
Automatic Linking of Podcast Segments
to Topically Related Webpages

Carla McKeon1, Claudio Rocha1, and Gareth J. F. Jones1,2(B)

1 School of Computing, Dublin City University, Dublin, Ireland
{carla.mckeon32,claudio.rocha2}@mail.dcu.ie, gareth.jones@dcu.ie

2 ADAPT Centre, Dublin City University, Dublin, Ireland

Abstract. Podcasts are becoming an increasingly popular source of
information. However, they often rely on the topical knowledge of the
listener in order for them to be fully understood. We describe an inves-
tigation into methods to augment the contents of podcasts with related
information from the Web. We seek to identify webpages related to seg-
ments within a podcast. NLP techniques are used to analyze audio pod-
cast transcripts and link these to related content. We propose and exam-
ine 10 methods for automatically generating search queries from tran-
script segments, which are then used to search for related content on the
web. The relevance of retrieved webpages to retrieved content is evalu-
ated using crowdsourcing via Amazon Mechanical Turk. Extracting key
phrases directly from the podcasts using YAKE was the most successful
approach with more than 90% returned pages assessed as relevant, with
precision at rank 1 and rank 3 above 0.9.

Keywords: Automatic content linking · Key phrase extraction ·
Podcast summarization · Automatic query construction

1 Introduction

Podcasts are an increasingly popular form of audio media providing informa-
tion, topical comment and entertainment to ever growing numbers of people.
A podcast episode may cover multiple topics or themes over the course of its
content. The full meaning of the topics discussed may not though be apparent
to the listener if they do not have a reasonable background in the issue under
discussion. In this situation the listener may turn to a web search engine, such
as Google to seek further information about the topic in order to better under-
stand the podcast. In this paper we investigate the development of a method to
automatically link segments of podcast content to related webpages. These links
would then be available to podcast listeners removing the need for them to carry
out their own search if they wish to find further information about the content.

In order to identify content related to a podcast, a suitable query must first
be created from the words spoken in the podcast. In our study we explore the
use of number of NLP techniques to construct an effective query [1]. To retrieve
c© The Author(s) 2023
L. Longo and R. O’Reilly (Eds.): AICS 2022, CCIS 1662, pp. 381–393, 2023.
https://doi.org/10.1007/978-3-031-26438-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26438-2_30&domain=pdf
http://orcid.org/0000-0003-2923-8365
https://doi.org/10.1007/978-3-031-26438-2_30

382 C. McKeon et al.

webpages using these queries, we make use of the Google Search API. This
returns a ranked list of webpages from the Google Search engine. To assess the
relevance of the returned webpages to the segments of the podcast transcript
used to construct the queries, we use crowdsourcing via Amazon Mechanical Turk
(MTurk) [2,3]. Each online assessor judges relevance of the retrieved webpage for
the segment on a scale between fully relevant and not relevant. These judgements
are then used to evaluate the effectiveness of each query generation technique
using standard precision based evaluation metrics. For this investigation we make
use of a large collection of podcasts with transcripts made available for research
purposes by Spotify [4].

This paper is structured as follows. The next section reviews existing work
in podcast search, keyphrase extraction and content linking. Section 3 describes
the creation of the experimental dataset used in our study, Sect. 4 introduces
our automated query generation methods, Sect. 6 outlines our evaluation pro-
cesses and the metrics used to evaluate the effectiveness of our automated linking
methods, Sect. 7 gives experimental results and analysis, and Sect. 8 concludes
the paper and makes suggestions for further work.

2 Related Work

In this section, we review relevant work in podcast search and summarization,
information retrieval using automated query generation, and the development of
test collections for the evalation of information retrieval.

2.1 Podcast Search and Summarization

Until recently there has been limited related research reported on the automated
processing of podcasts for search and summarization. To encourage more work in
this area Spotify released a large collection of podcasts with corresponding tran-
scriptions created using automatic speech recognition (ASR) [4]. This collection
contains on the order of 100,000 podcasts, and formed the basis of benchmark
podcast tasks at the Text Retrieval Conference (TREC)1 in 2020 and 2021 These
tasks evaluated methods for the effective search of podcasts in response to user
search queries and summarization of the podcast transcripts [5,6]. Recognising
that podcasts are long and multi-topic, the search task focused on retrieval of
relevant podcast segments using the ASR transcripts for a set of topical search
queries. Participants were provided with 58 search queries describing user infor-
mation needs The relevance of segments to each query was manually judged
by assessors at NIST. Segments identified as relevant within this task form the
starting point for our investigation of linking segments to related webpages.

Summarization methods are concerned with creation of concise shortened
documents preserve the most salient information [7,8]. For our query generation
processes, we begin by summarising podcasts segments to capture their key
information and then extract queries containing this key information.
1 https://trecpodcasts.github.io/.

https://trecpodcasts.github.io/

Automatic Linking of Podcast Segments to Topically Related Webpages 383

2.2 Information Retrieval Through Key Phrase Extraction
and Query Generation

The Retrieval from Conversational Dialogues (RCD) track at the FIRE 20202

conference explored the utility of information retrieval methods to retrieve more
information about topics discussed in transcripts of interactive movie dialogues.
The conversational structure of these movies is similar to that of many podcasts.
Participants in the RCD task were required to retrieve a ranked list of poten-
tially related documents from Wikipedia for a span of text [9]. The participation
requirements for the RCD 2020 task [10] adopted a similar strategy to the one
which we follow here. The main topics of discussion in movie dialogues needed
to be identified using summarization methods. Key phrase extraction techniques
were then used to create queries to search for related articles in Wikipedia. The
first approach used different methods, mixing different techniques for summa-
rization such as BERT and different key phrase extraction techniques such as
YAKE and TextRank. Those models used a phrase frequency of 1–3 words. When
comparing participant results, the method that obtained the best results was the
one using a custom summary extraction method and the TextRank technique.
For the second approach, only one key phrase extraction technique, TextRank,
was tested, which was applied directly to the movie dialogue. After which the
key topics extracted were again used as queries to retrieve relevant documents
from the Wikipedia dataset.

There has been limited previous work on automated link creation. Probably
the most closely related task to our work is the NTCIR-9 Crosslink task, which
examined cross-lingual linking between Wikipedia documents [11].

2.3 Information Retrieval Test Collections

A standard test collection for the evaluation of information retrieval methods
consists of a set of documents, a set of queries and the identities of the relevant
documents from the collection for each query. The relevance of each document
to the query must be judged manually since the contents of the query do not
fully express the information need that it seeks to express. The relevance of each
document to the query can either be judged in a binary manner as “relevant”
or “non-relevant”, or using a graded scale, where documents can be assessed
between highly, partially, marginally or not relevant. A number of studies have
been carried out examining the design of effective and reliable test collections
for information retrieval. A key result for our study is that at least 25–50 queries
are required for results to reliable [12]. For our investigation we thus sought to
examine the effectiveness of link generation for at least 30 podcasts fragments
from which we generated queries for automated search.

2 https://rcd2020firetask.github.io/RCD2020FIRETASK/.

https://rcd2020firetask.github.io/RCD2020FIRETASK/

384 C. McKeon et al.

3 Experimental Dataset

In this section we introduce the Spotify podcast collection which forms the basis
of our study, selection of the data from this collection used for our experimental
investigation and preprocessing procedures applied to the selected data.

3.1 Podcast Dataset

As outlined earlier, we used the podcast dataset made available by Spotify for
this investigation. This collection consists of 105,360 podcast episodes taken from
18,376 shows collected between January 2019 and March 2020. [4]. The podcast
dataset can be requested from Spotify for research purposes3.

The collection includes recordings of the original podcasts with an ASR tran-
script created using a standard online Google transcription service. The podcasts
are all in English and vary in length, being on average 30 min long, with the
shortest running for 10.5 s and the longest for over 5 h.

For its use in the TREC Podcasts tasks [5,6], the podcast collection was
supplemented with 58 Topic statements intended to be representative of the
sort of queries that a listener might issue to a podcast search engine. Since
podcasts are long and listening to them to identify content relevant to such a
query would be time consuming, the TREC search tasks focused on identifying
relevant segments created from the podcast transcripts. Segments were created
by dividing the transcripts 120 s pieces with a 50% overlap to ensure the presence
of segments where topical content is contained with single segments, rather than
being split between adjacent segments.

3.2 Content Selection

The TREC Podcast task defined highly relevant segments as being ideal entry
points into the podcast for a listener, and as being fully on topic.

For our investigation we wished to focus on a set of segments which have
significant topical interest for a defined topic. We thus decided to begin by
selecting the segments from the TREC Podcast task assigned a relevance score
of 4 for one of the search topics. This resulted in a set of 55 segments associated
with 18 of the topics.

Since errors in the transcripts may impact on content analysis processes
that will be used for the query construction stage, we further filtered these
segments to remove those containing obvious ASR transcription errors. This
filtering resulted in segments associated with all 18 topics remaining. Mindful of
the cost of relevance assessment using crowdsourcing and the minimum number
of queries required for reliable experimentation [12], we randomly selected 30
segments of the remaining segments for use in our investigation.

In an operational setting all segments in the podcast archive would be linked
to related web content during the indexing setup of the podcast search engine in

3 https://podcastsdataset.byspotify.com.

https://podcastsdataset.byspotify.com

Automatic Linking of Podcast Segments to Topically Related Webpages 385

Table 1. Methods to extract queries

Method Summ. Keyword E. Keyword G.

M1 BERT YAKE –

M2 BERT Text Rank –

M3 BERT – KeyBART

M4 BERT – T5-s.-OpenKP

M5 T5-P.Sum. YAKE –

M6 T5-P.Sum. Text Rank –

M7 T5-P.Sum. – KeyBART

M8 T5-P.Sum. – T5-S.-OpenKP

M9 – YAKE –

M10 – Text Rank –

advance of listeners entering search queries. This would of course include query
construction with errorful podcast transcripts. Examining the impact of these
transcription errors on the effectiveness of the linking process will be the focus
on further experimental studies.

3.3 Data Preprocessing

In order for the transcripts to be used consistently in the construction of queries,
they were preprocessed into a standard format and standard NLP analysis
applied. Preprocssing involved tokenising the raw text into words. and convert-
ing each word to lower case to ensure that the system avoids interpreting the
same word (e.g. “Book” and “book”) as two different words. Then converting
the word into its base form using lemmatization, and combining this with part-
of-speech (POS) tagging to give context to each token and to bring together
different word forms (e.g. meeting - meet (core-word extraction), was - be (tense
conversion to present), mice - mouse (plural to singular)).

4 Query Generation

In order to identify potentially relevant or interesting web content to link to
podcast segments, a query representing the key content of the segment must be
created for submission to a search engine to seek this content. The core element
of our investigation is the proposal and evaluation of a number of methods for
query generation from podcast transcripts.

Our methods can be grouped into three approaches: summarization followed
by key phrase extraction, summarization followed by key phrase generation and
key phrase extraction directly from the podcast segment. Overall 10 different
query generation methods were examined, the details of these methods are sum-
marized in Table 1. These methods are described in outline in the following
subsections.

386 C. McKeon et al.

4.1 Summarization Methods

Since podcasts often contain colloquial, conversational, and noisy commercials
and sponsorship segments, we examined a preprocessing step of summarizia-
tion to reduce the transcript to its core content [13]. We investigated whether
generating queries from segment summaries improves likelihood of relevance of
the retrieved webpages. In this paper we examine two different summarization
methods:

BERT. This is a pre-trained BERT model developed by Google’s AI Language
team and described in [14]. BERT has achieved groundbreaking results on various
NLP tasks. In this paper, we use BERT for extractive summarization using the
PyTorch transformers library (HuggingFace) to perform extractive summariza-
tion using the following process [15]: sentence embedding, running a clustering
Algorithm (K-means), and locating the sentences near the cluster’s centroid.

T5. The T5-podcast summarizer model is the result of fine-tuning t5-base [16]
on the Spotify podcasts dataset [4]. This model is based on Google’s T5, a
text-to-text framework, pre-trained on the C4 Dataset (Colossal Clean Crawled
Corpus). The main concept of this model is that the input and output will always
be strings, while the output of the BERT model is a class label or span of the
input.

4.2 Key Phrase Extraction Methods

The main objective of key phrase extraction in guery generation is to capture
the main topic discussed in the podcast, including the key events reported, the
entities involved in these events and, their outcome, impact and significance.
The following constraints [17] were considered while fine-tuning the parameters
in the key phrase extraction techniques:

– A key phrase can be a single word or a sequence of up to four consecutive
words as they appear in the podcast

– A minimum of one and a maximum of three key phrases were selected
– A key phrase has to be either a noun phrase, verb, proper name or adjective

Extensive research surveys of key phrase extraction methods and comparison
of their relative performance are provided in [18,19]. We implemented both an
unsupervised statistical and a graph based approach as outlined below.

YAKE! Yet Another Keyword Extraction (YAKE) [20] is a statistical method
which exploits frequency and positional information of each candidate key phrase
(word n-grams not containing punctuation marks, nor starting or ending with a
stop word).

Automatic Linking of Podcast Segments to Topically Related Webpages 387

Terms are scored by gathering all of the feature weights into a unique score
as shown in Eq. 1.

Score(t) =
TRel ∗ TPosition

TRel + TFreqNorm+TSentence

TRel

(1)

where TRel is a score given to the relatedness of the term in the context of
the document, which downgrades terms that co-occur with unique terms in a
given window size. Dividing both TFreqNorm + TSentence by TRel gives a higher
value to terms that appear more frequently and in many sentences. The level of
importance of a term is higher as long as it is relevant, i.e. has a low T Rel and
achieves a high score on TFreqNorm + TSentence score. TRel * TPosition takes the
position of the term in the sentence into account multiplying it by the term’s
relevance to context score.

The score for a candidate key phrase k = t1t2...tn is then computed as shown
in Eq. 2.

Score(k) =
∏∞

i=1 Score(ti)
frequency(k) ∗ (1 +

∏∞
i=1 Score(ti))

(2)

We use the LIAAD4 version of YAKE with parameters tuned as follows:
setting a window size of 2, which is used to capture the context of the phrases,
and threshold to 0.8 which helps to eliminate redundant queries using the concept
of Levenshtein distance. The top three key phrases were extracted as representing
the core content of the segment for construction of the query.

TextRank. TextRank [21] is a graph based extraction method where docu-
ments are modeled with weighting co-occurrence networks using a co-occurrence
window of variable sizes (2–10). TR(Vi) represents the TextRank score of the
point Vi calculated as shown in Eq. 3.

TR(Vi) = (1 − d) + d
∑

Vj∈In(Vi)

Wji∑
Vk∈Out(Vj)

Wjk
TR(Vj) (3)

Similar to the concept of PageRank [22], d is the probability of the phrase occur-
ring at random in the document, and is between 0 and 1.

4.3 Key Phrase Generation

Key hrase generation differs from key phrase extraction. The former are models
trained to learn the mapping between a pair of texts and generate new key phrase
text, while the latter extracts the most relevant words from a given input.

BART [24] & T5 [16] are two of the most successful generation transformers
developed to date. They can be fine tuned for text-to-text-generation problems
such as our task of key phrase generation.

4 https://github.com/LIAAD/yake.

https://github.com/LIAAD/yake

388 C. McKeon et al.

KeyBART. A generative model for text generation that reproduces key phrases
with connection to the input in the CatSeq format. The internal architecture of
BART is built on a transformer encoder-decoder (seq2seq) model with a bidrec-
tional encoder, similar to BERT and an autoregressive decoder. The pre-training
of BART takes two stages: 1) corrupting text with an arbitrary noising function,
and 2) learning a model to reconstruct the original text.

T5-small-OpenK. This model is a key phrase generation technique based on
the T5-small model and fine-tuned using the dataset OpenKP. This generation
transformer model is tuned as text to text to generate keywords, with the limita-
tion of only working on documents using the English Language. This model has
approximately 220 million parameters, which is approximately twice the number
of parameters as BERT. The model was pre-trained on a different mixture of
supervised and unsupervised tasks.

5 Webpage Retrieval

Once the query has been constructed for a podcast segment, the next stage is to
use it to search for relevant webpages. For this task we make use of the Google
Custom Search Engine API [23]. This is a restful API that retrieves results
of a search query in a JSON object, with three types of data: search results,
metadata containing information about the requested search and metadata con-
taining information about Programmable Search Engine. Every search retrieves
a maximum of 10 results per query. We extracted the search ranking, URL link
and title of the page obtained for each query.

It should be noted that multiple calls to the Google API are not guaran-
teed to return the same documents. However, since the calls are made in quick
succession, the features of the search engine are unlikely to change between calls.

6 Evaluating of Our Information Retrieval System

In this section we describe our method for assessing relevance of retrieved items,
and the evaluation metrics used in our investigation.

6.1 Relevance Evaluation

To assess the relevance of webpages we used crowdsourcing with Amazon
Mechanical Turk (MTurk)5. This service provides a platform providing access
to online human workers how can complete assigned tasks referred to as Human
Intelligence Tasks (HITs). Online workers recieve payment for successfully com-
pleted HITs. For our assessment of linking using our query generation methods,
we form a pool of retrieved items for relevance assessment for each podcast seg-
ment in our test dataset. The pool was formed by selecting the top 3 ranked
5 https://mturk.com/.

https://mturk.com/

Automatic Linking of Podcast Segments to Topically Related Webpages 389

documents retrieved for each query, merging these into a pool of unique docu-
ment entries, and then requesting MTurk workers to assess the relevance of each
retrieved document in the pool. Relevance of each item was assessed in terms of
its relation to the segment used to create the queries which retrieved the item.
The worker was shown the transcript and the contents of each retrieved item in
the pool one after the other. Workers were required to perform the assessment
on a graded scale (Excellent(3), Good (2), Fair (1), Bad (0)).

Since workers may not carry out the tasks correctly, we implemented a num-
ber of quality control measures. We estimate that each HIT should take 3–5 min,
therefore any HITs completed in under 45 s were rejected without payment, and
the HIT re-submitted to MTurk. Similarly, we rejected workers who returned
an identical answer every time. Additionally, in order to help ensure that we
recruited reliable workers, we required that workers had an approval rating of at
least 80% for their previous completed HITs on MTurk.

Since relevance judgements are subjective, we gathered more than one judge-
ment of each podcast-segment webpage pair to improve reliability of the rele-
vance scores. To do this, we assigned each HIT to three AMT workers, meaning
that 3 rounds of assessments are recorded for each HIT. We took the average of
the three judgements as the agreed relevance level for each assessed document.

6.2 Evaluation Metrics

Information retrieval is typically evaluated based on the top k documents
returned for a query. We use three metrics to evaluate the effectiveness of our
content linking retrieval method [25,26]:

P@k: Precision at K. Quantifies how many items in the top-k results are
relevant, i.e. out of the returned list how many were relevant. TP is True Positives
and FP is False Positives:

Precision@k =
TP@k

(TP@k) + (FP@k)
(4)

MAP: Mean Average Precision. Calculates the average precision across
multiple queries, with Q being the number of queries and AP(q) the average
precision for query q:

MAP =
1
Q

Q∑

q=1

AP (q) (5)

MRR: Mean Reciprocal Rank. This is a measure of the rank position of the
highest ranked relevant document, i.e. how far down the list we have to go to
find a relevant document, with Q being the total number of queries, and ranki

the rank of the first relevant result:

MRR =
1

|Q|
|Q|∑

i=1

1
ranki

(6)

