
FASE: A Fast, Accurate and Seamless Emulator
for Custom Numerical Formats

John Osorio∗, Adrià Armejach∗, Eric Petit‡, Greg Henry‡ and Marc Casas∗
∗Barcelona Supercomputing Center (BSC) and Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

‡Intel, Oregon, USA
Email: john.osorio@bsc.es

Abstract—Deep Neural Networks (DNNs) have become ubiqui-
tous in a wide range of application domains. Despite their success,
training DNNs is an expensive task that has motivated the use
of reduced numerical precision formats to improve performance
and reduce power consumption. Emulation techniques are a good
fit to understand the properties of new numerical formats on a
particular workload. However, current SoA techniques are not
able to perform these tasks quickly and accurately on a wide
variety of workloads.

We propose FASE, a Fast, Accurate, and Seamless Emulator
that leverages dynamic binary translation to enable emulation
of custom numerical formats. FASE is fast: allowing emulation
of large unmodified workloads; accurate: emulating at the in-
struction operand level; and seamless: as it does not require
any code modifications and works on any application or DNN
framework without any language, compiler, or source code access
restrictions.

I. INTRODUCTION

Current trends on DNNs indicate that training costs will
continue to grow as SoA DNNs feature increasingly large
parameter counts [1]. There are already approaches on re-
ducing the training computation costs via mechanisms that
incur accuracy degradations [2]–[4]. Additionally, there are
approaches able to reduce training costs without reducing
DNNs accuracy. These approaches rely on reduced computer
number formats [5]–[8]. To decide among all possible potential
format designs which ones display the best opportunities for
efficient and accurate DNN training, it is critical to empirically
evaluate them with as much fidelity as possible and on as much
real neural net topology and real input datasets as possible.
The emulation of these reduced precision approaches becomes
one of the most important and costly phases to evaluate
the reliability of new numerical data types. The emulation
helps to avoid cost overrun, by avoiding costly hardware
implementations.

There are various SoA techniques to emulate reduced pre-
cision approaches. RPE [9] emulates the use of low precision
approaches in numerical simulations based on type overload-
ing at source level. RPE achieves emulation latencies of around
40× with respect to native executions on real hardware, but
does not support the large Python frameworks used in ML.
Furthermore, source level instrumentation might interact with
the compiler’s ability to optimize the code and therefore the
result of the emulation might by inaccurate in the context
of evaluating hardware design. TensorQuant [10], proposes

two source level approaches, intrinsic (fine-grain) and extrinsic
(coarse-grain), to emulate low precision using Tensorflow. The
extrinsic approach is an approximation where the rounding
process is done just on high level operators like convolutions.
This is the mode implemented in QPyTorch [11] to address
the PyTorch framework. The intrinsic approach rounds each
individual floating point operation and displays a latency of
50× with respect to native executions. It is a source level
approach that can be used to evaluate all implementation of
neural network based on Tensorflow. All of these approaches
are designed targeting specific DNN frameworks and require
changes on the framework and model source code.Other tools
like Verificarlo [12] work at the compiler level, and can be
applied to any Python framework. However, they do require
complex recompilation and debugging of the library and user
code.

To overcome these issues we propose FASE: a fast, accurate
and seamless tool that enables the emulation of custom nu-
merical formats on any application. FASE relies on dynamic
binary instrumentation using PIN [13] to perform fine-grain
instruction-level instrumentation. In addition, FASE seamlessly
works on any application or DNN framework without any
language, compiler or source access restrictions. Since no
code modification or recompilation steps are necessary, FASE
guarantees that the instrumented binary matches the original
one. Therefore, FASE works on all DNN frameworks, such
as: Caffe [14], Tensorflow [15] and Pytorch [16]. While fine-
grain instrumentation can inject large latencies, FASE have
latencies that range from 17× to 39×, which are comparable
to other fine-grain SoA techniques. As a result, FASE enables
hardware architects to understand numerical behaviour before
committing to costly hardware implementations.

This poster makes the following contributions:
• We propose FASE, an emulation tool for arbitrary numeri-

cal formats that enables accurate emulation of large work-
loads without requiring any source code modifications or
access to third-party dynamically linked libraries.

• We outline the design and implementation details, that
enable accurate emulation while keeping the injected
latencies low for feasible large-scale experimentation.

• An exhaustive evaluation campaign that demonstrates that
FASE works on large-scale experiments using multiple
numerical formats.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. DOI 10.1109/ISPASS55109.2022.00017



Fig. 1: FASE Implementation Overview

II. FASE DESIGN

Our goal is to design FASE with simplicity in mind by
enabling fast, accurate and seamless emulation of reduced
precision formats. In addition, we want our tool to be able
to emulate code of external dynamically linked libraries, as
many applications rely on such libraries which contain key
optimized routines.

FASE aims to provide an accurate and seamless method. To
achieve a fine-grain emulation, we propose to leave the target
application unmodified and operate at binary level intercepting
the executed machine instruction. By identifying key floating-
point instructions, for which we can modify the input and
output operands, FASE can seamlessly work on any application
and DNN framework including dynamically linked external
libraries.

III. FASE IMPLEMENTATION

In order to provide a fast, accurate and seamless expe-
rience; FASE relies on dynamic binary translation (DBT).
DBT enables modifications in the dynamic instruction flow
of any application binary, as well as on any dynamically
linked libraries the binary invokes. These modifications are
done during the instrumentation step, which is executed once.

Figure 1 shows an overview of the DBT instrumentation
step on FASE. FASE can be attached to any binary, and is
configured through a simple configuration file that specifies
the desired instrumentation parameters in terms of routines
and instructions to be instrumented as well as the emulated
reduced precision format and rounding method. The DBT
step which performs the instrumentation goes through each
statically defined basic block once, and for each instruction
it can insert instrumentation code. In our context, for each
instruction, we want to perform up to three code insertions:
1) Before: Insert code that converts the source registers of

the instruction to the desired reduced precision format and
applies the desired rounding.

TABLE I: Large-scale experiments using FASE

Model Dataset Accuracy
FP32 BF16 MP BF16x2

ResNet18 CIFAR100 71.91% 71.46% 71.89% 71.95%
ResNet34 CIFAR100 73.21% 72.83% 73.86% 72.66%
ResNet50 CIFAR100 74.78% 69.24% 74.25% 72.57%

ResNet101 CIFAR100 75.93% 67.10% 75.65% 76.00%
MobileNetV2 CIFAR100 75.04% 73.92% 75.16% 74.82%

AlexNet ImageNet 60.79% 57.80% 60.18% N/A
Inception ImageNet 74.01% 72.03% 73.73% N/A

LSTMx2 (Perplexity) PTB 86.86 137.69 87.09 86.90
Transformers (BLEU) IWSLT16 34.53 34.86 34.66 34.65

2) Instruction: In most cases the instruction can be executed
as is with the modified source registers. In some cases,
when the numerical format will not execute as expected on
the existing instruction or available hardware, the instruc-
tion needs to be replaced by equivalent code that emulates
the intended behaviour.

3) After: Insert code that converts the output to the desired
reduced precision format and applies the rounding mecha-
nism.

IV. FASE EVALUATION

Our experimental methodology considers the evaluation of
FASE on DNN frameworks like Caffe and PyTorch. Our
experiments are performed on an Intel Xeon Platinum 8160
processors. We compile each framework from source enabling
AVX512 Intel optimizations on all of them.

To show FASE supports real workloads we perform a
set of experiments. These tests consider the use of several
DNN models, datasets and numerical datatypes. We report the
validation accuracy after training, BLEU Score, or perplexity
depending on the workload type. We compare the obtained
accuracies against the reference implementation using FP32.
We use FASE to emulate three different numerical formats in
order to demonstrate the versatility of our tool:
• BF16 with RNE rounding used until now.
• The mixed-precision (MP) [17], [18] approach that employs

FP32 precision in batch normalization and weight update
layers. And performs FMA instructions using BF16 source
inputs for the multiplication and an FP32 input for the
accumulator, returning an FP32 value as output.

• A compound datatype that represents FP32 values using a
tuple of BF16 values (BF16x2) [19]. Note that this format
requires changing the original instruction with ad-hoc code
that performs the operation using the BF16x2 format.
We consider several DNN models as you see in Table I.

We use PyTorch for the object classification on CIFAR and
sequence models. The remaining experiments use Caffe. Ta-
ble I shows the results of using FASE for several full DNN
training workloads. We compare the accuracy of each network
using our tool emulating different numerical formats (BF16,
MP and BF16x2), and the FP32 native execution.

With FASE we can determine if a reduced precision format
is able to achieve the desired level of accuracy. This set of
results illustrates the potential of FASE to emulate different

2



numerical formats and to extract conclusions on their ap-
plicability. FASE can also be employed to study scenarios
where numerical precision is changed at runtime depending
on application progress, and to study other custom floating-
point representations; making it a compelling fast, accurate
and seamless tool.

ACKNOWLEDGMENT

Marc Casas has been partially supported by the Grant RYC-
2017-23269 funded by MCIN/AEI/ 10.13039/501100011033
and by “ESF Investing in your future”. Adrià Armejach
is a Serra Húnter Fellow and has been partially sup-
ported by the Grant IJCI-2017-33945 funded by MCIN/AEI/
10.13039/501100011033. John Osorio has been partially sup-
ported by the Grant PRE2019- 090406 funded by MCIN/AEI/
10.13039/501100011033 and by “ESF Investing in your fu-
ture”. This work has been partially supported by Intel under
the BSC-Intel collaboration and European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 955606 - DEEP-SEA EU project.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[2] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” 2017.

[3] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” 2018.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2019.

[5] Y. Fu, H. You, Y. Zhao, Y. Wang, C. Li, K. Gopalakrishnan, Z. Wang,
and Y. Lin, “Fractrain: Fractionally squeezing bit savings both tempo-
rally and spatially for efficient dnn training,” in Neurips, 2020.

[6] Y. Fu, H. Guo, M. Li, X. Yang, Y. Ding, V. Chandra, and Y. Lin,
“{CPT}: Efficient deep neural network training via cyclic precision,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=87ZwsaQNHPZ

[7] X. Sun, J. Choi, C. Y. Chen, N. Wang, S. Venkataramani, V. Srinivasan,
X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit Floating Point
(HFP8) Training and Inference for Deep Neural Networks,” in NeurIPS,
2019.

[8] X. Sun, N. Wang, C.-Y. Chen, J.-M. N. Ankur, A. Xiaodong, C. Swagath,
V. Kaoutar, E. Maghraoui, V. Srinivasan, and K. Gopalakrishnan, “Ultra-
Low Precision 4-bit Training of Deep Neural Networks,” in Neurips,
2020.

[9] A. Dawson and P. D. Düben, “rpe v5: an emulator for reduced
floating-point precision in large numerical simulations,” Geoscientific
Model Development, vol. 10, no. 6, pp. 2221–2230, 2017. [Online].
Available: https://gmd.copernicus.org/articles/10/2221/2017/

[10] D. M. Loroch, N. Wehn, F.-J. Pfreundt, and J. Keuper, “Tensorquant -
a simulation toolbox for deep neural network quantization,” 2017.

[11] T. Zhang, Z. Lin, G. Yang, and C. D. Sa, “Qpytorch: A low-precision
arithmetic simulation framework,” 2019.

[12] Y. Chatelain, E. Petit, P. de Oliveira Castro, G. Lartigue, and D. Defour,
“Automatic exploration of reduced floating-point representations in itera-
tive methods,” in Euro-Par 2019 Parallel Processing - 25th International
Conference, ser. Lecture Notes in Computer Science. Springer, 2019.

[13] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” ACM SIGPLAN
Notices, 2005.

[14] Intel. Intel caffe framework optimization. [Online]. Available:
https://github.com/intel/caffe

[15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems,” 2016.

[16] A. Paszke, S. Gross, S. Chintala, and G. Chanan. (2020) Pytorch.
[Online]. Available: https://github.com/pytorch/pytorch

[17] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,
J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,
M. Smelyanskiy, B. Kaul, and P. Dubey, “A Study of BFLOAT16 for
Deep Learning Training,” 2019.

[18] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed Precision Training,” ICLR, 2018.

[19] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
artificial intelligence datatype for higher-precision computations,” 2019.

3


