Skip to main content

Amortizing Division and Exponentiation

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13837))

Included in the following conference series:

  • 657 Accesses

Abstract

Multiparty computation (MPC) has developed rapidly in the past three decades. The research on general MPC only considers addition and multiplication in a circuit because they are Turing-complete. However, when we consider other arithmetic operations, such as division and exponentiation, the customed protocols are often more efficient. In this work, we optimize the overhead of computing division and exponentiation. Our main idea is to use vector oblivious linear-function evaluation (VOLE) to generate correlation multiplication triples and use these triples to compute correlation multiplication in division and exponentiation protocols. Our method can reduce the cost of a single division to strictly no more than 2 multiplications. In the batch setting, we reduce the cost of n correlation division to almost the same as that of one division. In addition, we use the same method to reduce the cost of n correlation private exponentiation by about \(33\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aly, A., Abidin, A., Nikova, S.: Practically efficient secure distributed exponentiation without bit-decomposition. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 291–309. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_16

    Chapter  Google Scholar 

  2. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8

    Chapter  Google Scholar 

  3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada, 14–16 August 1989, pp. 201–209 (1989)

    Google Scholar 

  4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 1–10 (1988)

    Google Scholar 

  6. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  7. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 896–912 (2018)

    Google Scholar 

  10. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: CCS 2019 (2019)

    Google Scholar 

  11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  12. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 486–497 (2007)

    Google Scholar 

  13. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001 (2001)

    Google Scholar 

  14. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17

    Chapter  Google Scholar 

  15. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  16. Damgård, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 183–200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_12

    Chapter  Google Scholar 

  17. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  18. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, 8–11 February 2015 (2015)

    Google Scholar 

  19. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1602–1613 (2016)

    Google Scholar 

  20. Döttling, N., Ghosh, S., Nielsen, J. B., Nilges, T., Trifiletti, R.: TinyOLE: efficient actively secure two-party computation from oblivious linear function evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 2263–2276 (2017)

    Google Scholar 

  21. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  22. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-dimensional data. Proc. Priv. Enhancing Technol. 2017(4), 345–364 (2017)

    Article  Google Scholar 

  23. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  24. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987 (1987)

    Google Scholar 

  25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  26. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

    Chapter  Google Scholar 

  27. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 830–842 (2016)

    Google Scholar 

  28. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

    Chapter  Google Scholar 

  29. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 549–560 (2013)

    Google Scholar 

  30. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 20–31 (1988)

    Google Scholar 

  31. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_28

    Chapter  Google Scholar 

  32. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 259–276 (2017)

    Google Scholar 

  33. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1) (2009)

    Google Scholar 

  35. Mohassel, P., Rindal, P.: ABY\({}^{\text{3}}\): a mixed protocol framework for machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 35–52 (2018)

    Google Scholar 

  36. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  38. Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_28

    Chapter  Google Scholar 

  39. Ning, C., Xu, Q.: Constant-rounds, linear multi-party computation for exponentiation and modulo reduction with perfect security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 572–589. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_31

    Chapter  Google Scholar 

  40. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-ole: improved constructions and implementation. In: CCS 2019, pp. 1055–1072 (2019)

    Google Scholar 

  41. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 39–56 (2017)

    Google Scholar 

  42. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1074–1091 (2021)

    Google Scholar 

  43. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)

    Google Scholar 

  44. Yu, C.-H., Chow, S.S.M., Chung, K.-M., Liu, F.-H.: Efficient secure two-party exponentiation. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 17–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_2

    Chapter  Google Scholar 

  45. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computation. IACR Cryptology ePrint Archive, p. 1153 (2015)

    Google Scholar 

Download references

Acknowledgement

We are grateful for the helpful comments from the anonymous reviewers. Our work is supported by the National Key Research and Development Program of China (No. 2020YFB1805402) and the National Natural Science Foundation of China (Grants No. 61872359 and No. 61936008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdai Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Li, S., Lin, D. (2023). Amortizing Division and Exponentiation. In: Deng, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2022. Lecture Notes in Computer Science, vol 13837. Springer, Cham. https://doi.org/10.1007/978-3-031-26553-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26553-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26552-5

  • Online ISBN: 978-3-031-26553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics