Skip to main content

How a Different Ant Behavior Affects on the Performance of the Whole Colony

  • Conference paper
  • First Online:
Metaheuristics (MIC 2022)

Abstract

This paper presents an experimental analysis of how different behavior performed by a group of ants affects the optimization efficiency of the entire colony. Two different interaction ways of the ants with each other and with the environment, that is a weighted network, have been considered: (i) Low Performing Ants (LPA), which destroy nodes and links of the network making it then dynamic; and (ii) High Performing Ants (HPA), which, instead, repair the destroyed nodes or links encountered on their way. The purpose of both ant types is simply to find the exit of the network, starting from a given entrance, whilst, due to the uncertainty and dynamism of the network, the main goal of the entire colony is maximize the number of ants that reach the exit, and minimize the path cost and the resolution time. From the analysis of the experimental outcomes, it is clear that the presence of the LPAs is advantageous for the entire colony in improving its performances, and then in carrying out a better and more careful optimization of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each tick correspond to an ant displacement and movement.

References

  1. Akka, K., Khaber, F.: Mobile robot path planning using an improved ant colony optimization. Int. J. Adv. Robot. Syst. 15(3) (2018). https://doi.org/10.1177/1729881418774673

  2. Brand, M., Masuda, M., Wehner, N., Yu, X.: Ant colony optimization algorithm for robot path planning. In: 2010 International Conference On Computer Design and Applications, vol. 3, pp. V3-436–V3-440 (2010). https://doi.org/10.1109/ICCDA.2010.5541300

  3. Consoli, P., Collerà, A., Pavone, M.: Swarm intelligence heuristics for graph coloring problem. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1909–1916 (2013). https://doi.org/10.1109/CEC.2013.6557792

  4. Consoli, P., Pavone, M.: O-BEE-COL: optimal BEEs for COLoring graphs. In: Legrand, P., Corsini, M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013. LNCS, vol. 8752, pp. 243–255. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11683-9_19

    Chapter  Google Scholar 

  5. Crespi, C., Fargetta, G., Pavone, M., Scollo, R.A., Scrimali, L.: A game theory approach for crowd evacuation modelling. In: Filipič, B., Minisci, E., Vasile, M. (eds.) BIOMA 2020. LNCS, vol. 12438, pp. 228–239. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63710-1_18

    Chapter  Google Scholar 

  6. Crespi, C., Scollo, R.A., Pavone, M.: Effects of different dynamics in an ant colony optimization algorithm. In: 2020 7th International Conference on Soft Computing Machine Intelligence (ISCMI2020), pp. 8–11. IEEE (2020). https://doi.org/10.1109/ISCMI51676.2020.9311553

  7. Deng, W., Xu, J., Zhao, H.: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 7, 20281–20292 (2019). https://doi.org/10.1109/ACCESS.2019.2897580

    Article  Google Scholar 

  8. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 311–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_10

    Chapter  Google Scholar 

  9. Fidanova, S., Pop, P.: An improved hybrid ant-local search algorithm for the partition graph coloring problem. J. Comput. Appl. Math. 293, 55–61 (2016). https://doi.org/10.1016/j.cam.2015.04.030

    Article  MathSciNet  MATH  Google Scholar 

  10. Jia, Y.H., Mei, Y., Zhang, M.: A bilevel ant colony optimization algorithm for capacitated electric vehicle routing problem. IEEE Trans. Cybern. 1–14 (2021). https://doi.org/10.1109/TCYB.2021.3069942

  11. Jovanovic, R., Tuba, M., Voß, S.: An efficient ant colony optimization algorithm for the blocks relocation problem. Eur. J. Oper. Res. 274(1), 78–90 (2019). https://doi.org/10.1016/j.ejor.2018.09.038

    Article  MathSciNet  MATH  Google Scholar 

  12. O’Shea-Wheller, T., Sendova-Franks, A., Franks, N.: Differentiated anti-predation responses in a superorganism. PLoS One 10(11), e0141012 (2015). https://doi.org/10.1371/journal.pone.0141012

    Article  Google Scholar 

  13. Peng, H., Ying, C., Tan, S., Hu, B., Sun, Z.: An improved feature selection algorithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018). https://doi.org/10.1109/ACCESS.2018.2879583

    Article  Google Scholar 

  14. Pintea, C.-M., Matei, O., Ramadan, R.A., Pavone, M., Niazi, M., Azar, A.T.: A fuzzy approach of sensitivity for multiple colonies on ant colony optimization. In: Balas, V.E., Jain, L.C., Balas, M.M. (eds.) SOFA 2016. AISC, vol. 634, pp. 87–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62524-9_8

    Chapter  Google Scholar 

  15. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/netlogo/

  16. Zhang, D., You, X., Liu, S., Pan, H.: Dynamic multi-role adaptive collaborative ant colony optimization for robot path planning. IEEE Access 8, 129958–129974 (2020). https://doi.org/10.1109/ACCESS.2020.3009399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Crespi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crespi, C., Scollo, R.A., Fargetta, G., Pavone, M. (2023). How a Different Ant Behavior Affects on the Performance of the Whole Colony. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds) Metaheuristics. MIC 2022. Lecture Notes in Computer Science, vol 13838. Springer, Cham. https://doi.org/10.1007/978-3-031-26504-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26504-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26503-7

  • Online ISBN: 978-3-031-26504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics