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Abstract. We introduce labelled sequent calculi for the basic normal non-distri-

butive modal logic L and 31 of its axiomatic extensions, where the labels are

atomic formulas of a first order language which is interpreted on the canonical

extensions of the algebras in the variety corresponding to the logic L. Modular

proofs are presented that these calculi are all sound, complete and conservative

w.r.t. L, and enjoy cut elimination and the subformula property. The introduction

of these calculi showcases a general methodology for introducing labelled calculi

for the class of LE-logics and their analytic axiomatic extensions in a principled

and uniform way.

Keywords: Non-distributive modal logic · Algorithmic proof theory · Algorith-

mic correspondence theory · Labelled calculi.

1 Introduction

The present paper pertains to a line of research in structural proof theory aimed at

generating analytic calculi for wide classes of nonclassical logics in a principled and

uniform way. Since the 1990s, semantic information about given logical frameworks

has proven key to generate calculi with excellent properties [19]. The contribution of

semantic information has been particularly perspicuous in the introduction of labelled

calculi for e.g. classical normal modal logic [16] and intuitionistic logic [17], and their

axiomatic extensions defined by axioms for which first-order correspondents exist of a

certain syntactic shape [10]. Moreover, recently, the underlying link between the prin-

cipled and algorithmic generation of analytic rules for capturing axiomatic extensions

of given logics and the systematic access to, and use of, semantic information for this

purpose has been established also in the context of other proof-theoretic formats, such

as proper display calculi [15,1], and relative to classes of logics as wide as the normal

(D)LE-logics, i.e. those logics canonically associated with varieties of normal (distribu-

tive) lattice expansions [7] (cf. Definition 1.1). In particular, in [15], the same algorithm

ALBA which computes the first-order correspondents of (analytic) inductive axioms in

any (D)LE-signature was used to generate the analytic rules in a suitable proper display

calculus corresponding to those axioms.

http://arxiv.org/abs/2401.09887v1
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The algorithm ALBA [6,7] is among the main tools in unified correspondence the-

ory [5], and allows not only for the mechanization of well known correspondence argu-

ments from modal logic, but also for the uniform generalization of these arguments to

(D)LE-logics, thanks to the fact that the ALBA-computations are motivated by and

interpreted in an algebraic environment in which the classic model-theoretic corre-

spondence arguments can be rephrased in terms of the order-theoretic properties of

the algebraic interpretations of the logical connectives. These properties guarantee the

soundness of the rewriting rules applied in ALBA-computations, thanks to which, the

first-order correspondent of a given input axiom (in any given LE-language L) is gen-

erated in a language L+ expanding L, which is interpreted in the canonical extensions

of L-algebras.

In the present paper, we showcase how the methodology adopted in [15] for intro-

ducing proper display calculi for (D)LE-logics and their analytic axiomatic extensions

can be used also for endowing LE-logics with labelled calculi. Specifically, we focus

on a particularly simple LE-logic, namely the basic normal non-distributive (i.e. lattice-

based) modal logic L [4,3], for which we introduce a labelled calculus and show its ba-

sic properties, namely soundness, completeness, cut-elimination and subformula prop-

erty. Moreover, we discuss, by way of examples, how ALBA can be used to generate

analytic rules corresponding to (analytic inductive) axiomatic extensions of the basic

logic L.

Structure of the paper. Section 2 recalls preliminaries on basic normal non-distributive

logic, canonical extensions and the algorithm ALBA, Section 3 presents a labelled cal-

culus for normal non-distributive logic and its extensions. Section 4 proves sound-

ness, completeness, cut elimination and subformula property for basic normal non-

distributive logic and some of its axiomatic extensions. Section 5 shows that the all

calculi introduced in the paper are proper labelled calculi. We conclude in Section 6. In

Appendix A we provide the formal definition of proper labelled calculi and we show

that any calculus in this class enjoys the canonical cut elimination à la Belnap.

2 Preliminaries

2.1 Basic normal non-distributive modal logic, its associated ALBA-language,

and some of its axiomatic extensions

The basic normal non-distributive modal logic is a normal LE-logic (cf. [7,8]) which

was used in [3,4] as the underlying environment for an epistemic logic of categories and

formal concepts, and in [2] as the underlying environment of a logical theory unifying

Formal Concept Analysis [13] and Rough Set Theory [18].

Let Prop be a (countable or finite) set of atomic propositions. The language L is

defined as follows:

ϕ ≔ ⊥ | ⊤ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ^ϕ,

where p ∈ Prop. The extended language L+, used in ALBA-computations taking in-

equalities of L-terms in input, is defined as follows:

ψ ≔ j | m | ϕ | ψ ∧ ψ | ψ ∨ ψ | �ψ | ^ψ | �ψ | _ψ,
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where ϕ ∈ L, and the variables j ∈ NOM (resp. m ∈ CNOM), referred to as nominals

(resp. co-nominals), range over disjoint sets which are also disjoint from Prop. The

basic, or minimal normalL-logic is a set L of sequents ϕ ⊢ ψ, with ϕ, ψ ∈ L, containing

the following axioms:

p ⊢ p ⊥ ⊢ p p ⊢ p ∨ q p ∧ q ⊢ p ⊤ ⊢ �⊤ �p ∧ �q ⊢ �(p ∧ q)

p ⊢ ⊤ q ⊢ p ∨ q p ∧ q ⊢ q ^⊥ ⊢ ⊥ ^(p ∨ q) ⊢ ^p ∨^q

and closed under the following inference rules:

ϕ ⊢ χ χ ⊢ ψ

ϕ ⊢ ψ

ϕ ⊢ ψ

ϕ (χ/p) ⊢ ψ (χ/p)

χ ⊢ ϕ χ ⊢ ψ

χ ⊢ ϕ ∧ ψ

ϕ ⊢ χ ψ ⊢ χ

ϕ ∨ ψ ⊢ χ

ϕ ⊢ ψ

�ϕ ⊢ �ψ

ϕ ⊢ ψ

^ϕ ⊢ ^ψ

AnL-logic is any extension of L withL-axioms ϕ ⊢ ψ. In what follows, for any set Σ of
L-axioms, we let L.Σ denote the axiomatic extension of L generated by Σ. Throughout
the paper, we will consider all subsets Σ of the set of axioms listed in the table below.
These axioms are well known from classical modal logic, and have also cropped up in
[2] in the context of the definition of relational structures simultaneously generalizing
Formal Concept Analysis and Rough Set Theory.

(4) ^^A ⊢ ^A transitivity (D) �A ⊢ ^A seriality

(T) �A ⊢ A reflexivity (C) ^�A ⊢ �^A confluence

(B) A ⊢ �^A symmetry

2.2 L-algebras, their canonical extensions, and the algebraic interpretation of

the extended language of ALBA

In the present section, we recall the definitions of the normal lattice expansions canon-

ically associated with the basic logic L, their canonical extensions, the existence of

which can be shown both constructively and non-constructively, and the interpretation

of the extended language L+ in the canonical extensions of L-algebras.

AnL-algebra is a tupleA = (L,^A,�A), where L is a bounded lattice,^A (resp.�A)

is a finitely join-preserving (resp. finitely meet-preserving) unary operation. That is,

besides the usual identities defining general lattices, the following identities hold:

^(x ∨ y) = ^x ∨ ^y ^⊥ = ⊥ �(x ∧ y) = �x ∧ �y �⊤ = ⊤.

In what follows, we let Alg(L) denote the class of L-algebras. Let L be a (bounded)

sublattice of a complete lattice L′.

1. L is dense in L′ if every element of L′ can be expressed both as a join of meets

and as a meet of joins of elements from L. We let K(L′) (resp. O(L′)) denote the

meet-closure (resp. join-closure) of L in L′. That is, K(L′) = {k ∈ L′ | k =
∧

S for

some S ⊆ L}, and O(L′) = {o ∈ L′ | o =
∨

T for some T ⊆ L}.

2. L is compact in L′ if, for all S , T ⊆ L, if
∧

S ≤
∨

T then
∧

S ′ ≤
∨

T ′ for some

finite S ′ ⊆ S and T ′ ⊆ T .

3. The canonical extension of a lattice L is a complete lattice Lδ containing L as

a dense and compact sublattice. Elements in K(Lδ) (resp. O(Lδ)) are the closed

(resp. open) elements of Lδ.
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As is well known (cf. [14]), the canonical extension of a lattice L exists and is unique

up to an isomorphism fixing L. The non-constructive proof of existence can be achieved

via suitable dualities for lattices, while the constructive proof uses the MacNeille com-

pletion construction on a certain poset obtained from the families of proper lattice filters

and ideals of the original lattice L (cf. [14,11] for details). In the latter case, the ensuing

complete lattice Lδ can be shown to be perfect, i.e., to be both completely join-generated

by the set J∞(Lδ) ⊆ K(Lδ) of the completely join-irreducible elements of Lδ, and com-

pletely meet-generated by the set M∞(Lδ) ⊆ O(Lδ) of the completely meet-irreducible

elements of Lδ.4

For every unary, order-preserving operation f : L → L, the σ-extension of f is

defined first on any k ∈ K(Lδ) and then on every u ∈ Lδ as follows:

f σ(k) :=
∧
{ f (a) | a ∈ L and k ≤ a} f σ(u) :=

∨
{ f σ(k) | k ∈ K(Lδ) and k ≤ u}.

The π-extension of f is defined first on every o ∈ O(Lδ), and then on every u ∈ Lδ as

follows:

f π(o) :=
∨
{ f (a) | a ∈ L and a ≤ o} f π(u) :=

∧
{ f π(o) | o ∈ O(Lδ) and u ≤ o}.

Defined as above, the σ- and π-extensions maps are monotone, and coincide with f

on the elements of A. Moreover, the σ-extension (resp. (resp. π-extension) of a finitely

join-preserving (resp. finitely meet-preserving) map is completely join-preserving (resp.

completely meet-preserving). This justifies defining the canonical extension of an L-

algebra A = (L,�,^) as the L-algebra Aδ := (Lδ,�π,^σ). By construction, A is

a subalgebra of Aδ for any A ∈ Alg(L). In fact, compared to arbitrary L-algebras,

A
δ enjoys additional properties that make it a suitable semantic environment for the

extended language L+ of Section 2.1. Indeed, the lattice reduct of Aδ is a complete

lattice. Together with the fact that the operations ^σ and �π do not preserve only fi-

nite joins and meets respectively, but arbitrary joins and meets, this implies, by well

known order-theoretic facts (cf. [9, Proposition 7.34]), that the right and left adjoint

of ^σ and of �π are well defined on Aδ, which we denote �A
δ

and _A
δ

respectively,5

and provide the interpretations of the corresponding logical connectives in L+. More-

over, by denseness, Aδ is both completely join-generated by the elements in K(Lδ) and

completely meet-generated by the elements in O(Lδ), and when considering the non-

constructive proof, these families of generators can be further restricted to J∞(Lδ) and

M∞(Lδ), respectively. These generating subsets provide the interpretation of the vari-

ables in NOM and CNOM, respectively. As is well known, for any set Σ of L-sequents,

if K(Σ) = {A ∈ Alg(L) | A |= Σ} is closed under taking canonical extensions,6 then

the axiomatic extension L.Σ is complete w.r.t. the subclass Kδ(Σ) = {Aδ | A ∈ K(Σ)},

4 For any complete lattice L, any j ∈ L is completely join-irreducible if j , ⊥ and for any S ⊆ L,

if j =
∨

S then j ∈ S . Dually, any m ∈ L is completely meet-irreducible if m , ⊤ and for any

S ⊆ L, if m =
∧

S then m ∈ S .
5 The unary operations �A

δ
and _A

δ
on Aδ are the unique maps satisfying the equivalences

^σu ≤ v iff u ≤ �A
δ

v and _A
δ

u ≤ v iff u ≤ �πv for all u, v ∈ Aδ.
6 By the general theory of unified correspondence (cf. [7]), this is the case of every subset Σ of

the set of axioms listed at the end of Section 2.1.
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because any non-theorem ξ ⊢ χ will be falsified in the Lindenbaum-Tarski algebra A

of L.Σ, which is an element of K(Σ) by construction, and hence ξ ⊢ χ will be falsified

under the same assignment in Aδ, given that A is a subalgebra of Aδ.

2.3 The algorithm ALBA

The algorithm ALBA is guaranteed to succeed on a large class of formulas, called (an-

alytic) inductive axioms, and it can be used to automatically generate labelled calculi

with good properties equivalently capturing the LE-logics axiomatized by means of

those axioms. We refer the reader to [7, Section 6,8] for the proof of correctness and

success in the general setting of LE-logics. In the present section, we informally illus-

trate how the algorithm ALBA works by means of examples, namely, we run ALBA

on the modal axioms in Σ = {�p ⊢ p, p ⊢ �^p,�p ⊢ ^p,^�p ⊢ �^p} computing

their first-order correspondent, which, in turn, can be automatically transformed into an

analytic structural rule of a labelled calculus equivalently capturing the axioms (see the

table at the end of Section 3). In what follows, A denotes an L-algebra, and Aδ denotes

its canonical extension. We abuse notation and use the same symbol for the algebra and

its domain. We recall that variables j, h and k (resp. m) range in the set of the complete

join-generators (resp. complete meet-generators) of Aδ.
The following chain of equivalences is sound on Aδ:

∀p(^^p ≤ ^p)

iff ∀p∀j∀m ((j ≤ p & ^p ≤ m)⇒ ^^j ≤ m) join- and meet-generation, ^ c. join-preserving

iff ∀j∀m (^j ≤ m⇒ ^^j ≤ m) Ackermann’s lemma

iff ∀j∀h∀m (^j ≤ m⇒ (h ≤ ^j⇒ ^h ≤ m))

Indeed, the first equivalence in the chain above is due to the fact that, since the
variable j (resp. m) ranges over a completely join-generating (resp. completely meet-
generating) subset of Aδ, and ^ is completely join-preserving, we can equivalently
rewrite the initial inequality as follows: ∀p(

∨
{^^j | j ≤ p} ≤

∧
{m | ^p ≤ m}), which

yields the required equivalence by the definition of the least upper bound and the great-
est lower bound of subsets of a poset. The second equivalence is an instance of the core
rule of ALBA, which allows to eliminate the quantification over proposition variables.
As to the direction from bottom to top, by the monotonicity of ^, the inequalities j ≤ p
and ^p ≤ m immediately imply ^j ≤ ^p ≤ m, from which the required inequality
^^j ≤ m follows by assumption. For the converse direction, for a given interpretations
of j and m such that ^j ≤ m, we let p have the same interpretation as j. Then this inter-
pretation satisfies both inequalities j ≤ p and ^p = ^j ≤ m, from which the required
inequality^^j ≤ m follows by assumption. The third equivalence immediately follows
from considerations similar to those made for justifying the first equivalence; namely,
that the inequality ^^j ≤ m can be equivalently rewritten as

∨
{^h | h ≤ ^j} ≤ m,

which yields the required equivalence by the definition of a subset of a poset. Analogous
arguments can be made to justify the following chains of equivalences:

∀p(�p ≤ p)

iff ∀p∀j∀m ((j ≤ �p & p ≤ m)⇒ j ≤ m) join- and meet-generation

iff ∀j∀m (j ≤ �m⇒ j ≤ m) Ackermann’s lemma

∀p(p ≤ �^p)

iff ∀p∀j∀m ((j ≤ p & ^p ≤ m)⇒ j ≤ �m) join- and meet-generation

iff ∀j∀m (^j ≤ m⇒ j ≤ �m) Ackermann’s lemma
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∀p(�p ≤ ^p)

iff ∀p∀j∀m ((j ≤ �p & ^p ≤ m)⇒ j ≤ m) join- and meet-generation

iff ∀p∀j∀m ((_j ≤ p & ^p ≤ m)⇒ j ≤ m) _ ⊣ � adjunction

iff ∀j∀m (^_j ≤ m⇒ j ≤ m) Ackermann’s lemma

iff ∀j∀m∃k ((k ≤ _j⇒ ^k ≤ m)⇒ j ≤ m) join-generation

∀p(^�p ≤ �^p)

iff ∀p∀j∀m ((j ≤ �p & ^p ≤ m)⇒ ^j ≤ �m) join- and meet-generation

iff ∀p∀j∀m ((_j ≤ p & ^p ≤ m)⇒ _^j ≤ m) _ ⊣ � adjunction

iff ∀j∀m (^_j ≤ m⇒ _^j ≤ m) Ackermann’s lemma

iff ∀j∀m∀h∃k ((k ≤ _j⇒ ^k ≤ m)⇒ (h ≤ ^j⇒ _h ≤ m)) join- and meet-generation

The second equivalence in the chain above is based on the existence of the adjoints

of the maps interpreting the original connectives on canonical extensions ofL-algebras

(cf. Section 2.2). Finally, we remark that carrying out the correspondence arguments

above in the algebraic environment of the canonical extensions of L-algebras allows

us to clearly identify their pivotal properties, and, in particular, to verify that no prop-

erty related with the setting of (perfect) distributive lattices (viz. the complete join-

primeness of the elements interpreting nominal variables) is required.

3 The labelled calculus A.L and some of its extensions

In what follows, we use p, q, . . . for proposition variables, A, B, . . . for formulas metavari-

ables (in the original language of the logic), j, i, . . . for nominal variables, m, n, . . . for

conominal variables, J,H, . . . (resp. M,N, . . .) for nominal terms metavariables (resp.

conominal terms), T for terms metavariables, and Γ, ∆, . . . for meta-structures metavari-

ables. Given p ∈ Prop, j ∈ NOM, m ∈ CNOM, the language of (labelled) formulas,

terms and structures is defined as follows:

formulas ∋ A ::= p | ⊤ | ⊥ | A ∧ A | A ∨ A | �A | ^A

nominal terms ∋ J ::= j | ^j | _j

conominal terms ∋M ::= m | �m | �m

terms ∋ T ::= J |M

labelled formulas ∋ a ::= j ≤ A | A ≤ m

pure structures ∋ t∗ ::= j ≤ T | T ≤ m

structures ∋ σ ::= a | t

meta-structures ∋ Γ ::= σ | Γ, Γ

∗Side condition: j and m do not occur in T.

Let us first recall some terminology (see e.g. [21, Section 4.1]) and notation. A

(A.L-)sequent is a pair Γ ⊢ ∆ where Γ and ∆ (the antecedent and the consequent of

the sequent, respectively) are metavariables for meta-structures separated by commas.

An inference r, also called an instance of a rule, is a pair (S , s) of a (possibly empty)

set of sequents S (the premises) and a sequent s (the conclusion). We identify a rule

R with the set of all instances that are instantiations of R. A rule R, also referred to

as a scheme is usually presented schematically using metavariables for meta-structures

(denoted by upper-case Greek letters Γ, ∆, Π, Σ, . . . , Γ1, Γ2, . . .), or metavariables for
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structures (denoted by lower-case Latin letters: a, b, c, . . . , a1, a2, . . . for labelled for-

mulas and t1, t2, t3, . . . for pure structures), or metavariables for formulas (denoted by

A, B,C, . . .A1, A2, . . ., or metavariables for terms (denoted by j, i, h, . . . , j1, j2, . . . for

nominal terms and m, n, o, . . . ,m1,m2, . . . for conominal terms). A rule R with no

premises, i.e. S = ∅, is called an axiom scheme, and an instantiation of such R is called

an axiom. The immediate subformulas of a principal formula (see Definition 1) in the

premise(s) of an operational inference are called auxiliary formulas. The formulas that

are not preserved in an inference instantiating the cut rule are called cut formulas. If the

cut formulas are principal in an inference instantiating the cut rule, then the inference

is called principal cut. A cut that is not principal is called parametric. A proof of (the

instantiation of) a sequent Γ ⊢ ∆ is a tree where (the instantiation of) Γ ⊢ ∆ occurs as the

end-sequent, all the leaves are (instantiations of) axioms, and each node is introduced

via an inference. Before providing the list of the primitive rules of A.L, we need two

preliminary definitions.

Definition 1 (Analysis). The specifications are instantiations of meta-structure meta-

variables in the statement of R. The parameters of r ∈ R are substructures of instan-

tiations of (meta-)structure metavariables in the statement of R. A formula instance is

principal in an inference r ∈ R if it is not a parameter in the conclusion of r (except for

switch rules).

(Meta-)Structure occurrences in an inference r ∈ R are in the (symmetric) relation

of local congruence in r if they instantiate the same metavariable occurring in the same

position in a premise and in the conclusion of R, or they instantiate nonparametric

structures in the application of switch rules (namely, in the case of A.LΣ, occurrences

of labelled formulas j ≤ A and A ≤ m, or occurrences of pure structures j ≤ T and

T ≤ m). Therefore, the local congruence is a relation between specifications.

Two occurrences instatiating a (meta-)structure are in the inference congruence

relation if they are locally congruent in an inference r occurring in a proof π. The proof

congruent relation is the transitive closure of the inference congruence relation in a

derivation π.

Definition 2 (Position). For any well-formed sequent Γ ⊢ ∆,

– The occurrence of a labelled formula j ≤ A (resp. A ≤ m) is in precedent position

if j ≤ A ∈ Γ (resp. A ≤ m ∈ ∆), and it is in succedent position if j ≤ A ∈ ∆

(resp. A ≤ m ∈ Γ);

– any occurrence of a pure structure j ≤ T in Γ (resp. ∆) is in precedent (resp. succe-

dent) position; any occurrence of a pure structure T ≤ m in Γ (resp. ∆) is in

succedent (resp. precedent) position.

We follow the notational conventions as stated in Definition 1, which provides the

so-called analysis of the rules of any proper labelled calculus. In particular, according

to Definition 1, notice that if an occurrence σ is a substructure of Π ∈ {Γ, Γ′, ∆, ∆′}

occurring in an instantiation r of a rule R ∈ A.L (including axioms, namely rules with

no premises), then σ is a parameter of r and every other σ′ is nonparametric in r;7

7 Therefore, every instantiation of a labelled formula (resp. a pure structure) occurring in R ∈

A.L is nonparametric. For instance, j ≤ p is nonparametric in Idj≤p, and A ≤ m, j ≤ �A, j ≤
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moreover, if σ occurs in a premise and in the conclusion of r in the same position

(namely, in precedent versus in succedent position: see Definition 2), then these two

occurrences of σ are locally congruent in r.8 Notice that in the display calculi literature

‘being locally congruent’ usually presupposes ‘being parametric’, but in labelled calculi

this is not anymore the case due to the presence of switch rules (see Remark 1).

Initial rules∗

Id j≤p
j ≤ p ⊢ j ≤ p

Id p≤m
p ≤ m ⊢ p ≤ m

Id⊥ ⊥ ≤ m ⊢ ⊥ ≤ m
Id⊤

j ≤ ⊤ ⊢ j ≤ ⊤

The initial rules above encode identities for atomic propositions and zeroary con-

nectives, namely the fact that the derivability relation ⊢ is reflexive. Identity sequents

of the form j ≤ A ⊢ j ≤ A (resp. A ≤ m ⊢ A ≤ m) are derivable in the calculus.

Initial rules for ⊤ and ⊥∗

⊥j
j ≤ ⊥ ⊢ j ≤ A

⊥m
B ≤ m ⊢ ⊥ ≤ m

⊤m
⊤ ≤ m ⊢ B ≤ m

⊤j
j ≤ A ⊢ j ≤ ⊤

∗Side condition: A ∈ {p, A1 ∧ A2,�A1} and B ∈ {p, B1 ∨ B2,^B1}

The initial rules for ⊥ (resp. ⊤) above encodes the fact that ⊥ is interpreted as the

minimal element (resp. ⊤ as the maximal element) in the algebraic interpretation.

The cut rules below encode the fact that the derivability relation ⊢ is transitive.

Notice that the notion of ‘cut formula’ in standard Gentzen sequent calculi corresponds

to ‘labelled cut formula’ in the present setting. Before defining the cut rules, we need

the following definition.

Definition 3. A labelled formula a is a j-labelled (resp. m-labelled) formula in a deriva-

tion π if the uppermost labelled formulas congruent with a in π are introduced via

Idj≤p,⊥j,⊤j,∧P,∧S ,�P,�S (resp. Idp≤m,⊥m,⊤m,∨P,∨S ,^P,^S ).

Cut rules∗

Γ ⊢ j ≤ A, ∆ Γ′, j ≤ A ⊢ ∆′
Cut j≤A

Γ, Γ′ ⊢ ∆, ∆′
Γ ⊢ B ≤ m, ∆ Γ′, B ≤ m ⊢ ∆′

Cut B≤m
Γ, Γ′ ⊢ ∆, ∆′

∗Side condition: j ≤ A and B ≤ m are in display,

j ≤ A is a j-labelled formula and B ≤ m is an m-labelled formula.

The switch rules below encode elementary properties of pairs of inequalities with

the same approximant (either a nominal j or a conominal m) occurring in the same

sequent with opposite polarity (namely, the first in precedent position and the second

in succedent position: see Definition 2). Notice that we might use S as a generic name

�m are all nonparametric in �P. Moreover, according to Definition 1, every instantiation of

a structure (resp. a labelled formula) in the conclusion of initial rules (resp. logical rules) is

principal. For instance, j ≤ p is principal in Idj≤p and j ≤ �A is principal in �P.
8 For instance, given an instantiation r of the rule ∧S , assuming σ ∈ Γ in the first (resp. second)

premise of r, then it occurs in the same position in the conclusion of r, and these two occur-

rences of σ are locally congruent in r. Nonetheless, notice that the two occurrences of σ in the

premises of r are not locally congruent in r.
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denoting a specific switch rule in the following set. If so, we rely on the context to

disambiguate which rule we are referring to. In particular, the label S is unambiguous

whenever we use it as the name for a rule application in a derivation.

