Skip to main content

Finding Local Groupings of Time Series

  • Conference paper
  • First Online:
  • 706 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13718))

Abstract

Collections of time series can be grouped over time both globally, over their whole time span, as well as locally, over several common time ranges, depending on the similarity patterns they share. In addition, local groupings can be persistent over time, defining associations of local groupings. In this paper, we introduce Z-Grouping, a novel framework for finding local groupings and their associations. Our solution converts time series to a set of event label channels by applying a temporal abstraction function and finds local groupings of maximized time span and time series instance members. A grouping-instance matrix structure is also exploited to detect associations of contiguous local groupings sharing common member instances. Finally, the validity of each local grouping is assessed against predefined global groupings. We demonstrate the ability of Z-Grouping to find local groupings without size constraints on time ranges on a synthetic dataset, three real-world datasets, and 128 UCR datasets, against four competitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Z-Grouping repository. www.github.com/zedshape/zgrouping/

  2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. ISJ 53, 16–38 (2015)

    Google Scholar 

  3. Aghabozorgi, S., Wah, T.Y.: Clustering of large time series datasets. IDA 18(5), 793–817 (2014)

    Article  Google Scholar 

  4. Alaee, S., Mercer, R., Kamgar, K., Keogh, E.: Time series motifs discovery under dtw allows more robust discovery of conserved structure. DAMI 35(3), 863–910 (2021)

    MathSciNet  Google Scholar 

  5. Cheng, Y., Church, G.: Biclustering of expression data. ISMB 8, 93–103 (2000)

    Google Scholar 

  6. Cuturi, M., Blondel, M.: Soft-dtw: a differentiable loss function for time-series. In: ICML, pp. 894–903. PMLR (2017)

    Google Scholar 

  7. Dau, H.A., et al.: The ucr time series archive. JAS 6(6), 1293–1305 (2019)

    Google Scholar 

  8. Gionis, A., Mannila, H., Terzi, E.: Clustered segmentations. In: TDM. Citeseer (2004)

    Google Scholar 

  9. Henelius, A., Karlsson, I., Papapetrou, P., Ukkonen, A., Puolamäki, K.: Semigeometric tiling of event sequences. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 329–344. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_21

    Chapter  Google Scholar 

  10. Huang, C.F.: A hybrid stock selection model using genetic algorithms and support vector regression. Appl. Soft Comput. 12(2), 807–818 (2012)

    Article  Google Scholar 

  11. Jiang, Y., Liu, Y., Wang, H., Shang, J., Ding, S.: Online pricing with bundling and coupon discounts. IJPR 56(5), 1773–1788 (2018)

    Article  Google Scholar 

  12. Lee, J.H., Lee, Y.R., Jun, C.H.: A biclustering method for time series analysis. IEMS 9(2), 131–140 (2010)

    Article  MathSciNet  Google Scholar 

  13. Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y.: Adaptively constrained dynamic time warping for time series classification and clustering. Inf. Sci. 534, 97–116 (2020)

    Article  MathSciNet  Google Scholar 

  14. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. DMKD 15(2), 107–144 (2007)

    MathSciNet  Google Scholar 

  15. Luo, L., Lv, S.: An accelerated u-shapelet time series clustering method with lsh. In: Journal of Phys. Conference Series, vol. 1631, pp. 12–77. IOP (2020)

    Google Scholar 

  16. Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation. In: ICDM, pp. 450–459. IEEE (2014)

    Google Scholar 

  17. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series data. In: SIGMOD, pp. 171–182 (2010)

    Google Scholar 

  18. Raza, A., Kramer, S.: Accelerating pattern-based time series classification: a linear time and space string mining approach. KAIS 62(3), 1113–1141 (2020)

    Google Scholar 

  19. Ruta, N., Sawada, N., McKeough, K., Behrisch, M., Beyer, J.: Sax navigator: Time series exploration through hierarchical clustering. In: VIS, pp. 236–240 (2019)

    Google Scholar 

  20. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. DAMI 29(6), 1505–1530 (2015)

    MathSciNet  Google Scholar 

  21. Wu, J., Wang, Y., Wang, P., Pei, J., Wang, W.: Finding maximal significant linear representation between long time series. In: ICDM, pp. 1320–1325. IEEE (2018)

    Google Scholar 

  22. Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series clustering. The Scientific World Journal 2014 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zed Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 841 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, Z., Trincavelli, M., Papapetrou, P. (2023). Finding Local Groupings of Time Series. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics