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Abstract. We consider a syntax and semantics of modal logics based on
parametrized modal connectives with ∃∀-satisfaction definitions, we axiomati-
cally introduce different parametrized modal logics, we prove their completeness AQ1

with respect to appropriate classes of parametrized relational structures and we
show the decidability of some related satisfiability problems. AQ2
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1 Introduction

The connective ♦ of arity 1 usually considered in the propositional modal language
has a ∃-satisfaction definition: in relational models of the form (W,R, V ) where R is a
binary relation on a nonempty set W of possible worlds, V interprets formulas in such
a way that for all formulas ϕ,

– the possible world s is in V (♦ϕ) exactly when for some possible world t, sRt and
t ∈ V (ϕ).

Within the context of temporal reasoning, the until connective U of arity 2 has been
considered in order to increase the expressive power of the propositional modal lan-
guage, its ∃∀-satisfaction definition being such that in models (W,R, V ) as above, for
all formulas ϕ,ψ,

– the possible world s is in V (ϕUψ) exactly when for some possible world u, sRu,
u ∈ V (ψ) and for every possible world t, if sRt and tRu then t ∈ V (ϕ).

As is well-known, the use of the until connective U of arity 2 allows to characterize
more classes of relational structures than we can characterize in the propositional modal
language based on the connective ♦ of arity 1 [4, Chapter 7]. Moreover, the use of the
until connective U has no dramatic consequence on the computational complexity of
the satisfiability problem, this problem being PSPACE-complete in the most popular
classes of models usually considered for applications of temporal reasoning [22,23].

Therefore, a question naturally arises: without dramatically affecting the compu-
tational complexity of the satisfiability problem, are there other ways to increase the
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2 P. Balbiani

expressive power of propositional modal languages by considering other connectives
with complex satisfaction definitions? Let us consider a propositional modal language
based on a connective ♦ of arity 2. Traditionally, its relational models are of the form
(W,R, V ) where R is a ternary relation on a nonempty set W of possible worlds and
V interprets formulas in such a way that for all formulas ϕ,ψ,

– the possible world s is in V (ϕ♦ψ) exactly when for some possible world u, u ∈
V (ψ) and for some possible world t, t ∈ V (ϕ) and sR(t, u).

On the pattern of the until connective U and its ∃∀-satisfaction definition, let us consider
a propositional modal language based on a new connective " of arity 2 and such that in
models (W,R, V ) as above, for all formulas ϕ,ψ,

– the possible world s is in V (ϕ"ψ) exactly when for some possible world u, u ∈
V (ψ) and for every possible world t, if t ∈ V (ϕ) then sR(t, u).

With such syntax and semantics at hand, can we characterize more classes of relational
structures than we can characterize in the propositional modal language based on the
connective ♦ of arity 2? And what is the price to pay in terms of the computational
complexity of the satisfiability problem?

Obviously, given a ternary relation R on a nonempty set W , we can naturally con-
sider the function R : ℘(W ) −→ ℘(W × W ) such that for all subsets A of W
and for every s, u in W , sR(A)u exactly when for every t in W , if t ∈ A then
sR(t, u). Obviously, the main property of such function is that for all subsets A of
W , R(A) =

⋂
{R({t}) : t ∈ A}. Reciprocally, given a nonempty set W and a

function R : ℘(W ) −→ ℘(W × W ) satisfying the above property, we can naturally
consider the ternary relation R on W such that for every s, t, u in W , sR(t, u) exactly
when sR({t})u. This suggests us to consider a propositional modal language based
on a connective " of arity 2 and such that in models of the form (W,R, V ) where W
is a nonempty set of possible worlds and R : ℘(W ) −→ ℘(W × W ) is a function
satisfying the above property, for all formulas ϕ,ψ,

– the possible world s is in V (ϕ"ψ) exactly when for some possible world u, u ∈
V (ψ) and sR(V (ϕ))u.

In this paper, with such syntax (Sect. 2) and semantics (Sect. 3) at hand, we axiomat-
ically introduce different modal logics (Sect. 4), we prove their completeness with
respect to appropriate classes of relational structures (Sects. 5 and 6) and we show
the decidability of some related satisfiability problems (Sect. 7). When our results are
immediate consequences of our definitions, their proofs are not included in the paper.

2 Syntax

Let P be a countably infinite set (with typical members denoted p, q, etc.). Members
of P will be called atomic formulas. A tip is a set Σ of finite words over the alphabet
P ∪ {⊥,¬,∨,", (, )} (with typical members denoted ϕ, ψ, etc.). Let L be the least tip
such that P ⊆ L and for all finite words ϕ,ψ,
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Parametrized Modal Logic II: The Unidimensional Case 3

– ⊥ ∈ L,
– if ϕ ∈ L then ¬ϕ ∈ L,
– if ϕ,ψ ∈ L then (ϕ ∨ ψ) ∈ L,
– if ϕ,ψ ∈ L then (ϕ"ψ) ∈ L.

Members of L will be called formulas. The Boolean connectives +, ∧, → and ↔ are
defined as the usual abbreviations. For all ϕ,ψ ∈ L, anticipating the fact that the roles
of ϕ and ψ in (ϕ"ψ) are not symmetric, let (ϕ#ψ) be an abbreviation of ¬(ϕ"¬ψ). We
adopt the standard rules for omission of the parentheses. A tip Σ is readable if Σ ⊆ L.
A readable tip Σ is closed if for all ϕ,ψ ∈ L,

– if ¬ϕ ∈ Σ then ϕ ∈ Σ,
– if ϕ ∨ ψ ∈ Σ then ϕ,ψ ∈ Σ,
– if ϕ"ψ ∈ Σ then ϕ,ψ ∈ Σ.

As a result, for all closed readable tips Σ and for all ϕ,ψ ∈ L, if ϕ#ψ ∈ Σ then
ϕ,ψ ∈ Σ. For all ϕ ∈ L, let Σϕ be the least closed readable tip containing ϕ. For all
ϕ ∈ L, let ‖ϕ‖ be the length of ϕ.

Lemma 1. For all ϕ ∈ L, Card(Σϕ) ≤ ‖ϕ‖.

From now on in this paper, for all ϕ,ψ ∈ L, we will write “〈ϕ〉ψ” instead of “ϕ"ψ”
and “[ϕ]ψ” instead of “ϕ#ψ”. For all ϕ ∈ L and for all readable tips Σ, let [ϕ]Σ be
the set of all ψ ∈ L such that [ϕ]ψ ∈ Σ. From now on in this paper, readable tips will
be called sets of formulas.

3 Relational Semantics

A frame is a couple (W,R) where W is a nonempty set and R : ℘(W ) −→ ℘(W ×W ).
A frame (W,R) is conjunctive if for all A ∈ ℘(W ), R(A) =

⋂
{R({s}) : s ∈ A}.

A frame (W,R) is preconjunctive if R(∅) = W × W and for all A,B ∈ ℘(W ),
R(A ∪ B) = R(A) ∩ R(B). A frame (W,R) is paraconjunctive if R(∅) = W × W
and for all A,B ∈ ℘(W ), if A ⊆ B then R(A) ⊇ R(B).

Lemma 2. Every conjunctive frame is preconjunctive.

Example 1. There exists preconjunctive nonconjunctive frames. For instance, the frame
(W,R) where W = N and for all A ∈ ℘(N), if A is finite then R(A) = N × N else
R(A) = ∅. Obviously, this frame is preconjunctive. Indeed, R(∅) = N × N. Moreover,
for all A,B ∈ ℘(N), R(A∪B) = R(A)∩R(B), seeing that A∪B is finite if and only
if A is finite and B is finite. However, it is not conjunctive, seeing that R(N) = ∅ and⋂

{R({s}) : s ∈ N} = N × N.

Lemma 3. Every preconjunctive frame is paraconjunctive.

Example 2. There exists paraconjunctive nonpreconjunctive frames. For instance, the
frame (W,R) where W = N and for all A ∈ ℘(N), if Card(A) < 2 then R(A) = N×N
else R(A) = ∅. Obviously, this frame is paraconjunctive. Indeed, R(∅) = N × N.
Moreover, for all A,B ∈ ℘(N), if A ⊆ B then R(B) ⊆ R(A), seeing that if A ⊆ B
then Card(A) ≤ Card(B). However, it is not preconjunctive, seeing that R({0, 1}) = ∅
and R({0}) ∩ R({1}) = N × N.
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4 P. Balbiani

A frame of indiscernibility is a frame (W,R) such that for all A ∈ ℘(W ), R(A) is an
equivalence relation on W .

Example 3. Let Ob be a nonempty set of objects, At be a nonempty set of attributes,
Val be a nonempty set of values and m : Ob × At −→ ℘(Val). In the 4-
tuple (Ob,At,Val,m), the objects s and t are equivalent for the attribute u if
m(s, u) = m(t, u) whereas the attributes s and t are equivalent for the object u if
m(u, s) = m(u, t). Such systems have been introduced and developed by Orłowska
and Pawlak within the context of analysis of data and representation of nondeterminis-
tic information [18,20]. The frame (W,R) where

– W = Ob ∪ At,
– for all A ∈ ℘(Ob ∪ At), R(A) is the binary relation on Ob ∪ At such that for

all s, t ∈ Ob ∪ At, sR(A)t if and only if either A = ∅, or s, t ∈ Ob and for all
u ∈ At, if u ∈ A then m(s, u) = m(t, u), or s, t ∈ At and for all u ∈ Ob, if
u ∈ A then m(u, s) = m(u, t),

is a conjunctive frame of indiscernibility.

A valuation on a frame (W,R) is a V : L −→ ℘(W ) such that for all ϕ,ψ ∈ L,

– V (⊥) = ∅,
– V (¬ϕ) = W \ V (ϕ),
– V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
– V (〈ϕ〉ψ) = {s ∈ W : ∃t ∈ W (sR(V (ϕ))t & t ∈ V (ψ))}.

As a result, for all valuations V : L −→ ℘(W ) on the frame (W,R) and for all
ϕ,ψ ∈ L, V ([ϕ]ψ) = {s ∈ W : ∀t ∈ W (sR(V (ϕ))t ⇒ t ∈ V (ψ))}. A model is a
triple consisting of a frame and a valuation on that frame. A model is conjunctive (resp.,
preconjunctive, paraconjunctive) if it is based on a conjunctive (resp., preconjunctive,
paraconjunctive) frame. A model of indiscernibility is a model based on a frame of
indiscernibility.

Example 4. The frame (W,R) where

– W = R2,
– for all A ∈ ℘(R2), R(A) is the binary relation on R2 such that for all s, t ∈ R2,

sR(A)t if and only if for all u ∈ A, d(s, t) ≤ d(s, u) where d : R2 × R2 −→ R+

is the distance function in R2,

is conjunctive. For all valuations V on (W,R) and for all ϕ,ψ ∈ L, if V (ϕ) 6= ∅ then
V (〈ϕ〉ψ) is the set of all s in R2 such that for some t in R2, t is in V (ψ) and the open
disc with center s and radius d(s, t) does not intersect V (ϕ).

Example 5. The frame (W,R) where

– W = R3,
– for all A ∈ ℘(R3), R(A) is the binary relation on R3 such that for all s, t ∈ R3,

sR(A)t if and only if for all u ∈ A, not L(s, t, u) where L ⊆ R3 × R3 × R3 is the
collinearity relation in R3,
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Parametrized Modal Logic II: The Unidimensional Case 5

is conjunctive. For all valuations V on (W,R) and for all ϕ,ψ ∈ L, if V (ϕ) 6= ∅ then
V (〈ϕ〉ψ) is the set of all s in R3 such that for some t in R3, t is in V (ψ) and the line
passing through s and t does not intersect V (ϕ).

A formula ϕ is satisfiable in a model (W,R, V ) if V (ϕ) 6= ∅. A formula ϕ is true in a
model (W,R, V ) (in symbols (W,R, V ) |= ϕ) if V (ϕ) = W . A formula ϕ is satisfiable
on a frame (W,R) if there exists a (W,R)-valuation V such that ϕ is satisfiable in
(W,R, V ). A formula ϕ is valid on a frame (W,R) (in symbols (W,R) |= ϕ) if for all
(W,R)-valuations V , (W,R, V ) |= ϕ. A formula ϕ is satisfiable on a class C of frames
if there exists a frame (W,R) in C such that ϕ is satisfiable on (W,R). A formula
ϕ is valid on a class C of frames (in symbols C |= ϕ) if for all frames (W,R) in C,
(W,R) |= ϕ.

Example 6. On the class of all paraconjunctive frames, the following formulas are
valid: [⊥]ϕ → ϕ and 〈⊥〉ϕ → [⊥]〈⊥〉ϕ.

Example 7. On the class of all paraconjunctive frames, the following formulas are
valid: [⊥](ϕ → ψ) → ([ϕ]χ → [ψ]χ).

Example 8. On the class of all frames of indiscernibility, the following formulas are
valid: [ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

The satisfiability problem on a class C of frames is the following decision problem:

input: a formula ϕ,
output: determine whether there exists a model (W,R, V ) based on a frame in C such

that V (ϕ) 6= ∅.

A bounded morphism from a frame (W,R) to a frame (W ′, R′) is a f : W −→ W ′

such that

Forward condition: for all s, t ∈ W and for all A ∈ ℘(W ), if sR(A)t then f(s)
R′(f [A])f(t),

Backward condition: for all s ∈ W , for all t′ ∈ W ′ and for all A ∈ ℘(W ), if
f(s)R′(f [A])t′ then there exists t ∈ W such that sR(A)t and f(t) = t′.

Lemma 4. For all frames (W,R) and (W ′, R′) and for all bounded morphisms f from
(W,R) to (W ′, R′), if f is surjective then for all valuations V ′ on (W ′, R′), the V :
L −→ ℘(W ) such that for all ϕ ∈ L, V (ϕ) = f−1[V ′(ϕ)] is a valuation on (W,R).

Lemma 5. For all frames (W,R) and (W ′, R′) and for all bounded morphisms f from
(W,R) to (W ′, R′), if f is surjective then for all formulas ϕ, if (W,R) |= ϕ then
(W ′, R′) |= ϕ.

4 Axiomatizations

A unidimensional parametrized modal logic (UPML) is a set of formulas containing the
following formulas:
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6 P. Balbiani

(A1) all formulas obtained from propositional tautologies after having uniformly
replaced their atomic formulas by arbitrary formulas,

(A2) [ϕ](ψ → χ) → ([ϕ]ψ → [ϕ]χ),

and closed under the following rules:

(R1) ϕ, ϕ→ψ
ψ ,

(R2) ϕ
[ψ]ϕ ,

(R3) ϕ↔ψ
[ϕ]χ↔[ψ]χ .

A UPML is conjunctive if it contains the following formulas:

(A3) [⊥]ϕ → ϕ, 〈⊥〉ϕ → [⊥]〈⊥〉ϕ,
(A4) [⊥](ϕ → ψ) → ([ϕ]χ → [ψ]χ).

Let Kg (resp., Kc) be the least UPML (resp., the least conjunctive UPML). Let
S5g (resp., S5c) be the least UPML (resp., the least conjunctive UPML) containing the
following formulas:

(A5) [ϕ]ψ → ψ, 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

For all UPMLs L and for all sets Σ of formulas, let L + Σ be the least UPML
containing L ∪ Σ. A UPML L is consistent if L 6= L. For all UPMLs L, we will say
that a set s of formulas is L-consistent if for all n ∈ N and for all ϕ1, . . . ,ϕn ∈ s,
¬(ϕ1 ∧ . . . ∧ ϕn) 6∈ L. Notice that for all consistent UPMLs L, L is a L-consistent set
of formulas.

Lemma 6. For all UPMLs L and for all L-consistent sets s of formulas, there exists a
maximal L-consistent set t of formulas such that s ⊆ t.

Lemma 7. For all UPMLs L, for all maximal L-consistent sets s of formulas and for
all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ s then [ϕ]s ∪ {ψ} is a L-consistent set of formulas.

Table 1. .

UPMLs Classes of frames

Kg All frames

S5g All frames of indiscernibility

Kc All paraconjunctive frames

All preconjunctive frames

All conjunctive frames

S5c All paraconjunctive frames of indiscernibility

All preconjunctive frames of indiscernibility

All conjunctive frames of indiscernibility

For all formulas ϕ, let ϕ̂ be the set of all maximal L-consistent sets of formulas
containing ϕ. A UPML L is sound with respect to a class C of frames if for all formulas
ϕ, if ϕ ∈ L then C |= ϕ. A UPML L is complete with respect to a class C of frames
if for all formulas ϕ, if C |= ϕ then ϕ ∈ L. The proofs of the soundness statements
expressed in Proposition 1 are as expected.
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Parametrized Modal Logic II: The Unidimensional Case 7

Proposition 1. In Table 1, the UPMLs listed in the left column are sound with respect
to the corresponding classes of frames listed in the right column.

As for the proofs of the corresponding completeness statements, they are not so obvi-
ous, especially when the considered UPMLs are conjunctive. Indeed, the problem with
conjunctive UPMLs is that the operation of intersection — which is used in conjunctive
frames for the interpretation of the modalities — is not modally definable [1,19]. AQ3

5 Completeness: The General Case

From now on in this section, we will assume that L is a consistent UPML. Let (Wg, Rg)
be the couple where

– Wg is the set of all maximal L-consistent sets of formulas,
– Rg : ℘(Wg) −→ ℘(Wg ×Wg) is such that for all A ∈ ℘(Wg) and for all s, t ∈ Wg ,

• sRg(A)t if and only if for all formulas ϕ, if ϕ̂ = A then [ϕ]s ⊆ t,
where ϕ̂ denotes the set of all u ∈ Wg such that ϕ ∈ u.

Lemma 8. For all formulas ϕ,ψ, if ϕ̂ = ψ̂ then ϕ ↔ ψ ∈ L.

Since L is a L-consistent set of formulas, by Lemma 6, Wg is nonempty.

Lemma 9. (Wg, Rg) is a frame.

The couple (Wg, Rg) will be called general canonical frame for L.

Lemma 10. If L contains S5g then the general canonical frame for L is a frame of
indiscernibility.

Let Vg : L −→ ℘(Wg) be such that for all formulas ϕ, Vg(ϕ) = ϕ̂. The triple
(Wg, Rg, Vg) will be called general canonical model for L.

Lemma 11 (Truth Lemma: the general case). The general canonical model for L is
a model.

Proposition 2 is a consequence of Lemmas 6, 9, 10 and 11.

Proposition 2. – Kg is complete with respect to the class of all frames,
– S5g is complete with respect to the class of all frames of indiscernibility.

6 Completeness: The Conjunctive Case

From now on in this section, we will assume that L is a consistent conjunctive UPML.

Lemma 12. For all maximal L-consistent sets s, t, u of formulas, [⊥]s ⊆ s and if
[⊥]s ⊆ t and [⊥]s ⊆ u then [⊥]t ⊆ u.

Let s0 be a maximal L-consistent set of formulas. Let (Wc, Rc) be the couple where

– Wc is the set of all maximal L-consistent sets s of formulas such that [⊥]s0 ⊆ s,
– Rc : ℘(Wc) −→ ℘(Wc × Wc) is such that for all A ∈ ℘(Wc) and for all s, t ∈ Wc,
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8 P. Balbiani

• sRc(A)t if and only if for all formulas ϕ, if ϕ̂ ⊆ A then [ϕ]s ⊆ t,
where ϕ̂ denotes the set of all u ∈ Wc such that ϕ ∈ u.

Lemma 13. For all formulas ϕ,ψ,

– if ϕ̂ ⊆ ψ̂ then for all s ∈ Wc, [⊥](ϕ → ψ) ∈ s,
– if ϕ̂ = ∅ then for all s, t ∈ Wc, [ϕ]s ⊆ t.

Since s0 is a maximal L-consistent set of formulas, by Lemma 12, Wc is nonempty.

Lemma 14. (Wc, Rc) is a paraconjunctive frame.

The couple (Wc, Rc) will be called conjunctive canonical frame for L.

Lemma 15. If L contains S5c then the conjunctive canonical frame for L is a para-
conjunctive frame of indiscernibility.

Let Vc : L −→ ℘(Wc) be such that for all formulas ϕ, Vc(ϕ) = ϕ̂. The triple
(Wc, Rc, Vc) will be called conjunctive canonical model for L.

Lemma 16 (Truth Lemma: the paraconjunctive case). The conjunctive canonical
model for L is a model.

Proposition 3 is a consequence of Lemmas 6, 14, 15 and 16.

Proposition 3. – Kc is complete with respect to the class of all paraconjunctive
frames,

– S5c is complete with respect to the class of all paraconjunctive frames of indiscerni-
bility.

Now, let us turn to the completeness of Kc with respect to the class of all preconjunc-
tive frames and the class of all conjunctive frames and the completeness of S5c with
respect to the class of all preconjunctive frames of indiscernibility and the class of all
conjunctive frames of indiscernibility. In this respect, Lemmas 17 and 18 will be our
key results.

Lemma 17. Let (W,R) be a paraconjunctive frame. There exists a conjunctive frame
(W ′, R′) and a surjective bounded morphism from (W ′, R′) to (W,R).

Proof. This proof ends after Claim 6. Let Λ be the set of all τ : ℘(W )×W −→ {0, 1}.
Let (W ′, R′) be the couple where

– W ′ = W × Λ,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all

(s,σ), (t, τ) ∈ W ′,
• (s,σ)R′(A′)(t, τ) if and only if for all A ∈ ℘(W ),

* if A′ ∩ (A × Λ) 6= ∅ then sR(A)t if and only if for all u ∈ A, σ(A, u) =
τ(A, u),
* for all (u, υ) ∈ A′ ∩ (A × Λ), σ(A, u) = τ(A, u).

Claim. For all A′ ∈ ℘(W ′), R′(A′) =
⋂

{R′({(u, υ)}) : (u, υ) ∈ A′}.

A
ut

ho
r 

Pr
oo

f



Parametrized Modal Logic II: The Unidimensional Case 9

Proof. Let A′ ∈ ℘(W ′). We demonstrate R′(A′) ⊇
⋂

{R′({(u, υ)}) : (u, υ) ∈ A′},
the “⊆” direction being left as an exercise for the reader. Arguing by contradiction,
suppose R′(A′) 6⊇

⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}. Hence, there exists (s,σ), (t, τ) ∈

W ′ such that not (s,σ)R′(A′)(t, τ) and for all (u, υ) ∈ A′, (s,σ)R′({(u, υ)})(t, τ).
Thus, for all (u, υ) ∈ A′ and for all A ∈ ℘(W ),

– if {(u, υ)} ∩ (A × Λ) 6= ∅ then sR(A)t if and only if for all v ∈ A, σ(A, v) =
τ(A, v),

– for all (v,ω) ∈ {(u, υ)} ∩ (A × Λ), σ(A, v) = τ(A, v).

Consequently, for all A ∈ ℘(W ),

– if A′ ∩ (A × Λ) 6= ∅ then sR(A)t if and only if for all v ∈ A, σ(A, v) = τ(A, v),
– for all (v,ω) ∈ A′ ∩ (A × Λ), σ(A, v) = τ(A, v).

Hence, (s,σ)R′(A′)(t, τ): a contradiction.

Claim 6 is a consequence of Claim 6.

Claim. (W ′, R′) is a conjunctive frame.

Let f : W ′ −→ W be such that for all (s,σ) ∈ W ′, f(s,σ) = s.

Claim. f : W ′ −→ W is surjective.

Notice that for all A ∈ ℘(W ), f−1[A] = A × Λ.

Claim. For all (s,σ), (t, τ) ∈ W ′ and for all A′ ∈ ℘(W ′), if (s,σ)R′(A′)(t, τ) then
sR(f [A′])t.

Proof. Let (s,σ), (t, τ) ∈ W ′ and A′ ∈ ℘(W ′). Suppose (s,σ)R′(A′)(t, τ). Arguing
by contradiction, suppose not sR(f [A′])t. Hence, f [A′] 6= ∅. Thus, A′ ∩ (f [A′]×Λ) 6=
∅. Since (s,σ)R′(A′)(t, τ), sR(f [A′])t if and only if for all v ∈ f [A′], σ(f [A′], v) =
τ(f [A′], v). Moreover, for all (u, υ) ∈ A′ ∩ (f [A′] × Λ), σ(f [A′], u) = τ(f [A′], u).
Consequently, for all u ∈ f [A′], σ(f [A′], u) = τ(f [A′], u). Since sR(f [A′])t if and
only if for all v ∈ f [A′], σ(f [A′], v) = τ(f [A′], v), sR(f [A′])t: a contradiction.

Claim. For all (s,σ) ∈ W ′, for all t ∈ W and for all A′ ∈ ℘(W ′), if sR(f [A′])t then
there exists τ ∈ Λ such that (s,σ)R′(A′)(t, τ).

Proof. Let (s,σ) ∈ W ′, t ∈ W and A′ ∈ ℘(W ′). Suppose sR(f [A′])t. We demon-
strate there exists τ ∈ Λ such that (s,σ)R′(A′)(t, τ). Indeed, we are looking for a
τ : ℘(W ) × W −→ {0, 1} such that for all B ∈ ℘(W ),

(C1) if A′ ∩ (B ×Λ) 6= ∅ then sR(B)t if and only if for all v ∈ B, σ(B, v) = τ(B, v),
(C2) for all (v,ω) ∈ A′ ∩ (B × Λ), σ(B, v) = τ(B, v).

For all B ∈ ℘(W ), let τB : W −→ {0, 1} be defined as follows:

Case “sR(B)t”: for all v ∈ W , let τB(v) = σ(B, v),

Case “not sR(B)t”: let vB ∈ W be such that vB ∈ B and vB 6∈ f [A′] (such vB

exists for otherwise B ⊆ f [A′] and not sR(f [A′])t) and for all v ∈ W ,
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10 P. Balbiani

– if v 6= vB then let τB(v) = σ(B, v),
– otherwise, let τB(v) = 1 − σ(B, v).

Let τ : ℘(W ) × W −→ {0, 1} be such that for all B ∈ ℘(W ) and for all v ∈ W ,
τ(B, v) = τB(v). Now, we just have to verify that for all B ∈ ℘(W ), (C1) and (C2)
hold. Let B ∈ ℘(W ). About (C1), suppose A′ ∩ (B × Λ) 6= ∅ and consider the
following two cases: “sR(B)t” and “not sR(B)t”. In the former case, for all v ∈ W ,
τB(v) = σ(B, v). Hence, for all v ∈ W , σ(B, v) = τ(B, v). Since sR(B)t, (C1)
holds. In the latter case, τB(v) = σ(B, v) for every v ∈ W except when v = vB . Thus,
σ(B, v) = τ(B, v) for every v ∈ W except when v = vB . Since not sR(B)t, (C1)
holds. As for (C2), it holds, seeing that for all v ∈ W , if v ∈ B and v ∈ f [A′] then
τB(v) = σ(B, v).

Claim 6 is a consequence of Claims 6 and 6.

Claim. f : W ′ −→ W is a bounded morphism from (W ′, R′) to (W,R).

Lemma 18. Let (W,R) be a paraconjunctive frame of indiscernibility. There exists a
conjunctive frame of indiscernibility (W ′, R′) and a surjective bounded morphism from
(W ′, R′) to (W,R).

Proof. This proof ends after Claim 6. Let det : ℘(W )×W×W −→ ℘(W ) be such that
for all A ∈ ℘(W ) and for all s, t ∈ W , det(A, s, t) = [s]R(A) ⊕ [t]R(A) where [s]R(A)

and [t]R(A) are the equivalence classes of s and t modulo R(A) and ⊕ is the operation
of symmetric difference in ℘(W ). Notice that for all A ∈ ℘(W ) and for all s, t ∈ W ,
det(A, s, t) = ∅ if and only if sR(A)t. LetΛ be the set of all τ : ℘(W )×W −→ ℘(W )
such that for all A ∈ ℘(W ), {s ∈ W : τ(A, s) 6= ∅} is finite. Let (W ′, R′) be the
couple where

– W ′ = W × Λ,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all

(s,σ), (t, τ) ∈ W ′,
• (s,σ)R′(A′)(t, τ) if and only if for all A ∈ ℘(W ),

* if A′ ∩ (A×Λ) 6= ∅ then
⊕

{σ(A, u)⊕ τ(A, u) : u ∈ A} = det(A, s, t),
* for all (u, υ) ∈ A′ ∩ (A × Λ), σ(A, u) ⊕ τ(A, u) = ∅,

where
⊕

{σ(A, u) ⊕ τ(A, u) : u ∈ A} denotes σ(A, u1) ⊕ τ(A, u1) ⊕ . . . ⊕
σ(A, uN ) ⊕ τ(A, uN ), (u1, . . . , uN ) being the list of all u ∈ A such that
σ(A, u) 6= τ(A, u).

Claim. For all A′ ∈ ℘(W ′), R′(A′) =
⋂

{R′({(u, υ)}) : (u, υ) ∈ A′}.

Proof. Let A′ ∈ ℘(W ′). We demonstrate R′(A′) ⊇
⋂

{R′({(u, υ)}) : (u, υ) ∈ A′},
the “⊆” direction being left as an exercise for the reader. Arguing by contradiction,
suppose R′(A′) 6⊇

⋂
{R′({(u, υ)}) : (u, υ) ∈ A′}. Hence, there exists (s,σ), (t, τ) ∈

W ′ such that not (s,σ)R′(A′)(t, τ) and for all (u, υ) ∈ A′, (s,σ)R′({(u, υ)})(t, τ).
Thus, for all (u, υ) ∈ A′ and for all A ∈ ℘(W ),

– if {(u, υ)} ∩ (A × Λ) 6= ∅ then
⊕

{σ(A, v) ⊕ τ(A, v) : v ∈ A} = det(A, s, t),
– for all (v,ω) ∈ {(u, υ)} ∩ (A × Λ), σ(A, v) ⊕ τ(A, v) = ∅.
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Parametrized Modal Logic II: The Unidimensional Case 11

Consequently, for all A ∈ ℘(W ),

– if A′ ∩ (A × Λ) 6= ∅ then
⊕

{σ(A, v) ⊕ τ(A, v) : v ∈ A} = det(A, s, t),
– for all (v,ω) ∈ A′ ∩ (A × Λ), σ(A, v) ⊕ τ(A, v) = ∅.

Hence, (s,σ)R′(A′)(t, τ): a contradiction.

Claim 6 is a consequence of Claim 6 and of the fact that for all A ∈ ℘(W ) and for all
s, t, u ∈ W , det(A, s, s) = ∅ and det(A, s, t) ⊕ det(A, s, u) = det(A, t, u).

Claim. (W ′, R′) is a conjunctive frame of indiscernibility.

Let f : W ′ −→ W be such that for all (s,σ) ∈ W ′, f(s,σ) = s.

Claim. f : W ′ −→ W is surjective.

Notice that for all A ∈ ℘(W ), f−1[A] = A × Λ.

Claim. For all (s,σ), (t, τ) ∈ W ′ and for all A′ ∈ ℘(W ′), if (s,σ)R′(A′)(t, τ) then
sR(f [A′])t.

Proof. Let (s,σ), (t, τ) ∈ W ′ and A′ ∈ ℘(W ′). Suppose (s,σ)R′(A′)(t, τ). Arguing
by contradiction, suppose not sR(f [A′])t. Hence, f [A′] 6= ∅. Thus, A′ ∩ (f [A′] ×
Λ) 6= ∅. Since (s,σ)R′(A′)(t, τ),

⊕
{σ(f [A′], u) ⊕ τ(f [A′], u) : u ∈ f [A′]} =

det(f [A′], s, t). Moreover, for all (u, υ) ∈ A′∩(f [A′]×Λ), σ(f [A′], u)⊕τ(f [A′], u) =
∅. Consequently, for all u ∈ f [A′], σ(f [A′], u) ⊕ τ(f [A′], u) = ∅. Hence,

⊕
{σ(f [A′],

u)⊕τ(f [A′], u) : u ∈ f [A′]} = ∅. Since
⊕

{σ(f [A′], u)⊕τ(f [A′], u) : u ∈ f [A′]} =
det(f [A′], s, t), det(f [A′], s, t) = ∅. Thus, sR(f [A′])t: a contradiction.

Claim. For all (s,σ) ∈ W ′, for all t ∈ W and for all A′ ∈ ℘(W ′), if sR(f [A′])t then
there exists τ ∈ Λ such that (s,σ)R′(A′)(t, τ).

Proof. Let (s,σ) ∈ W ′, t ∈ W and A′ ∈ ℘(W ′). Suppose sR(f [A′])t. We demon-
strate there exists τ ∈ Λ such that (s,σ)R′(A′)(t, τ). Indeed, we are looking for a
τ : ℘(W ) × W −→ ℘(W ) such that for all B ∈ ℘(W ),

(C0) {u ∈ W : τ(B, u) 6= ∅} is finite,
(C1) if A′ ∩ (B × Λ) 6= ∅ then

⊕
{σ(B, u) ⊕ τ(B, u) : u ∈ B} = det(B, s, t),

(C2) for all (v,ω) ∈ A′ ∩ (B × Λ), σ(B, v) ⊕ τ(B, v) = ∅.

For all B ∈ ℘(W ), let τB : W −→ ℘(W ) be defined as follows:

Case “B ⊆ f [A′]”: for all v ∈ W , let τB(v) = σ(B, v),

Case “B 6⊆ f [A′]”: let vB ∈ W be such that vB ∈ B and vB 6∈ f [A′] and for all
v ∈ W ,

– if v 6= vB then let τB(v) = σ(B, v),
– otherwise, let τB(v) = σ(B, v) ⊕ det(B, s, t).
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12 P. Balbiani

Let τ : ℘(W ) × W −→ ℘(W ) be such that for all B ∈ ℘(W ) and for all v ∈
W , τ(B, v) = τB(v). Now, we just have to verify that for all B ∈ ℘(W ), (C0),
(C1) and (C2) hold. Let B ∈ ℘(W ). Concerning (C0), it holds, seeing that τB(v) =
σ(B, v) for every v ∈ W except when B 6⊆ f [A′] and v = vB . About (C1), suppose
A′∩(B×Λ) 6= ∅ and consider the following two cases: “B ⊆ f [A′]” and “B 6⊆ f [A′]”.
In the former case, since sR(f [A′])t, sR(B)t. Hence, det(B, s, t) = ∅. Since B ⊆
f [A′], for all v ∈ W , τB(v) = σ(B, v). Thus, for all w ∈ W , σ(B, v) ⊕ τ(B, v) = ∅.
Consequently,

⊕
{σ(B, v) ⊕ τ(B, v) : v ∈ B} = ∅. Since det(B, s, t) = ∅, (C1)

holds. In the latter case, τB(v) = σ(B, v) for every v ∈ W except when v = vB .
Hence,

⊕
{σ(B, v) ⊕ τ(B, v) : v ∈ B} = σ(B, vB) ⊕ τ(B, vB). Since τB(vB) =

σ(B, vB) ⊕ det(B, s, t), (C1) holds. As for (C2), it holds, seeing that for all v ∈ W ,
if v ∈ B and v ∈ f [A′] then τB(v) = σ(B, v).

Claim 6 is a consequence of Claims 6 and 6.

Claim. f : W ′ −→ W is a bounded morphism from (W ′, R′) to (W,R).

Proposition 4 is a consequence of Lemmas 5, 17 and 18 and Proposition 3.

Proposition 4. – Kc is complete with respect to the class of all preconjunctive frames
and the class of all conjunctive frames,

– S5c is complete with respect to the class of all preconjunctive frames of indiscerni-
bility and the class of all conjunctive frames of indiscernibility.

7 Filtrations

The equivalence setting determined by a model (W,R, V ) and a closed set Σ of formu-
las is the equivalence relation +, on W defined by

– s +, t if and only if for all formulas ϕ in Σ, s ∈ V (ϕ) if and only if t ∈ V (ϕ).

For all models (W,R, V ), for all closed sets Σ of formulas and for all s ∈ W , the
equivalence class of s modulo +, will be denoted [s]. For all models (W,R, V ), for all
closed sets Σ of formulas and for all A ∈ ℘(W ), the quotient of A modulo +, will be
denoted A/+,. A model (W ′, R′, V ′) is a filtration of a model (W,R, V ) with respect
to a closed set Σ of formulas if

– W ′ = W/+,,
– for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈ W ,

• if sR(V (ϕ))t then [s]R′(V (ϕ)/+,)[t],
• if [s]R′(V (ϕ)/+,)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ),

– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/+,.

Lemma 19. If the model (W ′, R′, V ′) is a filtration of the model (W,R, V ) with
respect to a closed set Σ of formulas then for all formulas ϕ, if ϕ ∈ Σ then
V ′(ϕ) = V (ϕ)/+,.
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Parametrized Modal Logic II: The Unidimensional Case 13

Now, let us turn to the decidability of the satisfiability problem on the class of all frames,
the class of all frames of indiscernibility, the class of all conjunctive frames and the class
of all conjunctive frames of indiscernibility. In this respect, Lemmas 20–23 will be our
key results.

Lemma 20. Let Σ be a closed set of formulas and (W,R, V ) be a model. There exists
a model (W ′, R′, V ′) such that (W ′, R′, V ′) is a filtration of (W,R, V ) with respect to
Σ.

Proof. This proof ends after Claim 7. Let (W ′, R′, V ′) be a model such that

– W ′ = W/+,,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all s, t ∈ W ,

• [s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/+, = A′

then there exists u, v ∈ W such that s +, u, t +, v and uR(V (ϕ))v,
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/+,.

Claim. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈ W , if sR(V (ϕ))t then
[s]R′(V (ϕ)/+,)[t].

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W , if
sR(V (ϕ))t then [s]R′(V (ϕ)/+,)[t]. Let s, t ∈ W . Suppose sR(V (ϕ))t. We demon-
strate [s]R′(V (ϕ)/+,)[t]. Arguing by contradiction, suppose not [s]R′(V (ϕ)/+,)[t].
Hence, there exists formulas ϕ′,ψ′ such that 〈ϕ′〉ψ′ ∈ Σ, V (ϕ′)/+, = V (ϕ)/+, and
for all u, v ∈ W , if s +, u and t +, v then not uR(V (ϕ′))v. Thus, V (ϕ′) = V (ϕ).
Moreover, not sR(V (ϕ′))t. Consequently, not sR(V (ϕ))t: a contradiction.

Claim. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈ W , if [s]R′(V (ϕ)/+,)
[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ).

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W ,
if [s]R′(V (ϕ)/+,)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ). Let s, t ∈ W . Suppose
[s]R′(V (ϕ)/+,)[t] and t ∈ V (ψ). We demonstrate s ∈ V (〈ϕ〉ψ). Since [s]R′(V (ϕ)/+,)
[t], there exists u, v ∈ W such that s +, u, t +, v and uR(V (ϕ))v. Since t ∈ V (ψ),
v ∈ V (ψ). Since uR(V (ϕ))v, u ∈ V (〈ϕ〉ψ). Since s +, u, s ∈ V (〈ϕ〉ψ).

Lemma 21. Let Σ be a closed set of formulas and (W,R, V ) be a model of indiscerni-
bility. There exists a model (W ′, R′, V ′) of indiscernibility such that (W ′, R′, V ′) is a
filtration of (W,R, V ) with respect to Σ.

Proof. This proof ends after Claim 7. Let (W ′, R′, V ′) be a model of indiscernibility
such that

– W ′ = W/+,,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all s, t ∈ W ,

• [s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/+, = A′

then s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ),
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/+,.
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14 P. Balbiani

Claim. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈ W , if sR(V (ϕ))t then
[s]R′(V (ϕ)/+,)[t].

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W , if
sR(V (ϕ))t then [s]R′(V (ϕ)/+,)[t]. Let s, t ∈ W . Suppose sR(V (ϕ))t. We demon-
strate [s]R′(V (ϕ)/+,)[t]. Arguing by contradiction, suppose not [s]R′(V (ϕ)/+,)[t].
Hence, there exists formulas ϕ′,ψ′ such that 〈ϕ′〉ψ′ ∈ Σ, V (ϕ′)/+, = V (ϕ)/+, and
either s ∈ V (〈ϕ′〉ψ′) and t 6∈ V (〈ϕ′〉ψ′), or s 6∈ V (〈ϕ′〉ψ′) and t ∈ V (〈ϕ′〉ψ′).
Without loss of generality, suppose s ∈ V (〈ϕ′〉ψ′) and t 6∈ V (〈ϕ′〉ψ′). Thus, there
exists u ∈ W such that sR(V (ϕ′))u and u ∈ V (ψ′). Since V (ϕ′)/+, = V (ϕ)/+,,
V (ϕ′) = V (ϕ). Since t 6∈ V (〈ϕ′〉ψ′) and u ∈ V (ψ′), not tR(V (ϕ′))u. Since
sR(V (ϕ′))u, not sR(V (ϕ′))t. Since V (ϕ′) = V (ϕ), not sR(V (ϕ))t: a contradiction.

Claim. For all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ then for all s, t ∈ W , if [s]R′(V (ϕ)/+,)
[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ).

Proof. Let ϕ,ψ be formulas. Suppose 〈ϕ〉ψ ∈ Σ. We demonstrate for all s, t ∈ W ,
if [s]R′(V (ϕ)/+,)[t] and t ∈ V (ψ) then s ∈ V (〈ϕ〉ψ). Let s, t ∈ W . Suppose
[s]R′(V (ϕ)/+,)[t] and t ∈ V (ψ). We demonstrate s ∈ V (〈ϕ〉ψ). Since [s]R′(V (ϕ)/+,)
[t], s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ). Since t ∈ V (ψ), t ∈ V (〈ϕ〉ψ). Since
s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ), s ∈ V (〈ϕ〉ψ).

Lemma 22. Let Σ be a closed set of formulas and (W,R, V ) be a paraconjunctive
model. There exists a paraconjunctive model (W ′, R′, V ′) such that (W ′, R′, V ′) is a
filtration of (W,R, V ) with respect to Σ.

Proof. Let (W ′, R′, V ′) be a model such that

– W ′ = W/+,,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all s, t ∈ W ,

• [s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/+, ⊆ A′

then there exists u, v ∈ W such that s +, u, t +, v and uR(V (ϕ))v,
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/+,.

Now, the rest of the proof is similar to the corresponding rest of the proof of Lemma 20,
the main difference being that one has to verify here that (W ′, R′, V ′) is a paraconjunc-
tive model, an exercise that we leave for the reader.

Lemma 23. Let Σ be a closed set of formulas and (W,R, V ) be a paraconjunctive
model of indiscernibility. There exists a paraconjunctive model (W ′, R′, V ′) of indis-
cernibility such that (W ′, R′, V ′) is a filtration of (W,R, V ) with respect to Σ.

Proof. Let (W ′, R′, V ′) be a model of indiscernibility such that

– W ′ = W/+,,
– R′ : ℘(W ′) −→ ℘(W ′ × W ′) is such that for all A′ ∈ ℘(W ′) and for all s, t ∈ W ,

• [s]R′(A′)[t] if and only if for all formulas ϕ,ψ, if 〈ϕ〉ψ ∈ Σ and V (ϕ)/+, ⊆ A′

then s ∈ V (〈ϕ〉ψ) if and only if t ∈ V (〈ϕ〉ψ),
– for all atomic formulas p, if p ∈ Σ then V ′(p) = V (p)/+,.
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Parametrized Modal Logic II: The Unidimensional Case 15

Now, the rest of the proof is similar to the corresponding rest of the proof of Lemma 21,
the main difference being that one has to verify here that (W ′, R′, V ′) is a paraconjunc-
tive model, an exercise that we leave for the reader.

Proposition 5 is a consequence of [4, Theorem 6.7] and Lemmas 5, 17, 18 and 20–23.

Proposition 5. The satisfiability problem is decidable on the following classes of
frames:

– the class of all frames,
– the class of all frames of indiscernibility,
– the class of all conjunctive frames,
– the class of all conjunctive frames of indiscernibility.

By Ladner’s Theorem, for the propositional modal language based on the connective
♦ of arity 1, the satisfiability problem is PSPACE-hard on the class of all Kripke
models [4, Theorem 6.50].

Proposition 6. For the language L, the satisfiability problem is PSPACE-hard on
the class of all frames.

Proof. We prove this by giving a reduction of the satisfiability problem on the class of
all Kripke models for the propositional modal language based on the connective ♦ of
arity 1. Let q be a fixed atomic formula. Let trq be the translation from the propositional
modal language based on the connective ♦ of arity 1 to the language L defined as
follows:

– trq(p) = p,
– trq(⊥) = ⊥,
– trq(¬ϕ) = ¬trq(ϕ),
– trq(ϕ ∨ ψ) = trq(ϕ) ∨ trq(ψ),
– trq(♦ϕ) = 〈q〉trq(ϕ).

As the reader may easily verify, for all q-free formulas ϕ of the propositional modal
language based on the connective ♦ of arity 1, ϕ is satisfiable in the class of all Kripke
models if and only if trq(ϕ) is satisfiable in the class of all frames. Since, as mentioned
above, the satisfiability problem on the class of all Kripke models for the propositional
modal language based on the connective ♦ of arity 1 is PSPACE-hard, the satisfiabil-
ity problem on the class of all frames for the language L is PSPACE-hard.

Conjecture 1. We believe the satisfiability problem is in PSPACE for the language L
on the class of all frames and the class of all frames of indiscernibility.

As is well-known, for the propositional modal language based on the connective ♦ of
arity 1 and enriched with the global modality ∃ of arity 1, the satisfiability problem is
EXPTIME-hard on the class of all Kripke models [4, Exercise 6.8.1].

Proposition 7. For the language L, the satisfiability problem is EXPTIME-hard on
the class of all conjunctive frames.
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16 P. Balbiani

Proof. We prove this by giving a reduction of the satisfiability problem on the class
of all Kripke models for the propositional modal language based on the connective ♦
of arity 1 and enriched with the global modality ∃ of arity 1. Let q be a fixed atomic
formula. Let tr∃

q be the translation from the propositional modal language based on
the connective ♦ of arity 1 and enriched with the global modality ∃ of arity 1 to the
language L defined as follows:

– tr∃
q (p) = p,

– tr∃
q (⊥) = ⊥,

– tr∃
q (¬ϕ) = ¬tr∃

q (ϕ),
– tr∃

q (ϕ ∨ ψ) = tr∃
q (ϕ) ∨ tr∃

q (ψ),
– tr∃

q (♦ϕ) = 〈q〉tr∃
q (ϕ),

– tr∃
q (∃ϕ) = 〈⊥〉tr∃

q (ϕ).

As the reader may easily verify, for all q-free formulas ϕ of the propositional modal
language based on the connective ♦ of arity 1 and enriched with the global modality
∃ of arity 1, ϕ is satisfiable in the class of all Kripke models if and only if tr∃

q (ϕ) is
satisfiable in the class of all conjunctive frames. Since, as mentioned above, the satisfi-
ability problem on the class of all Kripke models for the propositional modal language
based on the connective ♦ of arity 1 and enriched with the global modality ∃ of arity 1
is EXPTIME-hard, the satisfiability problem on the class of all conjunctive frames
for the language L is EXPTIME-hard.

Conjecture 2. We believe the satisfiability problem is in EXPTIME for the language
L on the class of all conjunctive frames and the class of all conjunctive frames of indis-
cernibility.

8 Conclusion

Our motive for introducing UPMLs lies in the fact that in an application domain such as
reasoning about knowledge where states and agents have been identified as the primitive
entities of interest, with respect to many situations, one would like to use relational
structures of the form (S,A,≡, +) where one can find

– a nonempty set S of states,
– a nonempty set A of agents,
– a function ≡ associating an equivalence relation ≡a on S to every element a of A,
– a function + associating a binary relation +s on A to every element s of S.

Which situations? Situations where relationships between states and relationships
between agents such as the following ones have to be taken into account: “agent
a cannot distinguish between states s and t”, “agent a trusts agent b in state s”,
etc [10,15,16,21]. In these situations,

– for all a ∈ A, two states s and t are related by ≡a exactly when agent a cannot
distinguish between s and t,

– for all s ∈ S, two agents a and b are related by +s exactly when a trusts b in state s.
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Moreover, one will naturally assume that

– ≡ is also a function associating an equivalence relation ≡B on S to every B ∈ ℘(A)
in such a way that for all B ∈ ℘(A), ≡B=

⋂
{≡a: a ∈ B},

– + is also a function associating a binary relation +T on A to every T ∈ ℘(S) in such
a way that for all T ∈ ℘(S), +T =

⋂
{+s : s ∈ T}.

The modal language interpreted over relational structures of the form (S,A,≡, +) will
naturally consist of two types of formulas: state-formulas — to be interpreted by sets of
states — and agent-formulas — to be interpreted by sets of agents. State-formulas will
be constructed over the Boolean connectives and the modal connectives [α] — α rang-
ing over the set of all agent-formulas — whereas agent-formulas will be constructed
over the Boolean connectives and the modal connectives [ϕ] — ϕ ranging over the set
of all state-formulas. In some model,

– the state-formula [α]ϕ will be true in a state s if the state-formula ϕ is true in every
state of that model that can be distinguished from state s by no α-agents,

– the agent-formula [ϕ]α will be true in an agent a if the agent-formula α is true in
every agent of that model that is trusted by agent a at all ϕ-states.

Within the context of a two-typed parametrized modal language, Balbiani and Fernán-
dez González [3] have defined a parametrized modal logic (PML) as a couple whose
components are sets of formulas containing, in their respective types, all propositional
tautologies and the distribution axiom and closed, in their respective types, under modus
ponens, uniform substitution and generalization. They have axiomatically introduced
different two-typed PMLs and they have proved their completeness with respect to
appropriate classes of two-typed frames by means of an adaptation of the canonical
model construction. The UPMLs introduced in this paper constitute the unidimensional
version of the PMLs introduced in [3]. Interesting avenues of research about UPMLs
and PMLs might consist in

– importing first-order ideas into UPMLs and PMLs (constructs of hybrid logics [2,8],
the difference operator [4, Section 7.1], etc.),

– developing the model theory of UPMLs and PMLs (classical definition of bisim-
ulations [4, Section 2.2], classical definition of saturated models [4, Section 2.6],
etc.),

– elaborating the correspondence theory of UPMLs and PMLs (analogue of Sahlqvist
Correspondence Theorem [4, Section 3.6], analogues of Chagrova’s Theorems [5,7],
etc.),

– investigating the computability of the satisfiability problem in such-and-such class
of frames and developing automatic procedures for solving it (filtration method [6,
Chapter 5], tableaux-based approach [13], etc.),

– comparing UPMLs and PMLs with other forms of modal logics based on
parametrized connectives (knowledge representation logics [9,17,24], Boolean
modal logic [11,12], etc.),

– constructing the duality theory of UPMLs and PMLs (standard definition of Boolean
algebras with operators [14, Section 2.2], standard definition of general frames [14,
Section 4.6], etc.).

A
ut

ho
r 

Pr
oo

f



18 P. Balbiani

Acknowledgements. We make a point of thanking our referees for their feedback. Special
acknowledgement is also heartily granted to Saúl Fernández González: his useful suggestions
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Appendix

This Appendix includes the proofs of some of our results. Most of these proofs are
relatively simple and we have included them here just for the sake of the completeness.

Proof of Lemma 4. Similar to the proof of Bounded Morphism Lemma [4, Proposi-
tion 2.14].
Proof of Lemma 5. Consequence of Lemma 4.

Proof of Lemma 6. Similar to the proof of Lindenbaum’s Lemma [6, Lemma 5.1].

Proof of Lemma 7. Similar to the proof of Existence Lemma [14, Proposition 2.8.4].

Proof of Lemma 8. Consequence of Lemma 6.

Proof of Lemma 10. Consequence of the fact that S5g contains all formulas of the

form [ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

Proof of Lemma 11. The proof that Vg satisfies the conditions for ⊥, ¬ and ∨ is as
expected. We only show that Vg satisfies the condition for 〈·〉. Let ϕ,ψ be a formulas.
Let s ∈ Wg . We only demonstrate s ∈ Vg(〈ϕ〉ψ) only if there exists t ∈ Wg such that
sRg(Vg(ϕ))t and t ∈ Vg(ψ), the “if” direction being left as an exercise for the reader.
Suppose s ∈ Vg(〈ϕ〉ψ). We demonstrate there exists t ∈ Wg such that sRg(Vg(ϕ))t
and t ∈ Vg(ψ). Since s ∈ Vg(〈ϕ〉ψ), 〈ϕ〉ψ ∈ s. Let t0 = [ϕ]s ∪ {ψ}. Notice that
[ϕ]s ⊆ t0 and ψ ∈ t0. By Lemma 7, t0 is a L-consistent set of formulas. Hence, by
Lemma 6, let t be a maximal L-consistent set of formulas such that t0 ⊆ t. Since
[ϕ]s ⊆ t0 and ψ ∈ t0, [ϕ]s ⊆ t and ψ ∈ t. Thus, t ∈ Vg(ψ).

Claim. sRg(Vg(ϕ))t.

Proof. We demonstrate for all formulas ϕ′, if ϕ̂′ = Vg(ϕ) then [ϕ′]s ⊆ t. Let ϕ′ be a
formula. Suppose ϕ̂′ = Vg(ϕ). We demonstrate [ϕ′]s ⊆ t. Let ψ′ be a formula. Suppose
[ϕ′]ψ′ ∈ s. We demonstrate ψ′ ∈ t. Since ϕ̂′ = Vg(ϕ), by Lemma 8, ϕ′ ↔ ϕ ∈ L.
Hence, [ϕ′]ψ′ ↔ [ϕ]ψ′ ∈ L. Since [ϕ′]ψ′ ∈ s, [ϕ]ψ′ ∈ s. Since [ϕ]s ⊆ t, ψ′ ∈ t.

Proof of Lemma 12. Consequence of the fact that L contains all formulas of the form
[⊥]ϕ → ϕ and 〈⊥〉ϕ → [⊥]〈⊥〉ϕ.

Proof of Lemma 13. Let ϕ,ψ be formulas.
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Suppose ϕ̂ ⊆ ψ̂. We demonstrate for all s ∈ Wc, [⊥](ϕ → ψ) ∈ s. Let s ∈ Wc. We
demonstrate [⊥](ϕ → ψ) ∈ s. Arguing by contradiction, suppose [⊥](ϕ → ψ) 6∈ s.
Hence, 〈⊥〉(ϕ ∧ ¬ψ) ∈ s. Let u0 = [⊥]s ∪ {ϕ,¬ψ}. Notice that [⊥]s ⊆ u0, ϕ ∈ u0

and ¬ψ ∈ u0. By Lemma 7, u0 is a L-consistent set of formulas. Thus, by Lemma 6,
let u be a maximal L-consistent set of formulas such that u0 ⊆ u. Since [⊥]s ⊆ u0,
ϕ ∈ u0 and ¬ψ ∈ u0, [⊥]s ⊆ u, ϕ ∈ u and ¬ψ ∈ u. Since [⊥]s0 ⊆ s, by Lemma 12,
[⊥]s0 ⊆ u. Consequently, u ∈ Wc. Since ϕ ∈ u and ¬ψ ∈ u, u ∈ ϕ̂ and ψ 6∈ u. Since
ϕ̂ ⊆ ψ̂, u ∈ ψ̂. Hence, ψ ∈ u: a contradiction.

Suppose ϕ̂ = ∅. We demonstrate for all s, t ∈ Wc, [ϕ]s ⊆ t. Let s, t ∈ Wc. We
demonstrate [ϕ]s ⊆ t. Let χ be a formula. Suppose [ϕ]χ ∈ s. We demonstrate χ ∈ t.
Since ϕ̂ = ∅, by the previous item, [⊥](ϕ → ⊥) ∈ s. Thus, [ϕ]χ → [⊥]χ ∈ s. Since
[ϕ]χ ∈ s, [⊥]χ ∈ s. Since [⊥]s0 ⊆ s, 〈⊥〉[⊥]χ ∈ s0. Consequently, [⊥]χ ∈ s0. Since
[⊥]s0 ⊆ t, χ ∈ t.

Proof of Lemma 14. Indeed, Rc(∅) = Wc ×Wc. Why? Simply because by Lemma 13,
for all s, t ∈ Wc and for all formulas ϕ, if ϕ̂ = ∅ then [ϕ]s ⊆ t. Hence, for all s, t ∈ Wc,
sRc(∅)t. Moreover, for all A,B ∈ ℘(Wc), if A ⊆ B then Rc(A) ⊇ Rc(B). Why? Sim-
ply because for all A,B ∈ ℘(Wc), if A ⊆ B then for all formulas ϕ, if ϕ̂ ⊆ A then
ϕ̂ ⊆ B. Thus, for all A,B ∈ ℘(Wc), if A ⊆ B then for all t, u ∈ Wc, if tRc(B)u then
tRc(A)u.

Proof of Lemma 15. Consequence of the fact that S5c contains all formulas of the form
[ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

Proof of Lemma 16. The proof that Vc satisfies the conditions for ⊥, ¬ and ∨ is as
expected. We only show that Vc satisfies the condition for 〈·〉. Let ϕ,ψ be formulas.
Let s ∈ Wc. We only demonstrate s ∈ Vc(〈ϕ〉ψ) only if there exists t ∈ Wc such that
sRc(Vc(ϕ))t and t ∈ Vc(ψ), the “if” direction being left as an exercise for the reader.
Suppose s ∈ Vc(〈ϕ〉ψ). We demonstrate there exists t ∈ Wc such that sRc(Vc(ϕ))t and
t ∈ Vc(ψ). Since s ∈ Vc(〈ϕ〉ψ), 〈ϕ〉ψ ∈ s. Let t0 = [ϕ]s ∪ {ψ}. Notice that [ϕ]s ⊆ t0
and ψ ∈ t0. By Lemma 7, t0 is a L-consistent set of formulas. Hence, by Lemma 6,
let t be a maximal L-consistent set of formulas such that t0 ⊆ t. Since [ϕ]s ⊆ t0 and
ψ ∈ t0, [ϕ]s ⊆ t and ψ ∈ t. Thus, t ∈ Vc(ψ).

Claim. sRc(Vc(ϕ))t.

Proof. We demonstrate for all formulas ϕ′, if ϕ̂′ ⊆ Vc(ϕ) then [ϕ′]s ⊆ t. Let ϕ′ be a
formula. Suppose ϕ̂′ ⊆ Vc(ϕ). We demonstrate [ϕ′]s ⊆ t. Let ψ′ be a formula. Suppose
[ϕ′]ψ′ ∈ s. We demonstrate ψ′ ∈ t. Since ϕ̂′ ⊆ Vc(ϕ), by Lemma 13, [⊥](ϕ′ → ϕ) ∈
s. Hence, [ϕ′]ψ′ → [ϕ]ψ′ ∈ s. Since [ϕ′]ψ′ ∈ s, [ϕ]ψ′ ∈ s. Since [ϕ]s ⊆ t, ψ′ ∈ t.

Proof of Lemma 19. Similar to the proof of Filtration Theorem [4, Theorem 2.39].
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