Switch rules∗

Γ, j ≤ A ⊢ j ≤ m, ∆
Sm

Γ ⊢ A ≤ m, ∆

Γ,A ≤ m ⊢ j ≤ m, ∆
Sj

Γ ⊢ j ≤ A, ∆

Γ, j ≤ A ⊢ j ≤ B, ∆
Smm

Γ, B ≤ m ⊢ A ≤ m, ∆

Γ,A ≤ m ⊢ B ≤ m, ∆
Sjj

Γ, j ≤ B ⊢ j ≤ A, ∆

Γ, j ≤ T ⊢ j ≤ A, ∆
SmT

Γ, A ≤ m ⊢ T ≤ m, ∆

Γ,T ≤ m ⊢ A ≤ m, ∆
SjT

Γ, j ≤ A ⊢ j ≤ T, ∆

Γ, j ≤ A ⊢ j ≤ T, ∆
STm

Γ,T ≤ m ⊢ A ≤ m, ∆

Γ,A ≤ m ⊢ T ≤ m, ∆
STj

Γ, j ≤ T ⊢ j ≤ A, ∆

Γ, j ≤ T′ ⊢ j ≤ T, ∆
STT′m

Γ,T ≤ m ⊢ T′ ≤ m, ∆

Γ,T′ ≤ m ⊢ T ≤ m, ∆
SjTT′

Γ, j ≤ T ⊢ j ≤ T′, ∆

∗Side condition: For all the switch rules except Sm and Sj,

j and m do not appear in Γ or ∆. j (resp. m) in Sm (resp. Sj)

must not appear in the conclusion of the rule.

Remark 1 (Analysis of switch rules). For each instantiation r of R ∈ {STT′m, SjTT′},

the instantiations of j ≤ T′′ and T′′ ≤ m (where T′′ ∈ {T,T′}) are nonparametric and

locally congruent in r (see Definition 1). For each instantiation r of any other switch

rule R, the instantiations of j ≤ C and C ≤ m (where C ∈ {A, B}) are nonparametric and

locally congruent in r (see Definition 1).

Adjunction rules

Γ ⊢ ^j ≤ m, ∆
^ ⊣ �

Γ ⊢ j ≤ �m, ∆

Γ ⊢ j ≤ �m, ∆
^ ⊣ �−1

Γ ⊢ ^j ≤ m, ∆

Γ ⊢ j ≤ �m, ∆
_ ⊣ �

Γ ⊢ _j ≤ m, ∆

Γ ⊢ _j ≤ m, ∆
_ ⊣ �−1

Γ ⊢ j ≤ �m, ∆

Structural rules for ⊤ and ⊥

Γ ⊢ ⊤ ≤ m, ∆
⊤�

Γ, j ≤ ⊤ ⊢ j ≤ �m, ∆

Γ ⊢ j ≤ ⊥, ∆
⊥^

Γ,⊥ ≤ m ⊢ ^j ≤ m, ∆

The adjunction rules above encode the fact that unary modalities ^,� and _,�

constitute pairs of adjoint operators. The structural rules ⊤� (resp. ⊥^) above encodes

the fact that � preserve ⊤ (resp. ^ preserves ⊥).

The logical rules below encode the minimal order-theoretic properties and the arity

of propositional and modal connectives.
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Logical rules for propositional connectives∗

Γ, j ≤ Ai ⊢ ∆
∧P

Γ, j ≤ A1 ∧ A2 ⊢ ∆

Γ ⊢ j ≤ A, ∆ Γ ⊢ j ≤ B, ∆
∧S

Γ ⊢ j ≤ A ∧ B, ∆

Γ ⊢ A ≤ m, ∆ Γ ⊢ B ≤ m, ∆
∨P

Γ ⊢ A ∨ B ≤ m, ∆

Γ, Ai ≤ m ⊢ ∆
∨S

Γ, A1 ∨ A2 ≤ m ⊢ ∆

∗Side condition: labelled formula in the conclusion of any logical rule are in display.

We consider the following logical rules for modalities, where �S and ^P are invert-

ible, but �P and ^S are not. This choice facilitates a smoother analysis of the rules and

therefore it is preferable whenever the goal is to provide a canonical cut elimination.

Logical rules for modalities∗

Γ ⊢ A ≤ m, ∆
�P

Γ, j ≤ �A ⊢ j ≤ �m, ∆

Γ, A ≤ m ⊢ j ≤ �m, ∆
�S

Γ ⊢ j ≤ �A, ∆

Γ, j ≤ A ⊢ ^j ≤ m, ∆
^P

Γ ⊢ ^A ≤ m, ∆

Γ ⊢ j ≤ A, ∆
^S

Γ,^A ≤ m ⊢ ^j ≤ m, ∆

∗Side conditions: m (resp. j) must not occur in the conclusion of �S (resp. ^P).

Labelled formulas in the conclusion of any logical rule are in display.

Remark 2. The invertible version of ∧P, ∨S , f �P and ^S are as follows:

Γ, j ≤ A, j ≤ B ⊢ ∆
∧P

Γ, j ≤ A ∧ B ⊢ ∆

Γ, A ≤ m, B ≤ m ⊢ ∆
∨S

Γ, A ∨ B ≤ m ⊢ ∆

Γ, j ≤ �A ⊢ A ≤ m, j ≤ �m, ∆
�P

Γ, j ≤ �A ⊢ j ≤ �m, ∆

Γ,^A ≤ m ⊢ j ≤ A,^j ≤ m, ∆
^S

Γ,^A ≤ m ⊢ ^j ≤ m, ∆

Invertible rules can be used whenever the goal is to facilitate backwards-looking

proof searches. In this case, the initial rules have to be generalized accordingly.

The table below collects the analytic rules, both in the format of display calculi and

in the present format, generated by reading off the ALBA outputs of the corresponding

axioms reported on in Section 2.3.

modal axiom display rule labelled rule

(4) ^^A ⊢ ^A
ˆ̂ X ⊢ Y

4
ˆ̂ ˆ̂ X ⊢ Y

Γ ⊢ ^j ≤ m, ∆
4

Γ,h ≤ ^j ⊢ ^h ≤ m, ∆

(T) �A ⊢ A
X ⊢ �̌Y

T
X ⊢ Y

Γ ⊢ j ≤ �m, ∆
T

Γ ⊢ j ≤ m, ∆

(B) A ⊢ �^A
ˆ̂ X ⊢ Y

B
X ⊢ �̌Y

Γ ⊢ ^j ≤ m, ∆
B

Γ ⊢ j ≤ �m, ∆

(D) �A ⊢ ^A
ˆ̂ _̂X ⊢ Y

D
X ⊢ Y

Γ,k ≤ _j ⊢ ^k ≤ m, ∆
D

Γ ⊢ j ≤ m, ∆

(C) ^�A ⊢ �^A
ˆ̂ _̂X ⊢ Y

C
_̂ ˆ̂ X ⊢ Y

Γ,k ≤ _j ⊢ ^k ≤ m, ∆
C

Γ,h ≤ ^j ⊢ _h ≤ m, ∆
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Where k in rules C and D must not appear in Γ, ∆. For anyΣ ⊆ {(T ), (4), (B), (D), (C)},

we let A.LΣ be the calculus defined by the rules in the sections above plus the additional

rules in the table above corresponding to the axioms in Σ. We let A.L := A.L∅.

4 Properties of the calculus A.LΣ

4.1 Soundness

In the present section, we show that, for any Σ ⊆ {(T ), (4), (B), (D), (C)}, the rules of

A.LΣ are sound on the class Kδ(Σ) := {Aδ | A |= Σ}. Firstly, let us recall that, as

usual, any A.L-sequent Γ ⊢ ∆ is to be interpreted as “any assignment of the variables

in Prop ∪ NOM ∪ CNOM under which all inequalities in Γ are satisfied also satisfies

some inequality in ∆”; in symbols: ∀p∀j∀m(&Γ =⇒M∆).

As to the basic calculus A.L, the soundness of the initial rules, cut rules, adjunction

rules, and logical rules for propositional connectives is straightforward. The soundness

of the switch rules hinges on the fact that nominal and co-nominal variables range over

completely join-generating and completely meet-generating subsets of Aδ for any L-

algebra A. For example, the soundness of Sjm follows from the following chain of

equivalences:

∀p∀j∀k∀n(&Γ & j ≤ A⇒ j ≤ BMM∆) validity of premise

iff ∀p∀k∀n(&Γ ⇒ ∀j(j ≤ A⇒ j ≤ B)MM∆) uncurrying + side condition

iff ∀p∀k∀n(&Γ ⇒ A ≤ BMM∆) c. join generation

iff ∀p∀k∀n(&Γ ⇒ ∀m(B ≤ m⇒ A ≤ m)MM∆) c. meet generation

iff ∀p∀m∀k∀n(&Γ & B ≤ m⇒ A ≤ mMM∆) currying

Since m does not occur in Γ and ∆, the rule is also invertible. The verification of the

soundness of the remaining switch rules is similar.

The soundness and invertibility of the introduction rules for the modal connec-

tives hinge on the fact that the operation ^σ (resp. �π) is completely join-preserving

(resp. completely meet preserving) and on the complete- join-generation and meet-

generation properties of the subsets of Aδ on which nominal and co-nominal variables

are interpreted. For example, the soundness and invertibility of �S is verified via the

following chain of equivalences:

∀p∀j∀m∀k∀n(&Γ & A ≤ m⇒ j ≤ �mMM∆) validity of premise

iff ∀p∀j∀k∀n(&Γ ⇒ ∀m(A ≤ m⇒ j ≤ �m)MM∆) uncurrying + side condition

iff ∀p∀j∀k∀n(&Γ ⇒ ∀m(A ≤ m⇒ _j ≤ m)MM∆) adjunction

iff ∀p∀j∀k∀n(&Γ ⇒ _j ≤ AMM∆) c. meet-generation

iff ∀p∀j∀k∀n(&Γ ⇒ j ≤ �AMM∆) adjunction

The soundness of �P immediately follows from the monotonicity of �π. Indeed, fix

an assignment of variables in Prop ∪ NOM ∪ CNOM under which all inequalities in Γ

and j ≤ �A are satisfied. If such assignment also satisfies A ≤ n, then, by monotonicity,

j ≤ �A ≤ �n, as required. The proof for the rules ^P and ^S is similar.

As to the extended calculus A.LΣ, the soundness of rule (4) is verified by the fol-

lowing chain of computations holding on the canonical extension of any L-algebra A

such that A |= ^^p ≤ ^p:
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∀p∀k∀j∀m∀n(&Γ ⇒ ^j ≤ mMM ∆) validity of premise

then ∀p∀k∀j∀m∀n(&Γ ⇒ ^^j ≤ mMM∆) axiom (4)

iff ∀p∀k∀j∀m∀n(&Γ ⇒ ∀h(h ≤ ^j⇒ ^h ≤ m)MM ∆) c. join-generation

iff ∀p∀k∀j∀m∀h∀n(&Γ & h ≤ ^j⇒ ^h ≤ mMM ∆) currying + h fresh

The key step in the computation above is the one which makes use of the assumption

of axiom (4) being valid on A. Indeed, by the general theory of correspondence for LE-

logics (cf. [7]), axiom (4) is canonical, hence the assumption implies that (4) is valid

also on Aδ. Then, as is shown in the computation concerning axiom (4) in Section 2.3,

the validity of (4) in Aδ is equivalent to the condition ∀j∀m (^j ≤ m ⇒ ^^j ≤ m)

holding in Aδ, which justifies this key step. The verification of the remaining additional

rules hinges on similar arguments and facts (in particular, all axioms we consider are

canonical), so in what follows we only report on the corresponding computations.

∀p∀k∀j∀m∀n(&Γ ⇒ j ≤ �mMM∆) validity of premise

then ∀p∀k∀j∀m∀n(&Γ ⇒ j ≤ mMM∆) axiom (T)

∀p∀k∀j∀m∀n(&Γ ⇒ ^j ≤ mMM∆) validity of premise

then ∀p∀k∀j∀m∀n(&Γ ⇒ j ≤ �mMM ∆) axiom (B)

∀p∀k∀j∀m∀n(&Γ ⇒ j ≤ �mMM ∆) validity of premise

then ∀p∀k∀j∀m∀n(&Γ ⇒ ^j ≤ mMM∆) axiom (B−1)

The soundness of the rule (C) is verified by the following chain of computations

holding on the canonical extension of any L-algebra A such that A |= ^�p ≤ �^p:

∀p∀h′∀j∀m∀k∀n(&Γ & k ≤ _j⇒ ^k ≤ mMM∆) validity of premise

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ ∀k(k ≤ _j⇒ ^k ≤ m)MM∆) uncurrying + side cond.

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ ∀k(k ≤ _j⇒ k ≤ �m)MM∆) adjunction

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ _j ≤ �mMM∆) c. join-generation

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ ^_j ≤ mMM∆) adjunction

then ∀p∀h′∀j∀m∀n(&Γ ⇒ _^j ≤ mMM∆) axiom (C)

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ ^j ≤ �mMM∆) adjunction

iff ∀p∀h′∀j∀m∀n(&Γ ⇒ ∀i(i ≤ ^j⇒ i ≤ �m)MM∆) c. join-generation

iff ∀p∀i∀h′∀j∀m∀n(&Γ & i ≤ ^j⇒ i ≤ �mMM∆) currying

iff ∀p∀i∀h′∀j∀m∀n(&Γ & i ≤ ^j⇒ _i ≤ mMM∆) adjunction

Instantiating i as h completes the proof. The key step in the computation above is

the one which makes use of the assumption of axiom (C) being valid on A. Indeed, by

the general theory of correspondence for LE-logics (cf. [7]), axiom (C) is canonical,

hence the assumption implies that (C) is valid also on Aδ. Then, as is shown in the

computation concerning axiom (C) in Section 2.3, the validity of (C) in Aδ is equivalent

to the condition ∀j∀m (^_j ≤ m ⇒ _^j ≤ m) holding in Aδ, which justifies this key

step.

The soundness of the rules (D), (T), (B) is verified in a similar way.
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4.2 Syntactic completeness

In the present section, we show that all the axioms and rules of the basic logic are

derivable in A.L, and that for any Σ ⊆ {(T), (4), (B), (D), (C)}, the axioms and rules of

LΣ are derivable in A.LΣ.9

The sequents p ⊢ p, ⊥ ⊢ p, p ⊢ ⊤, p ⊢ p∨q (q ⊢ p∨q), and p∧q ⊢ p (q∧ p ⊢ q)

are trivially derivable with one single application of the rule Idj≤q, ⊥w, ⊤w, ∨S , and ∧P,

respectively. The derivability of the rules
ϕ ⊢ χ χ ⊢ ψ

ϕ ⊢ ψ
,
ϕ ⊢ χ ψ ⊢ χ

ϕ∨ψ ⊢ χ
, and

χ ⊢ ϕ χ ⊢ ψ

χ ⊢ ϕ∧ψ
can be

shown by derivations in which the cut rules, ∨P, and ∧S , respectively, are applied. The

two derivations below show the rules concerning the connectives � and ^:

ψ ≤ m ⊢ ϕ ≤ m
�P

j ≤ �ϕ,ψ ≤ m ⊢ j ≤ �m
�S

j ≤ �ϕ ⊢ j ≤ �ψ

j ≤ ϕ ⊢ j ≤ ψ
^S

^ψ ≤ m, j ≤ ϕ ⊢ ^j ≤ m
^P

^ψ ≤ m ⊢ ^ϕ ≤ m

To show the admissibility of the substitution rule
ϕ ⊢ ψ

ϕ(χ/p) ⊢ ψ(χ/p)
, a straightforward

induction on the derivation height of ϕ ⊢ ψ suffices.

As to the axioms and rules of the basic logic L, below, we derive the axioms encod-

ing the distributivity of ^ over ∨ and ⊥ in A.L. The distributivity of � over ∧ and ⊤ is

derived similarly.

Id i≤A
i ≤ A ⊢ i ≤ A

^S
i ≤ A,^A ≤ m ⊢ ^i ≤ m

∨S
i ≤ A,^A ∨^B ≤ m ⊢ ^i ≤ m

^ ⊣ �
i ≤ A,^A ∨ ^B ≤ m ⊢ i ≤ �m

S
^A ∨ ^B ≤ m,�m ≤ n ⊢ A ≤ n

Id i≤B
i ≤ B ⊢ i ≤ B

^S
i ≤ B,^B ≤ m ⊢ ^i ≤ m

∨S
i ≤ B,^A ∨^B ≤ m ⊢ ^i ≤ m

^ ⊣ �
i ≤ B,^A ∨ ^B ≤ m ⊢ i ≤ �m

S
^A ∨ ^B ≤ m,�m ≤ n ⊢ B ≤ n

∨P
^A ∨ ^B ≤ m,�m ≤ n ⊢ A ∨ B ≤ n

S
h ≤ A ∨ B,^A ∨ ^B ≤ m ⊢ h ≤ �m

^ ⊣ �−1

h ≤ A ∨ B,^A ∨ ^B ≤ m ⊢ ^h ≤ m
^P

^A ∨ ^B ≤ m ⊢ ^(A ∨ B) ≤ m

Id j≤⊥
j ≤ ⊥ ⊢ j ≤ ⊥

^⊥
⊥ ≤ m, j ≤ ⊥ ⊢ j ≤ �m

^ ⊣ �−1

⊥ ≤ m, j ≤ ^⊥ ⊢ j ≤ m
^P

⊥ ≤ m ⊢ ^⊥ ≤ m

The syntactic completeness for the other axioms and rules of L can be shown in

a similar way. In particular, the admissibility of the substitution rule can be proved by

induction in a standard manner.

As to the axiomatic extensions of L, Let us consider the axiom (4) ^^A ⊢ ^A.

Using ALBA we generate the first order correspondent ∀j∀m (^j ≤ m ⇒ ^^j ≤

m). Further processing the axiom (4) using ALBA we obtain the equivalent first order

correspondent (in the so-called ‘flat form’):∀j∀h∀m (^j ≤ m⇒ (h ≤ ^j⇒ ^h ≤ m)),

which can be written as a structural rule in the language of ALBA labelled calculi as

follows:

Γ ⊢ ^j ≤ m, ∆
4

Γ,h ≤ ^j ⊢ ^h ≤ m, ∆

We now provide a derivation of the axiom (4) in the basic labelled calculus A.L ex-
panded with the previous structural rule 4.

9 That is, we show that, for any L-axiom s = A ⊢ B ∈ {(T), (4), (B), (D), (C)}, a derivation exists

in A.L{s} of the sequent j ≤ A ⊢ j ≤ B, or equivalently of B ≤ m ⊢ A ≤ m.
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IdA
j ≤ A ⊢ j ≤ A

^S
j ≤ A,^A ≤ m ⊢ ^j ≤ m

4
j ≤ A,^A ≤ m, h ≤ ^j ⊢ ^h ≤ m

^ ⊣ �
j ≤ A,^A ≤ m,h ≤ ^j ⊢ h ≤ �m

S
j ≤ A,^A ≤ m,�m ≤ m′ ⊢ ^j ≤ m′

^P
^A ≤ m,�m ≤ m′ ⊢ ^A ≤ m′

S
j′ ≤ ^A,^A ≤ m ⊢ j′ ≤ �m

^ ⊣ �−1

j′ ≤ ^A,^A ≤ m ⊢ ^j′ ≤ m
^P

^A ≤ m ⊢ ^^A ≤ m

Analogously, we provide a derivation of the axioms (T), (B), (D), and (C) in the

basic labelled calculus A.L expanded with the structural rules T , B, D, and C, respec-

tively.

IdA
A ≤ m ⊢ A ≤ m

�P
j ≤ �A,A ≤ m ⊢ j ≤ �m

T
j ≤ �A,A ≤ m ⊢ j ≤ m

S
j ≤ �A ⊢ j ≤ A

IdA
j ≤ A ⊢ j ≤ A

^S
j ≤ A,^A ≤ m ⊢ ^j ≤ m

B
j ≤ A,^A ≤ m ⊢ j ≤ �m

�S
j ≤ A ⊢ j ≤ �^A

IdA
A ≤ n ⊢ A ≤ n

�P
j ≤ �A,A ≤ n ⊢ j ≤ �n

_ ⊣ �
j ≤ �A,A ≤ n ⊢ _j ≤ n

S
k ≤ _j, j ≤ �A ⊢ k ≤ A

^S
k ≤ _j, j ≤ �A,^A ≤ m ⊢ ^k ≤ m

D
j ≤ �A,^A ≤ m ⊢ j ≤ m

S
^A ≤ m ⊢ �A ≤ m

IdA
A ≤ o ⊢ A ≤ o

�P
j ≤ �A,A ≤ o ⊢ j ≤ �o

_ ⊣ �
j ≤ �A,A ≤ o ⊢ _j ≤ o

S
k ≤ _j, j ≤ �A ⊢ k ≤ A

^S
k ≤ _j, j ≤ �A,^A ≤ m ⊢ ^k ≤ m

C
h ≤ ^j, j ≤ �A,^A ≤ m ⊢ _h ≤ m

_ ⊣ �−1

h ≤ ^j, j ≤ �A,^A ≤ m ⊢ h ≤ �m
S

j ≤ �A,^A ≤ m,�m ≤ n ⊢ ^j ≤ n
^P

^A ≤ m,�m ≤ n ⊢ ^�A ≤ n
S

i ≤ ^�A,^A ≤ m ⊢ i ≤ �m
�S

i ≤ ^�A ⊢ i ≤ �^A

4.3 Conservativity

In the present section, we argue that, for any Σ ⊆ {(T ), (4), (B), (D), (C)} and all L-

formulas A and B, if the A.L-sequent j ≤ A ⊢ j ≤ B is derivable in A.LΣ, then the

L-sequent A ⊢ B is an L.Σ-theorem.

Indeed, because the rules of A.L are sound in the class Kδ(Σ) = {Aδ | A |= Σ},

the assumption implies that Aδ |= ∀p∀j(j ≤ A ⇒ j ≤ B) which, by complete join-

generation, is equivalent to Aδ |= ∀p(A ≤ B). Since, as discussed in Section 2.2, L.Σ is

complete w.r.t. Kδ(Σ), this implies that A ⊢ B is a theorem of L.Σ, as required.

4.4 Cut elimination and subformula property

As usual in the tradition of display calculi, we first characterize a new class of cal-

culi. The actual definition is given in Appendix A. Here we just mention that a proper
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labelled calculus is a proof systems satisfying the conditions C2-C8 of Definition 6.

Then, in the appendix, we prove the following general result, namely a canonical cut

elimination theorem à la Belnap for any calculus in this class:

Theorem 1. Any proper labelled calculus enjoys cut-elimination. If also the condition

C1 in Definition 6 is satisfied, then the proof system enjoys the subformula property.

Finally, we obtain that the calculi A.LΣ introduced in Section 3 enjoys cut elimina-

tion and subformula property thanks to the following result, proved in Section 5.

Corollary 1. A.LΣ is a proper labelled calculus.

5 A.LΣ is a proper labelled calculus

In this section we first show that A.LΣ has the display property and then we provide a

proof of Corollary 1 as stated in Section 4.4.

Lemma 1. Let s be any derivable sequent in A.LΣ. Then, up to renaming of the vari-

ables, every nominal or conominal occurring in s occurs in it exactly twice and with

opposite polarity.

Proof. The proof is by induction on the height of the derivation. The statement is triv-

ially true for the axioms. All the rules in the calculi with the exception of the cut-rules

either (a) introduce two occurrences of a new label, (b) eliminate two occurrences of

the same existing label, or (c) keep the labels in the sequent intact. Before applying

the same reasoning to Cut j≤A and Cut A≤m, we must take care of renaming nominals

and conominals in Γ, Γ′, ∆, ∆′ to avoid conflicts. Thus, up to substitution, any variable

occurring in a derivable sequent occurs exactly twice.

To prove that A.LΣ has the display property (see Definition 5) we need the following

definition:

Definition 4. Let s = Γ ⊢ ∆ be any sequent. For any structure σ = j ≤ T, (resp. σ =

T ≤ m) in Γ, we say that it has a j-twin (resp. m-twin) iff there exists exactly one

occurrence of j (resp. m) in ∆.

Proposition 1. For any derivable sequent s = Γ ⊢ ∆ and any structure σ = j ≤ T

(resp. σ = T ≤ m) in Γ there exists a sequent s′ = Γ′ ⊢ ∆′ which is interderivable with

s such that σ ∈ Γ′ and σ has a j-twin (resp. m-twin) in s′.

Proof. A sequent s is said to have the j-twin property (resp. m-twin property) iff every

structure of the form j ≤ T (resp. T ≤ m) has a j-twin (resp. m-twin) in ∆. Notice

that the conclusions of initial rules satisfy all twin properties trivially. We say that an

inference rule preserves the twin property if the premises having a certain twin property

implies that the conclusion has the same twin property.

All the rules in the basic calculus which do not involve switching of structural terms

(i.e. all the rules except for the rules STm, SmT, STj, SjT, STT′m, SjTT′) and the rules

T , B, and C preserve the twin property, since, for each nominal j or conominal m in the

rule, one of the following holds:
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1. each occurrence of j or m remains on the same side in the conclusion as it was in

the premise (adjunction rules, rules for propositional connectives, T , B);
2. exactly two occurrences of j (resp. m) are eliminated (cut, Sm, Sj, �S , ^P, D, C);10

3. j (resp. m) does not occur in the premise, and exactly two occurrences of j (resp. m)

are added in the conclusion, one in the antecedent and one in the consequent of the

conclusion (⊤�,⊥^,�P,^S , C).

Notice that rule C occurs both in items 2 and 3 and, in particular, we can assume that

the nominal h in the conclusion of C is fresh (see the proof of Lemma 2).

In the case one of the STm, SmT, STj, SjT, STT′m, SjTT′ rules is applied, the

twin property can be broken, as nominals (resp. conominal) contained in the structural

terms T,T′ switch side without their twin nominals (resp. conominals) doing the same.

Let R = Γ1 ⊢ ∆1

Γ2 ⊢ ∆2
be an application of any of these rules. Let σ ∈ Γ1 ∩ Γ2 be a structure

which has a twin in ∆1 but not in ∆2. This is only possible if σ is of the form i ≤ T1

(resp. T1 ≤ n) and there exists a σ′ of the form T ≤ m (resp. j ≤ T) for some T

containing i (resp. n) which will appear in Γ2 with j (resp. m) introduced fresh. We can

switch the term T back to the right by using the switch rule applicable to the conclusion

of R, which gives a sequent of the same form as Γ1 ⊢ ∆1, but with a fresh conominal

(resp. nominal) in the place of m (resp. j). Here, we show the proof for the rules STT′m

and SmT, the proof for other rules being similar.

Γ, j ≤ T′ ⊢ j ≤ T, ∆
STT′m

Γ,T ≤ m ⊢ T′ ≤ m, ∆
SjTT′

Γ, j′ ≤ T′ ⊢ j′ ≤ T, ∆

Γ, A ≤ m ⊢ T ≤ m, ∆
STj

Γ, j ≤ T ⊢ j ≤ A, ∆
SmT

Γ, A ≤ m′ ⊢ T ≤ m′, ∆

Let s′ = Γ3 ⊢ ∆3 be any sequent derived from Γ2 ⊢ ∆2 such that σ ∈ Γ3. If σ′ < Γ3,

it must have been switched to the right by a switch rule, as all other rules leave pure

structures on the left intact. However, whenever a switch rule is applied, the term T

occurs on the right of the sequent and has a twin. Thus, if the last rule of the derivation

is such a switch rule, then σ has a twin in s′. If σ′ ∈ Γ3 and σ′ has a twin structure,

then we can switch T to right by the application of an appropriate switch rule leading

to a interderivable sequent in which σ has a twin. Thus, reasoning by induction, it is

enough to show that σ′ has a twin when it occurs for the first time (by the application

of the switch rule). This is immediate from the fact that the label occurring in σ′ ∈ Γ3

in any switch rule is of the form j ≤ T or T ≤ m where j or m is fresh and also occurs

in ∆3. Thus switch rules preserve the twin property.

Let R = Γ1 ⊢ ∆1

Γ2 ⊢ ∆2
be an application of rule (4). Let σ ∈ Γ1 ∩ Γ2 be a structure which

has a twin in ∆1 but not in ∆2. This is only possible if σ is of the form j ≤ T ∈ Γ for

some structure T. In this case, after the application of 4 we can reintroduce the relevant

twin structure ^j ≤ m in the following way.

j ≤ T ∈ Γ ⊢ ^j ≤ m
4

j ≤ T ∈ Γ,h ≤ ^j ⊢ ^h ≤ m
^ ⊣ �

j ≤ T ∈ Γ,h ≤ ^j ⊢ h ≤ �m
STT′n

j ≤ T ∈ Γ,�m ≤ n ⊢ ^j ≤ n

10 Given the result in Lemma 1, notice that this is the same as saying that all occurrences of j

(resp. m) are eliminated, except in the case of cut rules, which have two premises. But, if the

cut formula has a j-twin (resp. m-twin) in Γ in the one premise and in ∆′ in the other, the

conclusion Γ,Γ′ ⊢ ∆, ∆′ will still have the j-twin (resp. m-twin) property.
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The rest of the proof now follows by the same inductive algorithm.

We can now prove the display property of the calculus.

Proposition 2. If s = Γ ⊢ ∆ is a derivable A.LΣ-sequent, then every structure σ oc-

curring in s is displayable (see Definition 5).

Proof. We prove the display property only for the structures of the form j ≤ T and

j ≤ A. The proof for structures of the form T ≤ m and A ≤ m are dual. Let σ be

a structure of the form j ≤ T or j ≤ A. By Lemma 1, j occurs exactly twice in any

derivable sequent. Let σ′ be the structure containing the other occurrence of j. If σ′ is a

labelled formula we are done. The set of well-formed pure structures containing j is the

following: {j ≤ m,^j ≤ m,_j ≤ m, j ≤ �m, j ≤ �m, i ≤ ^j, i ≤ _j}. For any derivable

sequent s = Γ ⊢ ∆, it is easy to verify the following (by inspection of all the rules in

A.L):

(a) if ^j ≤ n (resp. i ≤ �m) occurs in s, then it occurs in ∆, given that ^S and ⊥^
(resp. �P and ⊤�) are the only rules introducing such a structure;

(b) if _j ≤ n (resp. i ≤ �m) occurs in s, then it occurs in ∆, given that _ and � can be

introduced only via adjunction rules to structures ^j ≤ n and i ≤ �m which only

occur in ∆ by (a);

(c) if any pure structure t ∈ {i ≤ ^j, i ≤ _j,�m ≤ n,�m ≤ n} occurs in s, then it

occurs in Γ, given that they can only be introduced via a switch rule (namely, STm,

STj, STT′m, Sj,TT′).

Case (a) and (b). If j (resp. m) occurs in some pure structure^j ≤ n or_j ≤ n (resp.

i ≤ �m or i ≤ �m), then it occurs in ∆ and it is displayable through a single application

of an adjunction rule.

Case (c). If j (resp. m) occurs in some pure structure i ≤ ^j, i ≤ _j (resp. �m ≤ n,

�m ≤ n), then it occurs in Γ. If we can apply a switch rule moving the relevant complex

term to ∆, we reduce ourselves to the previous cases (a) or (b) and we are done. We will

consider the case where a pure structure i ≤ ^j occurs on the left. All the other cases are

treated analogously. By Proposition 1, there exists a sequence s′ = Γ′ ⊢ ∆′ such that s′

is interderivable with s, i ≤ ^j occurs in Γ′ and has an i-twin (resp. n-twin) in s′. Thus,

i occurs in ∆′ by definition. By (a) and (b), i can occur in ∆′ in one of the structures

i ≤ A, i ≤ m ^i ≤ m, or _i ≤ m. If i occurs in i ≤ A or i ≤ m, we can apply a switch

rule with i ≤ ^j to reduce ourselves to previous cases. If i occurs in the structure of the

form ^i ≤ m or _i ≤ m, we first apply adjunction and then proceed in the same way.

This concludes the proof of display property for the basic calculus.

In case of the axiomatic extensions, we need to argue that the added rules preserve

the property in Proposition 1. Notice that all the additional rules preserve the Lemma 1.

In case of rules (T), (B), and (C) no variables nominals or conominals switch side

thus the twin structures are preserved by these rules. (4): The rule 4 moves ^j from the

right to the left. Thus, the only structure in Γ which loses the twin property is some

structure σ in Γ containing j. However, just like in the case of the switch rules we can

switch j back to the right by applying an adjunction followed by a switch rule on h as

follows.
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Γ,h ≤ ^j ⊢ ^h ≤ m
^ ⊣ �

Γ,h ≤ ^j ⊢ h ≤ �m
STT′m

Γ,�m ≤ n ⊢ ^j ≤ n

Thus, the twin of σ reappears. We can now argue that the existence of an interderivable

sequent with a twin is preserved in a derivation containing an application of this rule in

similar way as we did with the switch rules.

(D): In case of rule D, as the premise contains the structure k ≤ _j, there must be

another structure σ ∈ Γ containing j of the form j ≤ A or j ≤ T. The premise must be

interderivable with a sequent in which σ has a twin. However, in the conclusion k does

not occur and j ≤ �m occurs on the right. Thus, σ has a twin in the conclusion. All

other nominals and conominals in the premise stay on the same side in the conclusion.

Thus, rule D preserves the property of existence of interederivable sequent with the twin

property.

To show that A.LΣ is a proper labelled calculus, we need to verify that A.LΣ satis-

fies each condition in Definition 6. The verification of the conditions C6 and C7 requires

to preliminarily show the following:

Lemma 2 (Preservation of principal formulas’ approximants). If the sequents s and

s′ occur in the same branch b of an A.LΣ-derivation π, j ≤ A ∈ s and i ≤ A ∈ s′

(resp. A ≤ m ∈ s and A ≤ n ∈ s′) are congruent in b (see Definition 5), j ≤ A

(resp. A ≤ m) is principal in s and i ≤ A (resp. A ≤ n) is in display in s′, then the

term occurring in i ≤ A (resp. A ≤ n) in π can be renamed in a way such that i = j

(resp. n = m), and the new derivation π′ is s.t. π′ ≡ π modulo a renaming of some

nominal or conominal.

Proof. Assume that j ≤ A ∈ s and i ≤ A ∈ s′ (resp. A ≤ m ∈ s and A ≤ n ∈ s′) are con-

gruent in the branch b of a derivation π, j ≤ A (resp. A ≤ m) is principal in s and i ≤ A

(resp. A ≤ n) is in display in s′. This means that there is a sub-branch b′ ⊆ b connecting

s and s′ and the height of s is strictly smaller than the height of s′ in π, given that j ≤ A

(resp. A ≤ m) is principal in s. If j ≤ A stays parametric in b′, then j = i (resp. m = n).