390 C. McKeon et al.

Table 2. Results - relaxed relevance

Method P@1 P@3 MAP MRR nDCG

M1 0.767 0.644 0.811 0.800 0.967

M2 0.767 0.744 0.811 0.797 0.948

M3 0.733 0.744 0.822 0.822 0.922

M4 0.700 0.700 0.789 0.789 0.930

M5 0.800 0.789 0.856 0.847 0.923

M6 0.7000 0.711 0.767 0.769 0.950

M7 0.800 0.711 0.844 0.840 0.950

M8 0.833 0.822 0.900 0.886 0.942

M9 0.933 0.911 0.967 0.953 0.953

M10 0.800 0.844 0.900 0.892 0.917

Table 3. Results - stricter relevance

Method P@1 P@3 MAP MRR nDCG

M1 0.367 0.333 0.417 0.422 0.967

M2 0.367 0.378 0.422 0.400 0.948

M3 0.467 0.467 0.561 0.533 0.922

M4 0.333 0.411 0.467 0.469 0.930

M5 0.367 0.478 0.533 0.542 0.923

M6 0.367 0.378 0.472 0.458 0.9500

M7 0.333 0.356 0.428 0.422 0.950

M8 0.367 0.378 0.472 0.458 0.9500

M9 0.700 0.678 0.778 0.761 0.953

M10 0.467 0.556 0.611 0.603 0.917

nDCG: Discounted Cumulative Gain. This is a sum of relevance scores for
the top-n documents, normalized by penalizing each score by its position, i.e. it
gives a weight to relevant documents in order of ranking, with rel(n) being an
indicator function which is 1 when the item ar rank K is relevant

nDCG@k =
n∑

i=1

reli
log2(i + 1)

(7)

7 Experimental Results

In this section, we present results using two different relevance levels. In the
first relaxed setting, webpages assessed with relevance levels 1, 2 and 3 are all
counted as relevant. In the second strciter setting, only documents assessed with
relevance levels 3 & 4 are counted as relevant.

Setting 1. From Table 2, we see that for M9 at P@1 around 93% of the first
retrieved webpages are relevant. M9 also obtained the best results for MAP and
MRR showing that the relevant items are also found at higher positions. In
relation to nDCG, the values are similar across all the methods, revealing that
all have a similar pattern for the ideal order on the relevant retrieved webpages.
On the other hand, M4 and M6 obtain the lowest results with a P@1 of 0.7,
meaning that only 70% of the first retrieved webpages are relevant, with a value
of MAP below 0.8.

Setting 2. Table 3 shows results for Setting 2, we can see that M9 is again
the best performing method. The values across the different metrics are lower
than Table 2, as would expected, but M9 is still able to perform relatively well
compared with the other methodologies, being the only method to achieve values
above 0.6 for P@1, P@3, MAP and MRR. On the other hand, M4 and M7 have
the lowest results, with only around 33% of the first retrieved webpages being

Automatic Linking of Podcast Segments to Topically Related Webpages 391

relevant. It is worth noting that when analysing some queries, it is possible to
verify that some techniques using summarization do not capture key ideas in
the summary, and consequently cannot generate accurate queries, while the best
performing method was applied directly to the raw podcast segment.

8 Conclusions and Further Work

This paper described an investigation into the automated linking of related web-
pages to the transcripts of 2 min segments of podcasts. We examined 10 methods
of creating queries from the podcast segment transcripts, and evaluated their
effectiveness for retrieving related webpages using the Google API.

In general terms, we demonstrated that it is possible to link relevant con-
tent to different podcast segments, and that applying a key phrase extraction
technique directly on the raw segment obtained better results than summarizing
the already short 2 min segment. For both relevance settings reported, the best
performing method was able to retrieve more than 70% of relevant content in
the first ranked webpage.

There are various directions for potential further work. An important area
for expansion is to increase the depth of the pool of retrieved documents assessed
from the top 3, to the top 10 document or potentially more. Also rather than
relying on fixed 2 min length segments, automatic segmentation methods could
be applied to form topically related segments, which may form the basis of better
queries since they provide full coverage of the topical region in the podcast.

Acknowledgement. The contribution of Gareth Jones is partially supported by Sci-
ence Foundation Ireland as part of the ADAPT Centre (Grant 13/RC/2106) at Dublin
City University.

References

1. Siddiqi, S., Sharan, A.: Keyword and keyphrase extraction techniques: a literature
review. Int. J. Comput. Appl. 109(2), 18–23 (2015)

2. Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for relevance evaluation. In:
ACM SigIR Forum, vol. 42, no. 2, pp. 9–15 (2008)

3. Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on amazon
mechanical turk. Judgm. Decis. Mak. 5(5), 411–419 (2010)

4. Clifton, A., et al.: 100,000 podcasts: a spoken English document corpus. In: Pro-
ceedings of the 28th International Conference on Computational Linguistics (2020)

5. Jones, R., et al.: TREC 2020 podcasts track overview. In: Proceedings of TREC
2020, NIST, Online (2020)

6. Karlgren, J., et al.: TREC 2021 podcasts track overview. In: Proceedings of TREC
2021, NIST, Online (2021)

7. Nenkova, A., McKeown, K.: Automatic summarization. Found. Trends Inf. Retr.
5(2–3), 103–233 (2011)

8. Maynez, J., Narayan, S., Bohnet, B., McDonald, R.: On faithfulness and factuality
in abstractive summarization. arXiv preprint arXiv:2005.00661 (2020)

http://arxiv.org/abs/2005.00661

392 C. McKeon et al.

9. Ganguly, D., Pal, D., Verma, M., Sen, P.: Overview of RCD-2020, the FIRE-2020
track on retrieval from conversational dialogues. In: Proceedings of FIRE 2020,
Online (2020)

10. Kaushik, A., Ramachandra, V.B., Jones, G.J.F.: DCU at the FIRE 2020 retrieval
from conversational dialogues (RCD) task. In: FIRE, pp. 788–805 (2020)

11. Tang, L.-X., Geva, S., Trotman, A., Xu, Y., Itakura, K.Y.: Overview of the NTCIR-
9 crosslink task: cross-lingual link discovery. In: Proceedings of the NTCIR-9 Work-
shop (2011)

12. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. ACM SIGIR
Forum 51(2), 235–242 (2017)

13. El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text sum-
marization: a comprehensive survey. Expert Syst. Appl. 165, 113679 (2021)

14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

15. Miller, D.: Leveraging BERT for extractive text summarization on lectures. arXiv
preprint arXiv:1906.04165 (2019)

16. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

17. Piskorski, J., Stefanovitch, N., Jacquet, G., Podavini, A.: Exploring linguistically-
lightweight keyword extraction techniques for indexing news articles in a multi-
lingual set-up. In: Proceedings of the EACL Hackashop on News Media Content
Analysis and Automated Report Generation, pp. 35–44 (2021)

18. Papagiannopoulou, E., Tsoumakas, G.: A review of keyphrase extraction. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 10(2), 1339 (2020)

19. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the
art. In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics, vol. 1, pp. 1262–1273 (2014)

20. Campos, R., et al.: YAKE! Keyword extraction from single documents using mul-
tiple local features. Inf. Sci. 509, 257–289 (2020)

21. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of
the 2004 Conference on Empirical Methods in Natural Language Processing, pp.
404–411 (2004)

22. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

23. Allauddin, M., Azam, F.: Service crawling using Google custom search API. Int.
J. Comput. Appl. 34(7), 2011 (2011)

24. Lewis, M., et al.: Bart: denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461 (2019)

25. Sakai, T., Kando, N.: On information retrieval metrics designed for evaluation with
incomplete relevance assessments. Inf. Retr. 11(5), 447–470 (2008)

26. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1906.04165
http://arxiv.org/abs/1910.13461

Automatic Linking of Podcast Segments to Topically Related Webpages 393

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Automatic Linking of Podcast Segments to Topically Related Webpages
	1 Introduction
	2 Related Work
	2.1 Podcast Search and Summarization
	2.2 Information Retrieval Through Key Phrase Extraction and Query Generation
	2.3 Information Retrieval Test Collections

	3 Experimental Dataset
	3.1 Podcast Dataset
	3.2 Content Selection
	3.3 Data Preprocessing

	4 Query Generation
	4.1 Summarization Methods
	4.2 Key Phrase Extraction Methods
	4.3 Key Phrase Generation

	5 Webpage Retrieval
	6 Evaluating of Our Information Retrieval System
	6.1 Relevance Evaluation
	6.2 Evaluation Metrics

	7 Experimental Results
	8 Conclusions and Further Work
	References

