
28 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A Tabu Search Matheuristic for the Generalized Quadratic Assignment Problem / Greistorfer P.; Staněk R.;
Maniezzo V.. - ELETTRONICO. - 13838:(2023), pp. 544-553. (Intervento presentato al convegno 14th
International Conference, MIC 2022 tenutosi a Siracusa nel July 11–14, 2022) [10.1007/978-3-031-26504-
4_46].

Published Version:

A Tabu Search Matheuristic for the Generalized Quadratic Assignment Problem

Published:
DOI: http://doi.org/10.1007/978-3-031-26504-4_46

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/921793 since: 2023-04-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-26504-4_46
https://hdl.handle.net/11585/921793

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Greistorfer, P., Staněk, R., Maniezzo, V. (2023). A Tabu Search Matheuristic for the Generalized Quadratic
Assignment Problem. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds) Metaheuristics. MIC 2022.
Lecture Notes in Computer Science, vol 13838. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-26504-

4_46

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-26504-4_46
https://doi.org/10.1007/978-3-031-26504-4_46

A Tabu Search Matheuristic for the1

Generalized Quadratic Assignment Problem2

Peter Greistorfer1, Rostislav Staněk2, and Vittorio Maniezzo33

1 Operations and Information Systems, Karl-Franzens-Universität Graz, Graz,4

Austria5

peter.greistorfer@uni-graz.at6
2 Applied Mathematics, Montanuniversität Leoben, Leoben, Austria7

rostislav.stanek@unileoben.ac.at8
3 Computer Science, Università di Bologna, Bologna, Italy9

vittorio.maniezzo@unibo.it10

Abstract. This work treats the so-called Generalized Quadratic As-11

signment Problem. Solution methods are based on heuristic and partially12

LP-optimizing ideas. Base constructive results stem from a simple 1-pass13

heuristic and a tree-based branch-and-bound type approach. Then we use14

a combination of Tabu Search and Linear Programming for the improv-15

ing phase. Hence, the overall approach constitutes a type of mat- and16

metaheuristic algorithm. We evaluate the different algorithmic designs17

and report computational results for a number of data sets, instances18

from literature as well as own ones. The overall algorithmic performance19

gives rise to the assumption that the existing framework is promising20

and worth to be examined in greater detail.21

Keywords: Generalized Quadratic Assignment · Matheuristic · Meta-22

heuristic · Linear Programming · Tabu Search.23

1 Introduction24

The problem of interest is the so-called Generalized Quadratic Assignment Prob-25

lem (GQAP). The GQAP has been used as a model for several relevant actual ap-26

plications, including order picking and storage layout in warehouse management,27

relational database design or scheduling activities in semiconductor wafer pro-28

cessing. Technically, it originates from the Linear Assignment Problem (LAP),29

where a number of agents (equivalently, machines or supplies) have to be as-30

signed to a number of jobs (tasks or demands), while minimizing the total cost31

of service and obeying assignment constraints, which secure that each job has to32

be serviced by exactly one agent and vice versa. The LAP in turn is a special case33

of the Generalized Assignment Problem (GAP), in which assignment constraints34

on the supply-side are replaced with upper bound constraints, which model an35

agent’s capacity consumed by the assigned task weights. Another generaliza-36

tion of the LAP is the Quadratic Assignment Problem (QAP), which models37

multiplicative cost factors between agents and jobs, e.g. in locational analyzes38

2 P. Greistorfer et al.

distances times interaction frequencies. Finally, the GQAP can be thought of as39

a combination of the GAP and the QAP, where the objective function receives40

a quadratic component in addition to the linear one, the same way as it is done41

in the QAP and suppliers have an upper bound constraint as in the GAP.42

It is well-known that there exist efficient polynomial algorithms for the LAP,43

e.g. the Hungarian method, but the GAP, the QAP, and the GQAP are NP-44

hard (e.g. see [1]). Matheuristics (see [6, 8]), a synthesis of classical, as a rule,45

(real-valued) linear and integer linear programming methods (LP, ILP) with46

conventional heuristic methods (e.g. local search) and/or modern metaheuristic47

methods (Tabu Search, GRASP, Scatter Search etc.) have become popular with48

the rise of recent powerful hardware and even more because of the success of49

solvers like CPLEX or Gurobi.50

Our research focuses on both mathematical formulations of the GQAP as51

well as on the development of LP- and ILP- based matheuristics. In this paper52

we review a branch-and-bound type heuristic tree search and elaborate on the53

basic decomposition idea of the LP-component in the improvement algorithm.54

Afterwards, the focus lies on the presentation of a new Tabu Search (TS), the TS-55

matheuristic GQAP approach (TS-GQAP) is presented. We conclude with current56

computational results and a short outlook.57

2 Modelling the GQAP58

The GQAP can be described by means of the following quadratic integer pro-59

gram. We are given m ∈ N, the number of agents, n ∈ N, the number of jobs,60

with linear assignment costs and weights pij ∈ R and wij ∈ R+
0 , where 1 ≤ i ≤ m61

and 1 ≤ j ≤ n, respectively. The weights present resource amounts to be spent62

by agent i for processing job j, without exceeding an available capacity ai ∈ R+
0 .63

Quadratic costs are defined by the product of dir ∈ R, the cost factor between64

the agents i and r, and fjs ∈ R, the cost factor between the resources j and65

s. Binary decision variables xij ∈ {0, 1} determine whether a job j is served by66

agent i, or not. Then the GQAP is defined by the following binary quadratic67

program (BQP):68

min
m∑
i=1

n∑
j=j

pijxij +

m∑
i=1

n∑
j=1

m∑
r=1

n∑
s=1

dirfjsxijxrs (1)

s.t.
n∑

j=1

wijxij ≤ ai ∀ 1 ≤ i ≤ m, (2)

m∑
i=1

xij = 1 ∀ 1 ≤ j ≤ n, (3)

xij ∈ {0, 1} ∀ 1 ≤ i ≤ m, ∀ 1 ≤ j ≤ n. (4)

A TS Matheuristic for the GQAP 3

3 Solving the GQAP with TS-GQAP69

3.1 Basic concepts70

We start with a short summary of the constructive solution procedure, which was71

in its original form presented as Guided Adaptive Relaxation Rounding Procedure72

(GARRP) in [7]. GARRP starts with an empty (infeasible) solution and iteratively73

creates partial solutions by fixing exactly one agent-task-assignment x′ij ..= 1 at74

each iteration, based upon the optimum solution of a relaxation of BQP, leav-75

ing a subset of remaining decision variables as free. These partial solutions, X ′,76

i.e. incomplete or partial assignments of jobs j to single specific agents i, are77

stored within a tree, in which each tree-node represents one assignment made.78

So for any (partial) solution all fixed assignments left can be found by peg-79

ging links back to the root, which stores the result of the first relaxation solved80

(compare [4]). At any node, relaxed, i.e. continuous values x∗ij received from a81

GQAP-LP-solution, define choice-probabilities among the k-best possible suc-82

ceeding fixations x∗ij ≥ xLB (k and xLB being parameters), from which the most83

likely option is chosen. Parameters k and xLB are user inputs. The whole tree is84

explored in a depth-first manner, if needed investigating all potential successor85

assignments according to a width-second sequence. If at some node all successor86

options are unsuccessfully investigated (in terms of feasibility defined by capac-87

ity constraints), a backtracing process starts until a node with a free successor,88

becoming investigated, is found or until all nodes failed because of overall in-89

feasibility. Normally, this iterative process stops as soon as n assignments have90

been made with a complete and feasible solution, otherwise it fails.91

The present work, focusing on improvement methods for the GQAP, has its92

roots in the Magnifying Glass Heuristic approach, which was already success-93

fully applied to the Quadratic Travelling Salesman Problem in [10]. Then, for94

the first time, this approach was adopted as MG-GQAP [2] to improve (heuristic)95

GQAP solutions. As might be expected, while the results were quite satisfying,96

it turned out that there was still room for improvement. First, we considered the97

possibility to include the quadratic components into the linear part by compress-98

ing the quadratic coefficient matrix into a one-dimensional vector, by means of99

techniques borrowed from data dimensionality reduction approaches, like princi-100

pal component analysis. Specifically, we computed when possible (it has always101

been) the eigenvalues of the coefficient matrix and used them in our heuristic.102

The resulting code was efficient in the GQAP part, but the computation of the103

eigenvalues was very demanding in case of big instances, moreover local search104

was used in the method and it appeared as if the method was apparently not105

sufficiently capable to escape from local optima. So, the idea was to dismiss lin-106

earizations and, sort of the other way round, to use linear programming as an107

improvement to a TS. This led to the design of the TS-GQAP, which combines108

two distinct parts, the TS-neighbourhood and the MG-GQAP.109

For the TS and its neighbourhood the performance of two prominent stan-110

dard operators was analyzed: either two jobs swap machines (exchange) or a111

job changes to another agent (insert). We contrasted using these two operators112

4 P. Greistorfer et al.

together versus using them specifically. And since exclusive use of insert-moves113

turned out to work best, this setting was chosen. In the course of the exploration114

the TS sequentially checks all potential re-assignments of tasks. In doing so, a115

neighbourhood of admissible TS_nh_size trial moves is build by using a short-116

term recency tabu-memory. This memory is defined on the time, i.e. iteration,117

when a job is assigned to a new agent. Using this information, a newly posi-118

tioned task is not allowed to be removed from its agent for a parametric number119

of tenure iterations. As aspiration criterion, the best-improvement-rule is used,120

in which case the tabu status is released from a given trial move if it improves121

the incumbent best solution.122

MG-GQAP can be seen as a variable fixing heuristic, which decomposes the123

overall problem into a fixed and a free component. Thus, interpreting release as124

destruction, the method shares similarities with a Large Neighbourhood Search,125

where solutions are partially destroyed and repaired by corresponding operators;126

a process, which is iteratively repeated until a local optimum is reached (see [9]).127

For the GQAP the corresponding idea works like this: according to pre-defined128

selection patterns, we consider K chosen columns (jobs, in constraints (3) of129

BQP) and create a new auxiliary instance containing only these K columns130

(and all rows). Firstly, linear costs pij are modified including the quadratic costs131

caused by relations between the assignment of j to i and the already fixed assign-132

ments outside of the chosen columns. Then, after re-adjusting the total amounts133

of resources ai in order to reflect the remaining capacities, we solve the auxil-134

iary problem optimally and get a new, possibly improved solution with changes135

restricted to the K chosen columns. Note that alternatively also subsets of rows136

(agents, constraints (2)) may be selected to define new auxiliary subproblems,137

which establishes the differentiation between a column- and a row-oriented vari-138

ant of MG-GQAP. The overall process ends after a total number of given iterations.139

It should be noted that the idea behind MG-GQAP is even capable of serving as140

a construction procedure. In that case it starts from an empty unfeasible solu-141

tion, iteratively increasing the size of a partial solution as long as assignments142

are found, which were not prevented by binding capacity restrictions, while ulti-143

mately and ideally constructing a full feasible solution with n assignments. We144

give this simple 1-pass start heuristic the name MG-GQAP-C and report results in145

the computational section.146

In summary, within TS-GQAP, the TS utilizes the LP-part in order to optimize147

a good local solution in terms of intensification. The role of diversification is148

taken over by the occasional use of elite solutions collected in a pool by the TS.149

Section 3.2 explains this component and covers the algorithmic details.150

3.2 Implementation details151

It is well-known that metaheuristic developments have proved to be successful152

especially in cases, where their fundamental concepts are complemented with153

pool-oriented approaches, originally rooted in Genetic Algorithms or Scatter154

Search and Path Relinking. These algorithms maintain a reference set of high155

A TS Matheuristic for the GQAP 5

quality solutions, which are repeatedly used during the search in order to guar-156

antee a fruitful balance between diversification and intensification (see, e.g. [3]).157

Therefore, Algorithm 1: TS-GQAP uses a pool structure as follows.158

Require: a GQAP instance with a solution X ..= [xij]
m×n ∈ {0, 1}m×n159

Ensure: new solution Xnew with c(Xnew) ≤ c(X)160

1: X∗ ..= X, cbest ..= c(X∗)161

2: repeat162

3: repeat // TS-phase:163

4: X ′ ..= best_admissible
(
TS_neighbourhood(X)

)
164

5: if c(X ′) < cbest then165

6: update X∗ ..= X ′166

7: cbest ..= c(X ′)167

8: end if168

9: maintain a set pool of good and diverse solutions169

10: until TS_termination170

11: if TS_failed then171

12: X ′ ..= unchecked_solution(pool)172

13: end if173

14: repeat // MG-GQAP-phase:174

15: Col ..= select_variable_columns(X ′)175

16: XLP := LP_from(Col)176

17: X∗LP := solve(XLP) // CPLEX177

18: X ′′ ..= combine_solutions(X ′, X∗LP)178

19: if c(X ′′) < cbest then179

20: update X∗ ..= X ′′180

21: cbest ..= c(X ′′)181

22: end if182

23: until MG_QAP_termination183

24: X ..= X ′′184

25: until TS_GQAP_termination185

26: return xnew := X∗186

Algorithm 1: TS-GQAP187

As an improvement procedure, the TS-GQAP builds on a feasible solution X188

with objective function value c(X). It consists of alternating TS- and MG-GQAP-189

phases (lines 3 – 10 and 14 – 23), i.e. it is a series of TS1, MG-GQAP1, TS2,190

MG-QAP2, ... until an overall termination criterion, TS_GQAP_termination,191

gets true. Each TS is capable of maintaining the pool of elite solutions. Such192

solutions are collected to be used in future iterations of the search process.193

Solution X ′ in line 4 is the actual and best admissible solution iteratively drawn194

from consecutive TS-neighbourhoods, which involves the maintenance and usage195

of the TS-memory as described above.196

The pool maintained by the TS, in line 9, collects a maximum of pool_size197

good and diverse solutions. In doing so, a solution is deemed good at the moment,198

when it has just been improved by the TS, i.e. goodness means objective function199

6 P. Greistorfer et al.

value and diversity targets the structural difference mapped in the values of200

the decision variables, i.e. assignments. In the current version such diversity201

is – at least with higher probability – ensured by allowing into the pool only202

members with different objective function values. The diversification step is done203

in lines 11 – 13 as soon as the TS was not able to improve the current solution,204

expressed by a value true, returned from function TS_failed. To diversify the205

search, function unchecked_solution(pool) extracts the cost-minimum solution206

from the pool, which has not yet been output from the pool to be processed207

by the MG-GQAP. In the case that all pool solutions are already processed, this208

procedure forwards the running, i.e. the best solution from the last TS-phase209

to the MG-GQAP. For function select_variable_columns(X ′) in line 15, which210

stores free assignments to be optimized by an LP in set Col, we considered211

a number of possibilities. For the determination of these K := |Col| columns,212

several selection mechanisms were tested. These include random selection, so-213

called plane selection of columns ((1,2,3), (4,5,6), ..., (n - 2, n - 1, n); (2,3,4),214

(5,6,7),...) or binomial selection with columns ((1), (2), (3), (1,2), (1,3), (2,3),215

(1,2,3,); (2), (3), (4),...), all examples underlying K = 3. Trends in efficiency are216

non-random strategies ≺ purely random ≺ mixed-random options. The chosen217

strategy is a half and a half mixture of random and plane.218

After building the LP-subproblem by LP_from(Col) and solving it, in lines219

16 and 17, respectively, procedure combine_solutions(X ′, X∗LP) adds the op-220

timized values x∗ijLP
to the starting solution X ′ and thus includes the LP-221

optimized assignments of X∗LP . If necessary, this is followed by an update of222

the best solution, the same way as it is done fo the TS in lines 5 – 8. At the very223

end, with TS_GQAP_termination getting true, the overall process stops and224

the algorithm returns its best solution found as Xnew.225

4 Computational results226

For the evaluation of the computational results we used three test beds with a227

total of 64 instances. Abbreviated with LAM, CEAL and OWN, there are 27228

instances with m = 6 − 30 and n = 10 − 16 from Lee and Ma [5], 21 instances229

with m = 6− 20 and n = 20− 50 from Cordeau et al. [1] and 16 own randomly230

generated instances with m,n = 10 − 200. All algorithms were implemented in231

AMPL script V.20220310, using the solver CPLEX V.20.1.0.0 (MS VC++ 10.0,232

64-bit). All runs were performed on a ThinkPad X1 notebook with an Intel(R)233

Core(TM) i7-8550U CPU @1.80GHz (Aug. 2017) under Windows 10 Pro with 8234

GB RAM.235

We aimed for a unified parameter setting, but eventually this was only pos-236

sible to a certain extent due to the large structural differences in the data sets:237

symmetry of the data matrices D and F , constancy of weights in W over the238

agent set and, very basic, instance sizes, where the latter directly affect and deter-239

mine calculable LP subproblems, regarding the value of parameter K. To profit240

from faster calculations, a relatively low value of TS_nh_size = 3 is chosen.241

Tabu time becomes tenure ≈ 0.3n and pool_size = 20. More numeric paramet-242

A TS Matheuristic for the GQAP 7

ric details are reported below. Evaluation is split into two parts, judgement of243

the general design of the construction and improvement procedures, thereafter244

in part two supplemented by the discussion of the specific results obtained for245

the three data sets.246

In order to test and evaluate the general design of the construction pro-247

cedures, we used all 3 tests sets. Starting with the tree heuristic GARRP and248

LAM, parameter settings were xLB = 0.5 and k = 50. The procedure needs249

min|avg|max = 6|2375|18364 tree nodes and min|avg|max = 0.3|168.5|1598.4250

seconds (sec.). The second test set, CEAL, is solved with xLB = 0.85, k = 25251

and min|avg|max = 21|1842|16103 nodes, min|avg|max = 1.1|391.6|3600 sec.252

Note that while feasible solutions for all instances of LAM can be built, the253

method fails in two cases (#11 and #15) for CEAL, i.e. those ones for which254

one hour of computing time was not enough. Here starting solutions can be pro-255

vided by solving the standard (linear) GAP. Results for set OWN, solved with256

xLB = 0.9, k = 30, are min|avg|max = 11|30.6|201 nodes and min|avg|max =257

0.3|65.3|707.1 sec. Again, as in LAM, no infeasible solution had to be accepted.258

Not much can be derived from these numbers, but two statements appear to259

be meaningful: the number of nodes, equivalent to the number of solved LPs,260

is relatively big for specific instances, which indicates a large CPU load. Sec-261

ondly, it is a pleasing fact that the success rate of the procedure is quite high262

(62 of 64 cases). An objective-oriented reasoning of GARRP goes along with the263

judgement of the magnifying glass approach used as a construction procedure,264

i.e. algorithm variant MG-GQAP-C. This time, exclusively based on CEAL, set-265

ting K = 4, three MG-GQAP-C-runs with MG_QAP_term = 500|1000|10000266

iterations are performed. The hypothesis is that with an increasing number of267

iterations, i.e. with higher computing time, the numerical quality of the overall268

best solution will increase too, though by an unknown and decreasing amount.269

These expectations are met as follows. Designating the result of the 500-run as270

a basis, the relative stepwise improvements obtained between the 500- and the271

1000-result and between the 1000- and the 10000-result, averaged over the ob-272

jective values of all 21 instances, are 2.7% and 0.8%. Moreover, contrasting the273

best MG-GQAP-C-result, the 10000-result with GARRP, it becomes obvious that the274

tree-procedure works even better with an averaged additional 3.9% performance275

gain. It is interesting to note that these numerical ratios apply not only for the276

construction process but also for an improvement process that builds exactly277

on the former starting solutions. Total running time (min.) naturally gradually278

increases: 14.2|33.0|80.6 (MG-GQAP-C) vs. 137.1 (GARRP).279

Next, we appraise the design of the proposed TS improvement procedure280

TS-GQAP. Essentially, it consists of a TS component (TS-phase) and an LP com-281

ponent (MG-GQAP-phase). So it is obvious to isolate the individual components282

and to compare three test runs: (1) only MG-GQAP-phase, (2) only TS-phase283

and (3) both phases combined (=TS-GQAP). Like above, test set CEAL is used,284

input comes in all cases from the tree start heuristic GARRP and parametrization285

from a unified, single parameter set. The outcome for (1) is an average improve-286

ment of δavgtree = 5.75% (in 35.1 min., whole set), for (2) it is 2.5% (38.0 min.)287

8 P. Greistorfer et al.

and finally for (3), the TS-GQAP, it is 6.39% (44.1 min.). Thus, even if the overall288

concept gets sufficiently motivated, some captious comments seem appropriate.289

Again, as an logical implication, objective function improvement comes at the290

expense of CPU time. In the present context, however, the contribution of the291

TS-phase is smaller than that of the MG-GQAP-phase. However, this is not292

surprising since the optimizing component based on an optimum solution algo-293

rithm will generally generate more visible improvements than a heuristic one.294

One can also see that the neighbourhood structure of the TS, which is more295

complex in terms of implementation, has a significant impact. Nonetheless, the296

contribution of the TS is also a significant one, which is only underscored by the297

overall effectiveness of the method.298

The second part of the computational results covers the evaluation of the299

specific results calculated for the three test sets. Moderately sized instances of300

LAM allow the use of a mixed strategy. The number of LP-columns as well as301

the number of LP-rows is set with K = 4 and the LP-build strategy, column302

or row-oriented, is changed every 25 iterations. Termination parameters are set303

as TS_term = 150,MG_GQAP_term = 50 and TS_GQAP_term = 20.304

The result for LAM is δavgtree = 11.66%, which takes 2.4 min. averaged over all305

instances. It can be observed that the algorithm finds the best solutions quite306

early. With respect to quality it can be stated that the results appear to be good,307

but no optimality gaps were calculated since optimal solutions are not published.308

The next object of observation is the test set CEAL. Again, K = 4 and the309

LP-component follows a column approach, exactly as it is described in Algorithm310

1, while completion criteria are given by TS_term = 500,MG_GQAP_term =311

100 and TS_GQAP_term = 10. This leads to an improvement of δavgtree = 6.4%312

in an average of 2.2 min. Because competing objective function values are avail-313

able, deviations from best-known objectives can be determined. They are given314

with δCEAL and amount min|avg|max = 0.0%|1.4%|8.29.%. Results’ quality315

clearly correlates with instance-density ρ, the ratio of total capacity demanded316

over total capacity available (reasonably only calculable for server independent317

constant demands, as it is the case with CEAL and LAM). As already indicated318

the two problem instances, namely #11 and #15, cannot be improved. It should319

also be stated in an exculpatory manner that average quality gets destroyed by320

only a few outliers. Compensating these, an acceptable δavgCEAL = 0.9% can be321

achieved.322

The third and last set, OWN, contains the hardest instances: asymmet-323

ric, non-constant weights and sizes up to m,n = 200. It is solved with the324

same column-oriented LP-strategy as used for CEAL. We set K = 3, how-325

ever, due to advanced dimensions, it was necessary to reduce the value of K326

to 2 for instances with a high m = 200. Termination variables are given by327

TS_term = 150,MG_GQAP_term = 25 and TS_GQAP_term = 40. With328

these parameters we can achieve a δavgtree = 34.46% in average 11.0 min. In the329

OWN case running time utilization is more efficient since for some instances the330

best result is only achieved after 90% of the total running time. The majority of331

A TS Matheuristic for the GQAP 9

instances (≈ 11, 12 out of 16) cannot be solved optimally with the means at our332

disposal, hence no reasonable deviations can be calculated.333

As a final remark it should be noted that for all test sets, LAM, CEAL and334

OWN, algorithm TS-GQAP constitutes an improvement over the old MG-GQAP as335

described in [2]. In terms of objective value amount this progress is not outstand-336

ing, but it is clearly visible. It comes either as an increase in CPU productivity,337

i.e. percentage improvement divided by CPU time used, or actually as an im-338

provement of the (average) objective.339

5 Summary, criticism and outlook340

This work is a further step in an ongoing research project looking for heuristic341

solution procedures for the GQAP. We combine the well-known metaheuris-342

tic TS with the strengths of mathematical programming and introduce a new343

matheuristic referred to as TS-GQAP. The basic idea behind it was originally344

coined as Magnifying Glass Heuristic, itself a matheuristic and successfully used345

for a quadratic Travelling Salesman Problem. The design of the new method346

turned out to be successful in terms of CPU usage and the ability to deal with347

larger problem sizes, while also specific results could be improved. Moreover, in348

terms of competition, the method proved to be able to keep up with algorithms349

from literature and the best-known-gaps could be reduced by another level.350

Even if the new algorithmic design is promising, there exist clearly visible351

improvement opportunities. New challenges raised are those about the course352

of the interaction between the TS neighbourhood and the LP decomposition or353

about the implementation of an overarching memory structure. Very basically,354

a stumbling block on the way to outstanding performance is founded in the ca-355

pacity restricted nature of the underlying problem, which logically is intricate356

to navigate. Fast metaheuristics are able to play off their superiority for prob-357

lem classes, which are unrestricted or endowed with a large number of feasible358

solutions (dense solution space) and often benefit from easier objective function359

calculations. As observed, the explorable solution space, more accurately, the360

neighbourhood induced solution landscape for some GQAP instances investi-361

gated is quite sparse. It has already been put forward [6] that sparse solution362

spaces are indicative of cases where matheuristics are probably more effective363

than plain metaheuristics, usually relying on local search or simple construc-364

tive procedures at their core. Moreover, GQAP is a representative problem of365

nonlinear combinatorial optimization, an area that so far received much less at-366

tention from research than its linear counterpart, despite its obvious relevance367

for modelling and solving compelling real-world problems.368

This opens sufficient room to set up and tune new neighbourhood mecha-369

nisms to be developed, an endeavor, which of course cannot be done apart from370

designing more efficient memory structures. It is precisely this problem area that371

must be examined and analyzed more closely in the future.372

10 P. Greistorfer et al.

References373

1. Cordeau, J.F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the374

generalized quadratic assignment problem. INFORMS Journal on Computing 18,375

433–443 (11 2006). https://doi.org/10.1287/ijoc.1040.0128376

2. Greistorfer, P., Staněk, R., Maniezzo, V.: The magnifying glass heuristic for the377

generalized quadratic assignment problem. In: Proceeding of the XIII Metaheuris-378

tics International Conference MIC 2019. pp. 22–24. Universidad de los Andes Sede379

Caribe (2019)380

3. Greistorfer, P., Voß, S.: Controlled Pool Maintenance for Metaheuristics, pp. 387–381

424. Springer US, Boston, MA (2005). https://doi.org/10.1007/0-387-23667-8_18382

4. Kaufman, L., Broeckx, F.C.: An algorithm for the quadratic assignment problem383

using Bender’s decomposition. European Journal of Operational Research 2(3),384

207–211 (1978)385

5. Lee, C., Ma, Z.: The generalized quadratic assignment problem. Research Re-386

port, Department of Mechanical and Industrial Engineering, University of Toronto,387

(2003)388

6. Maniezzo, V., Boschetti, M., Stützle, T.: Matheuristics: Algorithms and Imple-389

mentations. EURO Advanced Tutorials on Operational Research, Springer Inter-390

national Publishing (2021)391

7. Maniezzo, V., Greistorfer, P., Staněk, R.: Exponential neighborhood search for392

the generalized quadratic assignment problem (2018), eURO/ALIO International393

Conference on Applied Combinatorial Optimization, 25.–27.6.2018, Bologna, Italy394

8. Maniezzo, V., Stützle, T., Voß, S.: Matheuristics: Hybridizing Metaheuristics and395

Mathematical Programming. Springer Publishing Company, Incorporated, 1st edn.396

(2009)397

9. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the398

pickup and delivery problem with time windows. Transportation Science 40(4),399

433–443 (2006)400

10. Staněk, R., Greistorfer, P., Ladner, K., Pferschy, U.: Geometric and LP-based401

heuristics for the quadratic travelling salesman problem. Computers & Operations402

Research 108, 97–111 (2019)403

