Skip to main content

Physically Invertible System Identification for Monitoring System Edges with Unobservability

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Nowadays, the data collected in physical/engineering systems allows various machine learning methods to conduct system monitoring and control, when the physical knowledge on the system edge is limited and challenging to recover completely. Solving such problems typically requires identifying forward system mapping rules, from system states to the output measurements. However, the forward system identification based on digital twin can hardly provide complete monitoring functions, such as state estimation, e.g., to infer the states from measurements. While one can directly learn the inverse mapping rule, it is more desirable to re-utilize the forward digital twin since it is relatively easy to embed physical law there to regularize the inverse process and avoid overfitting. For this purpose, this paper proposes an invertible learning structure based on designing parallel paths in structural neural networks with basis functionals and embedding virtual storage variables for information preservation. For such a two-way digital twin modeling, there is an additional challenge of multiple solutions for system inverse, which contradict the reality of one feasible solution for the current system. To avoid ambiguous inverse, the proposed model maximizes the physical likelihood to contract the original solution space, leading to the unique system operation status of interest. We validate the proposed method on various physical system monitoring tasks and scenarios, such as inverse kinematics problems, power system state estimation, etc. Furthermore, by building a perfect match of a forward-inverse pair, the proposed method obtains accurate and computation-efficient inverse predictions, given observations. Finally, the forward physical interpretation and small prediction errors guarantee the explainability of the invertible structure, compared to standard learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Majeed, A., Tenbohlen, S., Schöllhorn, D., Braun, M.: Development of state estimator for low voltage networks using smart meters measurement data. In: IEEE Grenoble Conference, pp. 1–6 (2013)

    Google Scholar 

  2. Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representations. In: International Conference on Machine Learning, pp. 552–560. PMLR (2013)

    Google Scholar 

  3. Benning, M., Burger, M.: Modern regularization methods for inverse problems. arXiv preprint arXiv:1801.09922 (2018)

  4. Bhela, S., Kekatos, V., Veeramachaneni, S.: Enhancing observability in distribution grids using smart meter data. IEEE Trans. Smart Grid 9(6), 5953–5961 (2018). https://doi.org/10.1109/TSG.2017.2699939

    Article  Google Scholar 

  5. Botín-Sanabria, D.M., et al.: Digital twin technology challenges and applications: a comprehensive review. Remote Sens. 14(6), 1335 (2022)

    Google Scholar 

  6. Deka, D., Backhaus, S., Chertkov, M.: Learning topology of the power distribution grid with and without missing data. In: European Control Conference, pp. 313–320 (2016)

    Google Scholar 

  7. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014)

  8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv preprint arXiv:1605.08803 (2016)

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Heidelberg (1996)

    Book  Google Scholar 

  10. Hamdan, S., Ayyash, M., Almajali, S.: Edge-computing architectures for internet of things applications: a survey. Sensors 20(22), 6441 (2020)

    Article  Google Scholar 

  11. Haque, M.E., Zain, M.F., Hannan, M.A., Rahman, M.H.: Building structural health monitoring using dense and sparse topology wireless sensor network. Smart Struct. Syst. 16(4), 607–621 (2015)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Hu, X., Hu, H., Verma, S., Zhang, Z.L.: Physics-guided deep neural networks for powerflow analysis. arXiv preprint arXiv:2002.00097 (2020)

  14. Karlik, B., Aydin, S.: An improved approach to the solution of inverse kinematics problems for robot manipulators. Eng. Appl. Artif. Intell. 13(2), 159–164 (2000)

    Article  Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect out-of-distribution data. arXiv preprint arXiv:2006.08545 (2020)

  17. Kucuk, S., Bingul, Z.: Robot kinematics: Forward and inverse kinematics. INTECH Open Access Publisher (2006)

    Google Scholar 

  18. Kuo, Y.L., Tang, S.C.: Dynamics and control of a 3-dof planar parallel manipulator using visual servoing resolved acceleration control. J. Low Freq. Noise Vib. Active Control, 1461348419876154 (2019)

    Google Scholar 

  19. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: location estimation using sparse and noisy sensor data. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 1, pp. 723–728. IEEE (2003)

    Google Scholar 

  20. Liao, Y., Weng, Y., Liu, G., Zhang, Z., Tan, C.W., Rajagopal, R.: Unbalanced three-phase distribution grid topology estimation and bus phase identification. IET Smart Grid 2(4), 557–570 (2019)

    Article  Google Scholar 

  21. Linden, A., Kindermann, J.: Inversion of multilayer nets. In: Proceedings of International Joint Conference on Neural Networks, vol. 2, pp. 425–430 (1989)

    Google Scholar 

  22. Liu, M.Z., et al.: Grid and market services from the edge: using operating envelopes to unlock network-aware bottom-up flexibility. IEEE Power Energy Maga. 19(4), 52–62 (2021)

    Article  Google Scholar 

  23. Liu, Y., Zhang, N., Wang, Y., Yang, J., Kang, C.: Data-driven power flow linearization: a regression approach. IEEE Trans. Smart Grid 10(3), 2569–2580 (2019)

    Article  Google Scholar 

  24. Mestav, K.R., Luengo-Rozas, J., Tong, L.: Bayesian state estimation for unobservable distribution systems via deep learning. IEEE Trans. Power Syst. 34(6), 4910–4920 (2019)

    Article  Google Scholar 

  25. Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks. In: International Conference on Machine Learning, pp. 1791–1799 (2014)

    Google Scholar 

  26. Müller, H.H., Rider, M.J., Castro, C.A.: Artificial neural networks for load flow and external equivalents studies. Electr. Power Syst. Res. 80(9), 1033–1041 (2010)

    Article  Google Scholar 

  27. Pan, S., Bonde, A., Jing, J., Zhang, L., Zhang, P., Noh, H.Y.: Boes: building occupancy estimation system using sparse ambient vibration monitoring. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, vol. 9061, p. 90611O. International Society for Optics and Photonics (2014)

    Google Scholar 

  28. Pei, Y., Biswas, S., Fussell, D.S., Pingali, K.: An elementary introduction to kalman filtering. Commun. ACM 62(11), 122–133 (2019)

    Article  Google Scholar 

  29. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  30. Tinney, W.F., Hart, C.E.: Power flow solution by newton’s method. IEEE Trans. Power Apparat. Syst. 11, 1449–1460 (1967)

    Article  Google Scholar 

  31. Varkonyi-Koczy, A.R., Rovid, A.: Observer based iterative neural network model inversion. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ 2005, pp. 402–407 (2005)

    Google Scholar 

  32. Vitus, M.P., Tomlin, C.J.: Sensor placement for improved robotic navigation. In: Robotics: Science and Systems VI, p. 217 (2011)

    Google Scholar 

  33. Wang, L., Zhou, Q., Jin, S.: Physics-guided deep learning for power system state estimation. J. Mod. Power Syst. Clean Energy 8(4), 607–615 (2020)

    Article  Google Scholar 

  34. Weng, Y., Negi, R., Ilić, M.D.: Historical data-driven state estimation for electric power systems. In: 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 97–102. IEEE (2013)

    Google Scholar 

  35. Yu, J., Weng, Y., Rajagopal, R.: Robust mapping rule estimation for power flow analysis in distribution grids, pp. 1–6 (2017)

    Google Scholar 

  36. Yuan, J., Weng, Y.: Physics interpretable shallow-deep neural networks for physical system identification with unobservability. In: IEEE International Conference on Data Mining (ICDM) (2021)

    Google Scholar 

  37. Zamzam, A.S., Sidiropoulos, N.D.: Physics-aware neural networks for distribution system state estimation. IEEE Trans. Power Syst. 35, 4347–4356 (2020)

    Article  Google Scholar 

  38. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, J., Weng, Y. (2023). Physically Invertible System Identification for Monitoring System Edges with Unobservability. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics