
∑

j=0

ρk−jλF̄jsj .

(64)

To get from the third to the fourth line in (64) we used the

definition of F̄k evaluated at k = j. We can further write

the linear coeffcient of (63) as

gk+1 +
k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ

k
∑

j=0

ρk−jλF̄jsj =

gk+1 + ρ

k−1
∑

j=0

ρk−jλF̄jsj + ρλF̄ksk.

(65)

Now, considering the same linear term of our Q-KLD-WRM

formulation, but at arbitrary l ∈ [1, k] ∩ Z (rather than at

k + 1) we get can apply6 equation (65) to get

gl +

l−1
∑

i=0

ρl−i

(

λκ(i)Fi

k
∑

j=i

sj

)

= gl +

l−1
∑

j=0

ρl−jλF̄jsj .

(66)

But the inductive hypothesis, (58) and (59), tells us that this

linear term must also be ĝl. That is, we have

ĝl = gl +

l−1
∑

j=0

ρl−jλF̄jsj, (67)

and therefore

l−1
∑

j=0

ρl−jλF̄jsj = ĝl − gl. (68)

In particular (68) must also hold for l = k, because the

induction hypothesis holds up until ĝk. We have

k−1
∑

j=0

ρk−jλF̄jsj = ĝk − gk, (69)

Now, plugging (69) into (65), we have

gk+1 +
k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ(ĝk − gk) + ρλF̄ksk,

(70)

so all is left is to compute the term ρλF̄ksk. To do that, we

use the induction hypothesis again. In particular, we use

(58) for l = k and solve exactly for sk, to get

sk = −
1

λ

[

F̄k +
1

λ
Bk

]−1

ĝk. (71)

6We can do that because our calculations (63) - (65) hold for
arbitrary k ∈ Z

+, and so does the Q-KLD-WRM formulation (65).

Page 5 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

Using (71), we have

ρλF̄ksk = −ρ
[

F̄−1
k

]−1
[

F̄k +
1

λ
Bk

]−1

ĝk = −ρM̂kĝk.

(72)

The last equality of (72) is obtained by combining the two

inverses in the inverse of a single matrix, and then using the

definition of M̂k.

Plugging (72) into (70) gives us that our linear term coef-

ficient of the Q-KLD-WRM formulation at k + 1 is given

by

gk+1 +

k
∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ(ĝk − gk)− ρM̂kĝk =

gk+1 + ρ(I − M̂k)ĝk − ρgk.

(73)

Equation (73), combined with (63) shows us that the induc-

tion target (61)-(62) is satisfied. Thus, the proof is complete

�.

4. The error between EA over K-Factors and

EA over K-FAC approximated Fisher

Our discussion is based on the case when we hold an EA of

the Fisher (or any approximation thereof). However, when

using K-FAC (and also our KLD-WRM instantations which

use K-FAC as a platform), we do not hold an EA over the

K-FAC approximated Fisher like

F̄
(KFAC)
k =

k
∑

i=0

κ(i)ρk−iF
(KFAC)
k (74)

but rather hold an EA over each of the K-Factors as:

Ā
(l)
k :=

k
∑

i=0

κ(i)ρk−iA
(l)
i ,

Γ̄
(l)
k :=

k
∑

i=1

κ(i)ρk−iΓ
(l)
i ,

(75)

where κ(i) = 1−ρ if i ≥ 1, and κ(0) = 1. This is standard

implementation procedure as using (74) would undo any

benefit from the Kronecker factorization approach.

Thus, strictly speaking, K-FAC, as well as the proposed

KLD-WRM instantiation algorithms lay outside the KLD-

WRM family. However, they do approximate algorithms in

the KLD-WRM family. We now briefly analyze the error.

Formal bounds are future work.

4.1. The Error when using EA over Kronecker Factors

Let us focus on a single layer l. We drop the layer index

superscript for convenience. The error between using an

EA over the K-FAC approximated Fisher and using an EA

over the Kronecker factors is

errk =

k
∑

i=0

ρk−iκ(i)Ai ⊗Gi

−

(k
∑

i=0

ρk−iκ(i)Ai

)

⊗

(k
∑

j=0

ρk−jκ(j)Gj

)

(76)

Using the distributive property of the Kronecker Factor, we

have

errk =

k
∑

i=0

ρk−iκ(i)Ai ⊗

(

Gi −
k

∑

j=0

ρk−jκ(j)Gj

)

=

k
∑

j=0

ρk−jκ(j)

(

Aj −
k
∑

i=0

ρk−iκ(i)Ai

)

⊗Gj .

(77)

Thus, we see that if either one of the following holds: (1)

Ak does not change much, (2) Gk does not change much,

or (3) ρ ≈ 0, then the error is small (going to zero if either

Ai is constant, Gi is constant or ρ → 0). While one may

expect (1) and/or (2) to hold in practice for very small step-

size (at least if the whole7 data set is used to approximate

the expectation), (3) is unrealistic. Further formal investi-

gation of this aspect is required and will be future work.

5. Efficient Computation of Q-KLD-WRM

Step when Bk = F
(KFAC)
k

5.1. Computation of ĝk+1

To compute the Q-KLD-WRM step (sk+1) using Proposi-

tion 4.2, we must first compute

ĝk+1 = gk+1 + ρ(I − M̂k)ĝk − ρgk, (78)

where

M̂k :=
[

I +
1

λ
BkF̄

−1
k

]−1
. (79)

Clearly, the bottleneck lies in computing

M̂kĝk =
[

I +
1

λ
BkF̄

−1
k

]−1
ĝk, (80)

as the remaining operations in (78) are just vector additions.

First, note that M̂k can be written as

M̂k = F̄k

[

F̄k +
1

λ
Bk

]−1
(81)

7To avoid changes in Ai and Gi due to picking different
batches, in which case the change will only be determined by
the change in θ. Of course, when using a batch estimate to Ai

and Gi, different batches give different mean estimations. How-
ever this change would merely be induced by sub-sampling, and
would not be present in the exact quantities (or the distribution of
the estimates). It is only the change in the distribution of estimates
that is of interest, rather than the change in their realization.

Page 6 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

We hold an EA of the Kronecker-factors, rathar than an EA

of the K-FAC matrix, which means F̄k is of the form

F̄k = block-diag

(

{

Ā
(l)
k ⊗ Γ̄

(l)
k

}

l∈{1,2,...Nl}

)

, (82)

where Nl is the number of layers Ā
(l)
k , Γ̄

(l)
k are the expo-

nential averages of the standard Kronecker factors (see [1]).

Similarly, we chose Bk = F
(KFAC)
k , so

B̄k = block-diag

(

{

A
(l)
k ⊗ Γ

(l)
k

}

l∈{1,2,...Nl}

)

. (83)

Thus (80) reduces to performing an inversion of the form

(for each layer)

[

M̂kĝk
]

l
= (Ā

(l)
k ⊗Γ̄

(l)
k)

[

Ā
(l)
k ⊗Γ̄

(l)
k +

1

λ
(A

(l)
k ⊗Γ

(l)
k)

]−1

vl,

(84)

There are two ways to approach solving (84).

The first one is to recognize that computing

ul =

[

Ā
(l)
k ⊗ Γ̄

(l)
k +

1

λ
(A

(l)
k ⊗ Γ

(l)
k)

]−1

vl (85)

amounts to solving a generalized Stein equation, and then

use the methods proposed in Appendix B of [1] to get ul.

We then obtain
[

M̂kĝk
]

l
= (Ā

(l)
k ⊗ Γ̄

(l)
k)ul = Γ

(l)
k UlĀ

(l)
k ,

with ul = vec(Ul).

The second approach uses another approximation - in the

same spirit as with replacing an EA for the Fisher with an

EA over the Kronecker factors. For this approach, we note

that when Bk = Fk, F̄k + 1
λ
Bk =

∑k−1
i κ(i)ρk−iFi +

(1−ρ)λ+1
λ

Fk is just a re-weighting of the terms in the F̄k

sum. Thus, instead of carrying EA-averaged Kronecker fac-

tors for F̄k, and then try to work with F̄k + 1
λ
Bk, we can

merely edit the weight of the last Kronecker factor and get

a Kronecker-decomposed estimate for F̄k + 1
λ
Bk directly.

This would be much easier to work with. That is, we save

EA-Kronecker factors for two previous levels, and use

Â
(l)
k = ρĀ

(l)
k−1 +

(1− ρ)λ+ 1

λ
A

(l)
k , (86)

Γ̂
(l)
k = ρΓ̄

(l)
k−1 +

(1 − ρ)λ+ 1

λ
Γ
(l)
k (87)

These should be contrasted with the running EA for Kro-

necker factors

Ā
(l)
k = ρĀ

(l)
k−1 + (1− ρ)A

(l)
k , (88)

Γ̄
(l)
k = ρΓ̄

(l)
k−1 + (1− ρ)Γ

(l)
k . (89)

We thus have the approximation8

[

M̂kĝk
]

l
≈ (Ā

(l)
k ⊗ Γ̄

(l)
k)

[

Â
(l)
k ⊗ Γ̂

(l)
k

]−1
vl. (90)

We have

[

M̂kĝk
]

l
≈ (Ā

(l)
k ⊗ Γ̄

(l)
k)

[

Â
(l)
k ⊗ Γ̂

(l)
k

]−1
vl =

(Ā
(l)
k ⊗ Γ̄

(l)
k)

[

(Â
(l)
k)−1 ⊗ (Γ̂

(l)
k)−1

]

vl =

vec

[

Γ
(l)
k (Γ̂

(l)
k)−1Vl(Â

(l)
k)−1(A

(l)
k)

]

,

(91)

where vl = vec(Vl) - i.e. Vl ∈ R
nl×nl−1 is the matrix

format of vl. That is, vl maps to Vl in the same way vec(Wl)
maps to Wl, where Wl is the weight matrix9 at layer l.

Equation (91) gives us an efficient way of estimating M̂kgk.

Thus, we can efficiently assemble ĝk+1 using (78).

5.2. Computing sk+1

All that is now left, is to compute

sk+1 = −
1

λ

[

F̄k+1 +
1

λ
Bk+1

]−1

ĝk+1. (92)

In the previous subsection, we have already discussed

about the two possible approaches one can take to invert

Fk+1 + 1
λ
Bk+1 when Bk+1 = F

(KFAC)
k and we approx-

imate F̄k+1 by holding an EA for the Kronecker factors.

Any of the two approaches apply directly. For example,

taking the second approach, we get

[sk+1]l ≈= −
1

λ
vec

[

(Γ̂
(l)
k+1)

−1Ĝ
(l)
k+1(Â

(l)
k+1)

−1

]

, (93)

where vec(Ĝ
(l)
k+1) = [ĝk+1]l. That is, [ĝk+1]l maps to

Ĝ
(l)
k+1 in the same way vec(Wl) maps to Wl, where Wl is

the weight matrix at layer l.

Equation (93) gives us an efficient way to estimate the Q-

KLD-WRM step provided we have ĝk+1 (which we can ef-

ficiently get as in (91)).

8Note that the approximation would be exact if holding EA
for the Kronecker factors was the same as holding EA for the big
matrix - which is never true in practice.

9As ever with K-FAC, bias is included in the weight matrix
through appending a 1 at each layer output - see [1].

Page 7 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

6. KL-Divergence in terms of Network

Output

6.1. Regression with Gaussian Predictive Distributions

of Fixed Variance

In this section, we derive the fact that the symmetric KL-

Divergence is

DKL

(

p(y|hθ1(xj)), p(y|hθ2(xj))
)

=

1

2
‖hθ1(xj)− hθ2(xj)‖

2
2 .

(94)

when the predictive distribution of our net is of the form

p(y|hθk(xj)) = N (y|hθk(xj); I). (95)

That is, p(y|hθk(xj)) is a normal distribution with mean

hθ1(xj) and covariance matrix I . This boils down to com-

puting the KL-divergence between two multivariate Gaus-

sians having the same covariance matrix. Let us denote for

convenience µ1,j := hθ1(xj), µ2,j := hθ2(xj). Then, we

have the forward KL divergence

DKL

(

p(y|µ1,j)
∣

∣

∣

∣ p(y|µ2,j)
)

=

Ey∼N (µ1,j |I)

[

−
1

2
‖y − µ1,j‖

2
2 +

1

2
‖y − µ2,j‖

2
2

]

=

−
1

2
Ey∼N (µ1,j |I)

[

µT
1,jµ1,j + 2yT (µ2,j − µ1,j)− µT

2,jµ2,j

]

=

−
1

2

[

µT
1,jµ1,j + 2µT

1,j(µ2,j − µ1,j)− µT
2,jµ2,j

]

.

(96)

Thus, we have

DKL

(

p(y|µ1,j)
∣

∣

∣

∣ p(y|µ2,j)
)

=
1

2
‖µ2,j − µ1,j‖

2
2 . (97)

By exchanging the indices in (97) we see that the back-

wards KL-divergence is equal to the forwards KL diver-

gence

DKL

(

p(y|µ1,j)
∣

∣

∣

∣ p(y|µ2,j)
)

=DKL

(

p(y|µ2,j)
∣

∣

∣

∣ p(y|µ1,j)
)

=

1

2
‖µ2,j − µ1,j‖

2
2 .

(98)

Thus, we have

DKL

(

p(y|µ1,j), p(y|µ2,j)
)

= DKL

(

p(y|µ1,j)
∣

∣

∣

∣ p(y|µ2,j)
)

=
1

2
‖µ2,j − µ1,j‖

2
2

,

(99)

which is our claim �.

6.2. Classification: Categorical Distribution

In this case, our predictive distribution is given by

p(y|hθk(xj)) = S
(

hθk(xj)
)

[y], (100)

where hθk(xj) ∈ R
nc is the output of the net, S(·) is the

Softmax function, nc is the number of possible classes, and

S[y] represents the yth entry of (probability) vector S. We

have the forward KL-Divergence

DKL

(

p(y|hθ1(xj)
∣

∣

∣

∣ p(y|hθ2(xj)
)

=
nc
∑

i=1

p(i|hθ1(xj) log
p(i|hθ1(xj))

p(i|hθ2(xj))
,

(101)

and the forward KL-Divergence

DKL

(

p(y|hθ2(xj)
∣

∣

∣

∣ p(y|hθ1(xj)
)

=
nc
∑

i=1

p(i|hθ2(xj) log
p(i|hθ2(xj))

p(i|hθ1(xj))
.

(102)

Since we can get the vectors hθ1(xj) and hθ2(xj) by

merely saving the old parameter θ1 (and we have θ2 as the

current parameter) and performing 2 forward passes, we

can compute both the forward KL divergence in (101) and

the backward KL-divergence in (102) easily (as nc is typ-

ically very small). We can then obtain the symmetric KL

divergence as

DKL

(

p(y|hθ1(xj), p(y|hθ1(xj)
)

=

1

2

nc
∑

i=1

S
(

hθ1(xj)
)

[i] · log
S
(

hθ1(xj)
)

[i]

S
(

hθ2(xj)
)

[i]

+
1

2

nc
∑

i=1

S
(

hθ2(xj)
)

[i] · log
S
(

hθ2(xj)
)

[i]

S
(

hθ1(xj)
)

[i]
.

(103)

7. Extension of KLD-WRM to variable

step-size

Note that for WoQM, SO-KLD-WRM and Q-KLD-WRM, the

parameter 1/λ plays the role of a step-size. In the main

body, we considered only cases when λ is fixed across

different locations θk, that is, a fixed step-size. For KLD-

WRM, a fixed λ at all steps can also be interpreted as a fixed

‘strength’ of KL-wake-regularization.

Our established equivalence between FISHER-WoQM and

EA-NG holds for fixed step-size only, and in fact, one can

check that it does not hold if we consider varying λ with

θk. However, one might want to consider variable λ (thus

variable step-size/KL-wake-regularization strength) in our

KLD-WRM algorithms. That is, one might want to consider

replacing λ in equation (23) of the main body with λ(k),

whose schedule can be set as the inverse of the desired

Page 8 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

learning-rate schedule. It turns out that if we do this, Propo-

sitions 4.1 and 4.2 only change mildly. To incorporate vari-

able λ(k) in Q-KLD-WRM, all one has to do is to replace

(40) with ĝk+1 = gk+1+(λ(k+1)/λ(k))ρ[ĝk − gk− M̂kĝk]
and all λ’s in Proposition 4.2 with λ(k). This fact allows

us to easily use variable λ(k) in practice. The change to

Proposition 4.1 can be directly obtained by noting that it is

a particular case of Proposition 4.2 with Bk = 0. Proposi-

tion 4.2 modified to allow for variable λ(k), as well as its

proof are presented in the next subsection.

7.1. Extension of Proposition 4.2 to Variable λ

Before we begin, we restate the Q-KLD-WRM formulation

with variable λ for clarity. The Q-KLD-WRM step at θk,

with variable λ(k), is the solution to

min
s

gTk s+
1

2
sTBks+λ(k)

k
∑

i=0

κ(i)ρk−i
D̃KL(θi||θk + s),

(104)

where Bk is a curvature matrix which aims to approxi-

mate the Hessian Hk, and λ(k) is the level of KL-wake-

regularization (or the inverse step-size) which is allowed to

vary with k. Equation (104) tells us that the Q-KLD-WRM

step at θk (with variable λ(k)) solves

min
s

sT
[

gk +

k−1
∑

i=0

ρk−i

(

λ(k)κ(i)Fi

k−1
∑

j=i

sj

)]

+
λ(k)

2
sT

[k
∑

i=0

κ(i)ρk−iFi +
1

λ(k)
Bk

]

s.

(105)

Proposition A.1 (Extension of Proposition 4.2): Analytic

Solution of Q-KLD-WRM step with variable λ(k). The

Q-KLD-WRM step sk at location θk, with variable λ(k), is

given by the solution to the problem

min
s

sT ĝk +
λ(k)

2
sT

[

F̄k +
1

λ(k)
Bk

]

s (106)

where ĝk is given by the one-step recursion

ĝk+1 = gk+1 +
λ(k+1)

λ(k)
ρ

[

ĝk − gk − M̂kĝk

]

, ∀k ∈ Z
+,

(107)

with ĝ0 := g0, F̄k :=
∑k

i=0 κ(i)ρ
k−iFi, and

M̂k :=
[

I +
1

λ(k)
BkF̄

−1
k

]−1
. (108)

That is, the Q-KLD-WRM step is formally given by

sk = −
1

λ(k)

[

F̄k +
1

λ(k)
Bk

]−1

ĝk. (109)

Proof. By induction. The induction is very similar to the

proof of Proposition 4.2.

Induction check. For k = 0, we have the model in (105)

reducing to

min
s

sT g0 +
λ(0)

2
sT

[

F̄0 +
1

λ(0)
B0

]

s (110)

Now, noting that ĝ0 = g0 by definition, we see that the Q-

KLD-WRM linear10 term obeys Proposition A.1 at k = 0.

Thus,

s0 = −
1

λ(0)

[

F̄0 +
1

λ(0)
B0

]−1

ĝ0. (111)

For k = 1, we have the model in (105) reducing to

min
s

sT [g1+ρλ(1)F0s0]+
λ(1)

2
sT

[

F̄1+
1

λ(1)
B1

]

s. (112)

Now, by using (111), we have that

ρλ(1)F0s0 = −ρ
λ(1)

λ(0)

[

F−1
0

]−1
[

F̄0 +
1

λ(0)
B0

]−1

ĝ0

(113)

ρλ(1)F0s0 =− ρ
λ(1)

λ(0)

[

F̄0F
−1
0 +

1

λ(0)
B0F

−1
0

]−1

ĝ0 =

− ρ
λ(1)

λ(0)
M̂0ĝ0

(114)

where the latter equality holds by the definition of M̂k eval-

uated at k = 0 and the fact that F̄0 = F0. Thus,

g1 + ρλ(1)F0s0 = g1 − ρ
λ(1)

λ(0)
M̂0ĝ0, (115)

g1 + ρλ(1)F0s0 = g1 + ρ
λ(1)

λ(0)

[

ĝ0 − g0 − M̂0ĝ0

]

(116)

The latter equality in (116) holds because g0 = ĝ0. Con-

sequently, using the recursive definition of ĝk+1 for k = 0,

we get

g1 + ρλ(1)F0s0 = ĝ1, (117)

which shows us that the Q-KLD-WRM linear term obeys

the formulation in Proposition A.1. Thus the whole Q-KLD-

WRM formulation obeys formulation (106). In particular,

we have

s1 = −
1

λ(1)

[

F̄1 +
1

λ(1)
B1

]−1

ĝ1. (118)

10The Quadratic term obviously also obeys Propositon A.1 for-
mulation - but this fact follows trivially from the original Q-KLD-
WRM definition, as we can see.

Page 9 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

For k = 2, we have the model in (105) reducing to

min
s

λ(2)

2
sT

[

F̄2 +
1

λ(2)
B2

]

s+

sT
[

g2+ρ2λ(2)F0(s0 + s1) + ρλ(2)(1− ρ)F1s1

]

.

(119)

The linear term in (119) can be rearranged as

sT
[

g2+ρ2λ(2)F0s0 + ρλ(2)[ρF0 + (1− ρ)F1]s1

]

=

sT
[

g2 + ρ2λ(2)F̄0s0 + ρλ(2)F̄1s1

]

,

(120)

where to get the second equality we used the definition of

F̄k applied at k = 0 and k = 1. We have already seen when

doing the check for k = 1 (from (117)) that

ρ2F̄0s0 = ρ
1

λ(1)
(ĝ1 − g1) (121)

Thus, we have

ρ2λ(2)F̄0s0 = ρ
λ(2)

λ(1)
(ĝ1 − g1). (122)

So we only need to work out the ρλ(2)F̄1s1 term in (120).

By using (118), this reads

ρλ(2)F̄1s1 = −ρ
λ(2)

λ(1)

[

F̄−1
1

]−1
[

F̄1 +
1

λ(1)
B1

]−1

ĝ1

(123)

ρλ(2)F̄1s1 =− ρ
λ(2)

λ(1)

[

F̄1F̄
−1
1 +

1

λ(1)
B1F̄

−1
1

]−1

ĝ1 =

− ρ
λ(2)

λ(1)
M̂1ĝ1

(124)

where the latter equality holds by the definition of Mk eval-

uated at k = 1. Thus, plugging in (124) and (122) in the

linear term expression (120), we get that the linear term

reads

sT
[

g2+ρ2λF0s0 + ρλ[ρF0 + (1− ρ)F1]s1

]

=

sT
[

g2 + ρ
λ(2)

λ(1)
(ĝ1 − g1 − M̂1ĝ1)

]

= sT ĝ2,

(125)

where in the last equality we used the recursive definition

of ĝk+1 from Proposition A.1, evaluated at k = 1. Thus,

(56) shows us that the Q-KLD-WRM linear term obeys the

formulation in Proposition 4.2. Thus the whole Q-KLD-

WRM formulation obeys formulation (106). In particular,

if we now plug the linear term in (125) back into the full

model (119), we get that the Q-KLD-WRM step satisfies

s2 = −
1

λ

[

F̄2 +
1

λ
B2

]−1

ĝ2. (126)

We are done with the induction check.

Induction main body. Assume for the inductive hypothesis

that we have for some k ≥ 2

sl = − argmin
s

sT ĝl+
λ(l)

2
sT

[

F̄l+
1

λ(l)
Bl

]

s, ∀l ∈ {0, .., k}

(127)

ĝl = gl+
λ(l)

λ(l−1)
ρ

[

ĝl−1−gl−1−M̂l−1ĝl−1

]

∀l ∈ {1, ..., k},

(128)

with ĝ0 := g0, F̄k :=
∑k

i=0 κ(i)ρ
k−iFi, and

M̂l :=
[

I +
1

λ
BlF̄

−1
l

]−1
. (129)

We need to prove that at k + 1, for all k ≥ 2, we have

ĝk+1 = gk+1 +
λ(k+1)

λ(k)
ρ

[

ĝk − gk − M̂kĝk

]

(130)

with M̂k defined as in (129), and

sk+1 =argmin
s

sT ĝk+1

+
λ(k+1)

2
sT

[

F̄k+1 +
1

λ(k+1)
Bk+1

]

s.
(131)

Since the inductive check holds at k ∈ {0, 1, 2}, this would

imply Proposition A.1 holds.

To begin, consider (105) evaluated at k + 1. We have that

the Q-KLD-WRM step at k + 1, sk+1 is the solution to

min
s

λ(k+1)

2
sT

[

F̄k+1 +
1

λ(k+1)
Bk+1

]

s

+sT
[

gk+1 +

k
∑

i=0

ρk+1−i

(

λ(k+1)κ(i)Fi

k
∑

j=i

sj

)]

.

(132)

Let us now consider the coefficient of the linear term in

Page 10 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

(63). It reads

gk+1 +

k
∑

i=0

ρk+1−i

(

λ(k+1)κ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + λ(k+1)
k

∑

i=0

k
∑

j=i

ρk+1−iκ(i)Fisj =

gk+1 + λ(k+1)
k

∑

j=0

[(j
∑

i=0

ρk+1−iκ(i)Fi

)

sj

]

=

gk+1 + λ(k+1)
k
∑

j=0

ρk+1−j F̄jsj =

gk+1 + ρ

k
∑

j=0

ρk−jλ(k+1)F̄jsj .

(133)

To get from the third to the fourth line in (133) we used the

definition of F̄k evaluated at k = j. We can further write

the linear coeffcient of (132) as

gk+1 +

k
∑

i=0

ρk+1−i

(

λ(k+1)κ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ

k
∑

j=0

ρk−jλ(k+1)F̄jsj =

gk+1 + ρ
λ(k+1)

λ(k)

k−1
∑

j=0

ρk−jλ(k)F̄jsj + ρλ(k+1)F̄ksk.

(134)

Now, considering the same linear term of our Q-KLD-WRM

formulation, but at arbitrary l ∈ [1, k] ∩ Z (rather than at

k + 1) we get can apply11 equation (134) to get

gl +

l−1
∑

i=0

ρl−i

(

λ(l)κ(i)Fi

k
∑

j=i

sj

)

= gl +

l−1
∑

j=0

ρl−jλ(l)F̄jsj .

(135)

But the inductive hypothesis, (127) and (128), tells us that

this linear term must also be ĝl. That is, we have

ĝl = gl +

l−1
∑

j=0

ρl−jλ(l)F̄jsj , (136)

and therefore

l−1
∑

j=0

ρl−jλ(l)F̄jsj = ĝl − gl. (137)

11We can do that because our calculations (132) - (134) hold
for arbitrary k ∈ Z

+, and so does the Q-KLD-WRM formulation
(134).

In particular (137) must also hold for l = k, because the

induction hypothesis holds up until ĝk. We have

k−1
∑

j=0

ρk−jλ(k)F̄jsj = ĝk − gk, (138)

Now, plugging (138) into (134), we have

gk+1 +

k
∑

i=0

ρk+1−i

(

λ(k+1)κ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ
λ(k+1)

λ(k)
(ĝk − gk) + ρλ(k+1)F̄ksk,

(139)

so all is left is to compute the term ρλ(k+1)F̄ksk. To do

that, we use the induction hypothesis again. In particular,

we use (127) for l = k and solve exactly for sk, to get

sk = −
1

λ(k)

[

F̄k +
1

λ(k)
Bk

]−1

ĝk. (140)

Using (71), we have

ρλ(k+1)F̄ksk = −ρ
λ(k+1)

λ(k)

[

F̄−1
k

]−1
[

F̄k +
1

λ(k)
Bk

]−1

ĝk

= −ρ
λ(k+1)

λ(k)
M̂kĝk.

(141)

The last equality of (141) is obtained by combining the two

inverses in the inverse of a single matrix, and then using the

definition of M̂k, (108).

Plugging (141) into (139) gives us that our linear term co-

efficient of the Q-KLD-WRM formulation at k + 1 is given

by

gk+1 +
k

∑

i=0

ρk+1−i

(

λκ(i)Fi

k
∑

j=i

sj

)

=

gk+1 + ρ
λ(k+1)

λ(k)
(ĝk − gk)− ρ

λ(k+1)

λ(k)
M̂kĝk =

gk+1 + ρ
λ(k+1)

λ(k)

[

ĝk − gk − M̂kĝk
]

.

(142)

Equation (142), combined with (132) shows us that the in-

duction target (130)-(131) is satisfied. Thus, the proof is

complete �.

8. Further Numerical Experiments

In this section, we first give the implementation details sep-

arately for each of the four considered solvers (K-FAC, SO-

KLD-WRM, Q-KLD-WRM, QE-KLD-WRM). We then

give the network architecture and finally present our numer-

ical results in more detail than in the main body (looking at

more metrics and more in-depth comments). The consid-

ered problem was MNIST classification.

Page 11 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

8.1. Optimizer Implementation Details

Kronecker Factors Regularization: Typically, a

Levenberg-Marquardt style regularization is used with the

Kronecker factors in K-FAC to implicitly decide the step

size (see Section 6 in [1]) . For our network architecture,

the Kronecker factors were full rank as long as the batch

size was reasonably large. We found the optimal batch

size to be 512, and this was well above the limit at which

the Kronecker factors became low rank. Thus, we avoided

using the complicated Kronecker-factor regularization

method described in the original K-FAC paper ([1]).

Instead, we simply used a constant learning rate, and added

a constant regularization factor of 0.01 to the Kronecker

factor’s eigenvalues (when doing the eigen-decomposition)

in order to avoid infinite stepsize. This performed well

enough in practice for all solvers including K-FAC (note

that all our examined KLD-WRM implementations are

based on the Kronecker factors in K-FAC).

Learning Rates and λ: The learning rate for K-FAC was

set to 0.01. In all KLD-WRM cases, we set λ = 100 (which

is roughly equivalent12 to a learning rate of 0.01).

Step/Gradient Clipping: For K-FAC and SO-KLD-WRM

the clipping strategy of our “K-FAC library codes13” was

used, with a clip parameter of 0.1. For Q-KLD-WRM

and QE-KLD-WRM we used a slightly different clip-

ping strategy: clip each parameter group individually if

‖θGi
‖2 /

√

|θGi
| > τ , where θGi

is the parameters in group

Gi and τ is a clipping threshold. In our experiments we set

τ = 2 throughout.

The reason for using different strategies with different

solvers was to try altering the step by the least amount when

clipping in each case, while avoiding blow-ups. From our

numerical trials, it seemed that the outlined choices fit our

purpose. Note that clipping matters very little for our re-

sults. One reason for that is because it only very rarely

activates, and whenever it does so, it will be in the initial

phase of the training. We hereby focus on performance met-

rics that have to do much more with mid and end-training

results - in other words, we do not claim (nor investigate

whether) KLD-WRM implementations perform better than

K-FAC in extremely low-epoch budget regime.

Updating the Kronecker Factors and Computing their

Inverse: It is typical that the eigen-decomposition (i.e.

computing inverses) of the Kronecker factors is performed

with lower frequency than updating the Kronecker factors

12We can see that by thinking of K-FAC as a practical imple-
mentation of EA-NG, which is of the form shown in equation (22)
in the main body: in this case 1/λ is the learning rate.

13These are the codes we built our codes
on. In particular, we used the kfac.py file at
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/algo/kfac.py.

(the statistics) for maximal computation efficiency [1, 2].

However, we performed both of them with the same fre-

quency (every 30 steps) across all our four investigated

solvers. We chose to do so in order to avoid the compli-

cations which arise with KLD-WRM instantiations when

having these two frequencies different (which we did not

discuss here). While K-FAC would perform better if we

increase the statistics update frequency and keep the eigen-

decomposition frequency constant, this would also happen

for KLD-WRM. Thus, we believe that our comparison is

fair, even if we set the two update frequencies to be equal

(which is empirically observed to be sub-optimal).

Other Details: We used weight decay with parameter of

0.001, and a batch size of 512 throughout.

8.1.1. QE-KLD-WRM SPECIFIC IMPLEMENTATION

DETAILS

For K-FAC, SO-KLD-WRM and Q-KLD-WRM there are

no specific implementation details, and all these fall under

the generic details we have just described. However, for

QE-KLD-WRM we need to (approximately) solve the QE-

KLD-WRM sub-problem in equation (36) of the main body,

which defines the QE-KLD-WRM step. This brings in

further hyper-parameters: initial guess, “inner” optimizer

choice, and the number of inner optimization steps.

We use the Q-KLD-WRM step as the initial guess. This

way, even if our inner optimizer makes little progress, we

can still get a reasonable step. We choose the inner opti-

mizer to be SGD with no momentum. We let ω be the ratio

between the inner optimizer learning rate and outer opti-

mizer “learning rate14”. Further, we let NIS and NCAP be

the number of inner optimization steps, and the maximum

number of “old” networks saved15 respectively. Note that

when we have more than NCAP networks stored (including

the current one), we delete the oldest one.

We have to choose NCAP large enough s.t. we have a good

approximation of the DKL term in equation (36) of the

main body, but small enough s.t. the memory does not over-

flow. A simple rule (which is the one we followed) is to

pick NIS to be the smallest positive integer s.t. ρNIS < 0.1.

The over-flow problem might limit us from making this

choice16 for larger nets if TPUs are not available. How-

ever, for our net, it was not a concern even on a standard

CPU/GPU. We let ρ, ω, NIS be variable, and try four dif-

ferent parameters configurations (see Figures 1,2,3 and 4).

Note that ρ is not specific to QE, but is present in all solvers.

14Which is 1/λ = 0.01 here for all solvers.
15To approximate the DKL term in equation (36) of the main

body.
16In this case, we have to choose between reducing rho or us-

ing a coarser approximation of DKL.

Page 12 of 17

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/algo/kfac.py

Supplementary Material: Rethinking Exponential Averaging of the Fisher

Since the exact KL divergence estimate tended to be 2.5

orders o magnitude larger than the loss, we used ζ(i) =
κ(i)/330 for QE-KLD-WRM, rather than ζ(i) = κ(i) as

for the other solvers.

8.2. Implementation Detail: Network Architecture

Conv1: seven 5×5 filters, ReLu activation, 2×2 MaxPool;

Conv2: five 5 × 5 filters, ReLu activation, 2 × 2 MaxPool;

Fully-Connected 1: 112 nodes and ReLu activation; Fully-

Connected 2: 30 nodes. The output dimension is equal to

the number of classes, which is nc = 10. This gives a total

of 4712 parameters. We also add dropout at the very last

layer to reduce over-fit. The output of the net represents the

logits, which are then passed through softmax activation

function to obtain class probabilities. The loss is taken to

be cross-entropy (using the softmax output), as is typical in

classification.

Both the network architecture and the optimizer details can

be directly observed from the codes available at: GIVE

CODE LINK.

8.3. Further Numerical Results and Comments

In this section, we present numerical results for all investi-

gated parameters (as opposed to only the best ones as in the

main body). Even though we do not focus on the training

loss, we also show it here for completeness.

8.3.1. CONSIDERED METRICS EXPLANATION

We present results for K-FAC, SO-KLD-WRM, Q-KLD-

WRM and QE-KLD-WRM in Figures 1, 2, 3 and 4 respec-

tively. Four different hyper-parameter settings are consid-

ered for each solver, and these vary across columns for each

figure. Test accuracy, test loss and train loss are considered

going down the rows. Ten runs are considered for each [op-

timizer, parameter setting] pair. To simplify the interpreta-

tion of these results, we consider extracting some summary

statistics17 out of the raw results (shown in Figures 1 - 4).

These summary statistics are shown in Table 1.

Firstly, we consider the distribution of test accuracy and

test loss after 50 training epochs. We show the empirical

mean and standard deviation in the final columns of Table

1. In principle, low standard deviation is desirable, because

it indicates more robustness (w.r.t. randomness) in obtain-

ing good results. However, having “favourable” outliers

(which are more likely to happen under large variance) is

beneficial.

Secondly, we count the number of runs that exceed a cer-

tain goodness threshold for both test accuracy (higher is

better) and test loss (lower is better). These metrics are

17Which are also performance metrics.

meant to give an idea about “favourable” outliers, as well

as about the robustness of achieving good results with a

solver. There are 2 important points about the counting

procedure:

1. Counting is done even if the metric degrades after-

wards. This is because we assume one would periodi-

cally save checkpoints - and choose the best at the end

of training (this is easily implementable in the code

at the expense of some communication cost and disk

storage cost);

2. Counting is not done unless the metric either exceeds

the threshold significantly once, or does so multiple

times. We do this to try to reduce the noise.

8.3.2. INTERPRETATION OF RESULTS

Test Accuracy: For K-FAC, mean accuracy is around 96%,

whereas for our proposed solvers it gets as high as 97.5%
for all of them, with some getting close to, and even ex-

ceeding, 98%. The standard deviation is also much smaller

for our proposed algorithms (desirable). This can also be

observed by looking at Figures 1-4, and counting the num-

ber of runs that exceed a certain threshold (avoid counting

a line if it appears to be crossed only due to noise). These

counting results are also summarized in Table 1.

We see that, while K-FAC typically has one outlier with

more than 98.5% test accuracy, it only has at most 4 runs

where the test accuracy is greater than or equal to 98%,

and 3 runs where this is strictly greater than 98%. In con-

trast, our proposed KLD-WRM instantiations have at least

6 runs where the test accuracy is greater than or equal to

98%, and at least 4 runs where this is strictly greater than

98% for most hyper-parameter values. In fact, by observ-

ing columns 2 and 3 in Table 1, we see that for some hyper-

parameter values, our proposed solvers can get as many as

7-8 runs where the test accuracy is greater than or equal to

98%, and 5 runs where this is strictly greater than 98%. Fur-

thermore, even in terms of favourable outliers, we have a

KLD-WRM variant that performs on par with K-FAC: QE-

KLD-WRM (see column 4 in Table 1).

Test Loss: Test loss results are roughly analogous to the

test accuracy results. There are three main points to note

here. First, there are 1-2 K-FAC “favourable” outliers (test

loss better than 0.2) rather than just 1, as was the case for

test accuracy. Second, there are no such outliers for KLD-

WRM variants (not even for QE, as was the case with test

accuracy results). Third, very good test loss is not always

equivalent to very good test accuracy. This observation ap-

plies to all four solvers, but it seems that the equivalence is

slightly more fragile for KLD-WRM variants. The mean-

ing and reasons behind this are outside our scope and touch

ideas like the fact that the test set is just a sample from the

distribution we care about, and comparing accuracy versus

Page 13 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

robustness to adversarial attacks.

Robustness and Overall Performance: Overall, our re-

sults show that if we can only afford to run the training

a few times (perhaps once), it is preferable (in terms of

epochs; both from a test accuracy and test-loss point of

view) to use one of our KLD-WRM variants rather than K-

FAC, because these more robustly18 achieve good results.

Conversely, if we can afford to run the algorithms many

times (and take the best solution), the high variance of K-

FAC results metrics may eventually play to our advantage

(but this is not guaranteed). Thus, we believe that based on

the presented results, it is preferable (in terms of epochs) to

use a KLD-WRM variant rather than using K-FAC.

Choosing an Appropriate KLD-WRM Variant and

Winners: Which variant of KLD-WRM should we choose

depends on the problem. Recall that SO-KLD-WRM and

Q-KLD-WRM have virtually the same computational19

cost per step as K-FAC. Conversely, QE-KLD-WRM has

the same data acquisition and linear-algebra20 costs as K-

FAC, but higher oracle21 cost by a factor of NIS + 1, due

to the SGD steps taken to (approximately) solve the QE-

KLD-WRM optimization subproblem (which defines the

QE step).

Thus, for problems where the data acquisition cost is rel-

atively low22, one should choose between Q-KLD-WRM

and SO-KLD-WRM, as these would (most of the time) give

the best results with virtually identical wall-time as K-FAC.

The best picks are SO-KLD-WRM with ρ = 0.33 and Q-

KLD-WRM with ρ ∈ {0.33, 0.5}. The latter performs

slightly better, but the former gives almost the same per-

formance for a negligible implementation effort (assuming

K-FAC codes are available) and might thus be preferred for

prototyping.

For problems where the data acquisition cost is sufficiently

high23 (dominating the linear algebra and oracle cost), the

wall time per epoch will be virtually the same across all

four solvers. In this case, one should choose QE-KLD-

WRM. The best parameters we found (on MNIST classi-

fication) were ρ = 0.5, NIS = 10, ω = 0.07, Ncap = 4.

Best Hyper-parameter Settings for each Solver: By in-

vestigating Figures 1, 2, 3, 4, and Table 1, one would

18Better mean and lower variance.
19Includes both data acquisition cost and optimizer cost (opti-

mizer cost includes linear algebra and oracle cost - Forward pass
and automatic differentiation cost).

20The linear algebra cost is marginally larger for QE-KLD-
WRM than for K-FAC, but this has no real influence on the ob-
served wall time (as with the SO and Q variants).

21Here we use oracle cost to refer to the forward pass and back-
ward pass computation cost.

22Eg. classification problems with data on our disk.
23Eg. reinforcement learning with high data simulation cost.

(arguably) choose the following hyper-paratemers settings

to be the best: (1) K-FAC: ρ = 0.95 (which is what

also the original author recommends), (2) SO-KLD-WRM:

ρ = 0.33, (3) Q-KLD-WRM: ρ = 0.33 or ρ = 0.5, (4)

QE-KLD-WRM: ρ = 0.5, NIS = 10, ω = 0.07, Ncap = 4.

These are the values we used for comparison in the main

body.

References

[1] Martens, J.; Grosse, R. Optimizing neural networks

with Kronecker-factored approximate curvature, In:

arXiv:1503.05671 (2015).

[2] Osawa, K.; Yuichiro Ueno, T.; Naruse, A.; Foo, C.-S.;

Yokota, R. Scalable and practical natural gradient for

large-scale deep learning, arXiv:2002.06015 (2020).

Page 14 of 17

http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/2002.06015

Supplementary Material: Rethinking Exponential Averaging of the Fisher

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for K-FAC, ρ=0.33, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for K-FAC, ρ=0.5, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for K-FAC, ρ=0.7, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for K-FAC, ρ=0.95, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for K-FAC, ρ= 0.33, λ= 100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40
Lo

ss

Test Loss for K-FAC, ρ= 0.5, λ= 100

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for K-FAC, ρ= 0.7, λ= 100

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for K-FAC, ρ= 0.95, λ= 100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for K-FAC, ρ= 0.33, λ= 100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for K-FAC, ρ= 0.5, λ= 100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for K-FAC, ρ=0.7, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for K-FAC, ρ=0.95, λ=100

0.2 Loss
0.1 Loss

Figure 1. K-FAC Results (MNIST Classification): from top to bottom: Test Accuracy, Test Loss, Training Loss.From left to right:

different ρ (0.33, 0.5, 0.7, 0.95). The unspecified hyper-parameters were the same across all runs, and stated in Section 7.1.

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for SO-KLD-WRM, ρ= 0.33, λ= 100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for SO-KLD-WRM, ρ= 0.5, λ= 100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Accuracy for SO-KLD-WRM, ρ= 0.7, λ= 100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0
Ac

cu
ra

cy
Test Accuracy for SO-KLD-WRM, ρ= 0.8, λ= 100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for SO-KLD-WRM, ρ=0.33, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for SO-KLD-WRM, ρ=0.5, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for SO-KLD-WRM, ρ=0.7, λ=100

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for SO-KLD-WRM, ρ=0.8, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for SO-KLD-WRM, ρ=0.33, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for SO-KLD-WRM, ρ=0.5, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for SO-KLD-WRM, ρ=0.7, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for SO-KLD-WRM, ρ=0.8, λ=100

0.2 Loss
0.1 Loss

Figure 2. SO-KLD-WRM Results (MNIST Classification): from top to bottom: Test Accuracy, Test Loss, Training Loss. From left to

right: different ρ (0.33, 0.5, 0.7, 0.8). The unspecified hyper-parameters were the same across all runs, and stated in Section 7.1.

Page 15 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu
ra
cy

Test Accuracy for Q-KLD-WRM, ρ=0.33, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu
ra
cy

Test Accuracy for Q-KLD-WRM, ρ=0.5, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu
ra
cy

Test Accuracy for Q-KLD-WRM, ρ=0.7, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu
ra
cy

Test Accuracy for Q-KLD-WRM, ρ=0.8, λ=100

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for Q-KLD-WRM, ρ= 0.33, λ= 100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for Q-KLD-WRM, ρ= 0.5, λ= 100

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for Q-KLD-WRM, ρ=0.7, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss for Q-KLD-WRM, ρ=0.8, λ=100
0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for Q-KLD-WRM, ρ=0.33, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for Q-KLD-WRM, ρ=0.5, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for Q-KLD-WRM, ρ=0.7, λ=100

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss for Q-KLD-WRM, ρ=0.8, λ=100

0.2 Loss
0.1 Loss

Figure 3. Q-KLD-WRM Results (MNIST Classification): from top to bottom: Test Accuracy, Test Loss, Training Loss. From left to

right: different ρ (0.33, 0.5, 0.7, 0.8).The unspecified hyper-parameters were the same across all runs, and stated in Section 7.1.

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Acc.: QE-KLD-WRM, ρ= 0.5,ω= 0.04,Ncap = 4,NIS = 10

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Acc.: QE-KLD-WRM, ρ= 0.5,ω= 0.07,Ncap = 4,NIS = 10

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Acc.: QE-KLD-WRM, ρ= 0.5,ω= 0.1,Ncap = 4,NIS = 7

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

Test Acc.: QE-KLD-WRM, ρ= 0.7,ω= 0.04,Ncap = 8,NIS = 7

96% accuracy
98% accuracy
98.5% accuracy

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss: QE-KLD-WRM, ρ=0.5,ω=0.04,Ncap =4,NIS =10

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss: QE-KLD-WRM, ρ=0.5,ω=0.07,Ncap=4,NIS=10

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss: QE-KLD-WRM, ρ=0.5,ω=0.1,Ncap=4,NIS=7

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Test Loss: QE-KLD-WRM, ρ= 0.7,ω= 0.04,Ncap = 8,NIS = 7

0.25 Loss
0.2 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss: QE-KLD-WRM, ρ=0.5,ω=0.04,Ncap=4,NIS=10

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss: QE-KLD-WRM, ρ=0.5,ω=0.07,Ncap=4,NIS=10

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss: QE-KLD-WRM, ρ=0.5,ω=0.1,Ncap=4,NIS=7

0.2 Loss
0.1 Loss

0 10 20 30 40 50
Number of Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Train Loss: QE-KLD-WRM, ρ=0.7,ω=0.04,Ncap=8,NIS=7

0.2 Loss
0.1 Loss

Figure 4. QE-KLD-WRM Results (MNIST Classification): from top to bottom: Test Accuracy, Test Loss, Training Loss. Left to right:

different QE hyper-parameter values. The unspecified hyper-parameters were the same across all runs, and stated in Section 7.1.

Page 16 of 17

Supplementary Material: Rethinking Exponential Averaging of the Fisher

Table 1. MNIST results summary. SO-KLD-WRM, Q-KLD-WRM and QE-KLD-WRM are our proposed KLD-WRM variants and

K-FAC is the benchmark. Results are displayed for multiple hyper-parameter values of the four optimizers: K-FAC, SO-KLD-WRM,

Q-KLD-WRM, QE-KLD-WRM. A slash indicates counting is somewhat debateable. Bolded entries are the best ones in their column.

Top to bottom: Different optimizers and hyper-parameters. Left to right: Performance metrics (out of 10 runs).

Optimizer / Metric

No. runs

test

acc.

≥ 98%

No. runs

test

acc.

> 98%

No. runs

test

acc.

≥ 98.5%

No. runs

below

0.25
test loss

No. runs

below

0.2
test loss

Mean test

accuracy

(epoch 50)

STD. test

accuracy

(epoch 50)

Mean test

loss

(epoch 50)

STD. test

loss

(epoch 50)

K-FAC: ρ = 0.33 3 1 1 6 1 95.42% 3.73% 0.28 0.09

K-FAC: ρ = 0.5 3 2 1 5 2 95.69% 2.85% 0.27 0.08

K-FAC: ρ = 0.7 4 2 1 5 2 96.13% 2.58% 0.26 0.07

K-FAC: ρ = 0.95 3 3 1 5 2 96.19% 3.2% 0.26 0.10

SO-KLD-WRM: ρ = 0.33 4 2 0 7 0 97.60% 0.85% 0.25 0.04

SO-KLD-WRM: ρ = 0.5 7 / 8 4 /5 0 3 0 97.79% 0.41% 0.26 0.02

SO-KLD-WRM: ρ = 0.7 6 5 0 0 0 97.94% 0.5% 0.30 0.02

SO-KLD-WRM: ρ = 0.8 5 3 0 0 0 97.93% 0.37% 0.34 0.02

Q-KLD-WRM: ρ = 0.33 3 1 0 7 0 97.47% 0.69% 0.24 0.02

Q-KLD-WRM: ρ = 0.5 5 4 0 4 0 97.69% 0.69% 0.26 0.04

Q-KLD-WRM: ρ = 0.7 6 / 7 4 0 0 0 98.03% 0.27% 0.29 0.01

Q-KLD-WRM: ρ = 0.8 4 1 0 0 0 97.88% 0.27% 0.35 0.02

QE-KLD-WRM:

ρ = 0.5, NIS = 10
ω = 0.04, Ncap = 4

7 / 8 7 2 8 0 97.85% 0.67% 0.24 0.03

QE-KLD-WRM:

ρ = 0.5, NIS = 10
ω = 0.07, Ncap = 4

, 8 7 2 9 0 98.01% 0.64% 0.23 0.02

QE-KLD-WRM:

ρ = 0.5, NIS = 7
ω = 0.1, Ncap = 4

7 6 2 9 0 97.93% 0.46% 0.23 0.02

QE-KLD-WRM:

ρ = 0.7, NIS = 10
ω = 0.04, Ncap = 8

9 / 10 8 0 0 0 98.07% 0.44% 0.28 0.02

Page 17 of 17

	Rethinking Exponential Averaging of the Fisher
	1 Proof of Proposition 3.1
	2 Proof of Proposition 4.1
	3 Proof of Proposition 4.2
	4 The error between EA over K-Factors and EA over K-FAC approximated Fisher
	4.1 The Error when using EA over Kronecker Factors

	5 Efficient Computation of Q-KLD-WRM Step when Bk = Fk(KFAC)
	5.1 Computation of k+1
	5.2 Computing sk+1

	6 KL-Divergence in terms of Network Output
	6.1 Regression with Gaussian Predictive Distributions of Fixed Variance
	6.2 Classification: Categorical Distribution

	7 Extension of KLD-WRM to variable step-size
	7.1 Extension of Proposition 4.2 to Variable

	8 Further Numerical Experiments
	8.1 Optimizer Implementation Details
	8.1.1 QE-KLD-WRM Specific Implementation Details

	8.2 Implementation Detail: Network Architecture
	8.3 Further Numerical Results and Comments
	8.3.1 Considered Metrics Explanation
	8.3.2 Interpretation of Results