If not, it means that j ≤ A (resp. A ≤ m) is nonparametric in an even number of appli-

cations of switch rules occurring in b′, given that j ≤ A and i ≤ A (resp. A ≤ m and

A ≤ n) are both approximated by a nominal (resp. conominal) and a single application

of a switch rules changes the nominal (resp. conominal) approximating a formula into

a conominal (resp. nominal). W.l.o.g. we can confine ourselves to consider a branch b′

with exactly two applications of switch rule involving j ≤ A and i ≤ A (resp. m ≤ A)

as nonparametric structures. If a rule R is applied in b′, R is not a switch rule, and x is a

nominal or conominal occurring in a nonparametric strucure in the conclusion of R but

not necessarily occurring in the premise(s) of R, then we can pick x fresh in the entire

sub-branch b′′ ⊆ b′ connecting the conclusion of R with the sequent s. In the case of

A.LΣ, such rule R is either �P, ^S , C, or 4. Therefore, j (resp. m) occurs neither in the

premise nor in any parametric structure in the conclusion of S , where S is any applica-

tion of a switch rules in the branch b′ and s.t. i ≤ A (resp. A ≤ n) is a nonparametric

structure in the conclusion of S . So, the side conditions of switch rules are satisfied, and

in any application of such S we can switch i for j (resp. n for m).
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We now proceed to check all the conditions C1-C8 defining proper labelled calculi.

Proof. The fact that A.LΣ satisfies condition C′
5

is proved in Proposition 2. To show

that A.LΣ satisfies condition C8 we need to consider all possible principal cuts.

Below we consider cut formulas introduced by initial rules and we exhibit a new

cut-free proof that is an axiom as well (notice that axioms are defined with empty con-

texts). The principal cut formula is j ≤ ⊤ or j ≤ p, R ∈ {Idj≤p, Id⊤,⊤w}, and x, y, z are

instantiated accordingly to R (the proof for ⊥ ≤ m or p ≤ m, and R ∈ {Idp≤m, Id⊥,⊥w}

is similar and it is omitted).

π1
R

j ≤ x ⊢ j ≤ y

π2
R

j ≤ y ⊢ j ≤ z
Cut j≤⊤

j ≤ x ⊢ j ≤ z  

πi
R

j ≤ x ⊢ j ≤ z

Below we consider formulas introduced by logical rules. The side conditions on

logical rules impose that the parametric structures are in display or can be displayed

with a single application of an adjunction rule, therefore we can provide the following

proof transformations where the newly generated cuts are well-defined (in particular

the cut formulas are in display) and of lower complexity (the new cut formulas are

immediate subformulas of the original cut formulas).

The principal cut formula is �A and A is m-labelled formula (see Definition 3).

... π1

Γ, A ≤ m ⊢ j ≤ �m, ∆
�S

Γ ⊢ j ≤ �A, ∆

... π2

Γ′ ⊢ A ≤ m, ∆′
�P

Γ′, j ≤ �A ⊢ j ≤ �m, ∆′
Cut j≤�A

Γ, Γ′ ⊢ ∆, j ≤ �m, ∆′  

... π2

Γ′ ⊢ A ≤ m, ∆′

... π1

Γ, A ≤ m ⊢ j ≤ �m, ∆
_ ⊣ �

Γ, A ≤ m ⊢ _j ≤ m, ∆
Cut A≤m

Γ, Γ′ ⊢ ∆,_j ≤ m, ∆′

_ ⊣ �−1

Γ, Γ′ ⊢ ∆, j ≤ �m, ∆′

The principal cut formula is �A and A is a j-labelled formula (see Definition 3): in

this case the original cut is as in the proof above. The principal cut elimination transfor-

mation requires we perform a new cut on the immediate labelled subformulas A ≤ m,

but, given A is a j-labelled formula by assumption, only Cutj≤A can be applied, so we

need first to apply the appropriate switch rules changing the approximants of the im-

mediate subformulas A on both branches. In branch π1 of the original proof, we can

apply adjunction and derive Γ, A ≤ m ⊢ _j ≤ m where _j ≤ m is the twin structure

(see Definition 4) of A ≤ m, so we can apply the rule STj. In branch π2, Proposition 1

ensures that Γ′ ⊢ A ≤ m, ∆′ is interderivable with Γ′′, x ≤ m ⊢ A ≤ m, ∆′′ for some

x formula or x pure structure, where x ≤ m is the twin structure of A ≤ m. Therefore,

we can apply the appropriate switch rule changing the approximant of A. The proof

transformation is detailed below.

 

... π1

Γ, A ≤ m ⊢ j ≤ �m, ∆
_ ⊣ �

Γ, A ≤ m ⊢ _j ≤ m, ∆
STj

Γ, i ≤ _j ⊢ i ≤ A, ∆

... π2

Γ′ ⊢ A ≤ m, ∆′
Prop. 1

Γ′′, x ≤ m ⊢ A ≤ m, ∆′′
S

Γ′′, i ≤ A ⊢ i ≤ x, ∆′′
Cut i≤A

Γ, Γ′′, i ≤ _j ⊢ i ≤ x, ∆, ∆′′

S
Γ, Γ′′, x ≤ m ⊢ _j ≤ m, ∆, ∆′′

Prop. 1
Γ, Γ′ ⊢ _j ≤ m, ∆, ∆′

_ ⊣ �−1

Γ, Γ′ ⊢ j ≤ �m, ∆, ∆′



20 van der Berg, De Domenico, Greco, Manoorkar, Palmigiano, Panettiere

The principal cut formula is A ∧ B and both immediate subformulas are j-labelled
formulas (the case in which at least one immediate subformula is an m-labelled formula
is analogous to the proof transformation step for^A and it is omitted. The case for A∨B
are similar and they are omitted).

... π1

Γ ⊢ j ≤ A1, ∆

... π2

Γ ⊢ j ≤ A2, ∆
∧S

Γ ⊢ j ≤ A1 ∧ A2, ∆

... π3

Γ′, j ≤ Ai ⊢ ∆
′

∧P
Γ′, j ≤ A1 ∧ A2 ⊢ ∆

′

Cut j≤A1∧A2 Γ, Γ′ ⊢ ∆, ∆′  

... πi

Γ ⊢ j ≤ Ai, ∆

... π3

Γ′, j ≤ Ai ⊢ ∆
′

Cut j≤Ai Γ, Γ′ ⊢ ∆, ∆′

To show that A.LΣ satisfies all the other conditions is immediate and it requires

inspecting all the rules in A.LΣ.

6 Conclusions

In the present paper, we have showcased a methodology for introducing labelled cal-

culi for nonclassical logics (LE-logics) in a uniform and principled way, taking the basic

normal lattice-based modal logic L and some of its axiomatic extensions as a case study.

This methodology hinges on the use of semantic information to generate calculi which

are guaranteed by their design to enjoy a set of basic desirable properties (soundness,

syntactic completeness, conservativity, cut elimination and subformula property). Inter-

estingly, the methodology showcased in the present paper naturally imports the one de-

veloped and applied in [15] in the context of proper display calculi to the proof-theoretic

format of labelled calculi. Specifically, just like the algorithm ALBA, the main tool in

unified correspondence theory, was used in [15,1] to generate proper display calculi

for basic (D)LE-logics in arbitrary signatures and their axiomatic extensions defined

by analytic inductive axioms, in the present paper, ALBA is used to generate labelled

calculi for L and 31 of its axiomatic extensions. Similarly to extant labelled calculi in

the literature (viz. those introduced in [16]), the language of the calculi introduced in

the present paper manipulate a language which properly extends the original language

of the logic, and includes labels. However, the language of these labels is the same

language manipulated by ALBA, the intended interpretation of which is provided by

a suitable algebraic environment, rather than by a relational one; specifically, by the

canonical extensions of the algebras in the class canonically associated with the given

logic. Just like the use of canonical extensions as a semantic environment for unified

correspondence theory has allowed for the mechanization and uniform generalization of

correspondence arguments from classical normal modal logic to the much wider setting

of normal LE-logics without relying on the availability of any particular relational se-

mantics, this same semantic setting allows for the uniform generation of labelled calculi

for LE-logics in a way that does not rely on a particular relational semantics. However,

via general duality theoretic facts, these calculi will be sound also w.r.t. any relational

semantic environment for the given logic, and can also provide a “blueprint” for the

introduction of labelled calculi designed to capture the logics of specific classes of re-

lational structures (cf. [20]). In future work, we will generalize the current results to

arbitrary LE-signatures, and establish systematic connections, via formal translations,

between proper display calculi and labelled calculi for LE-logics.
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A Proper labelled calculi

In what follows we provide a formal definition of the display property and proper la-

belled calculi.
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Definition 5 (Display). A nominal j (resp. conominal m) is always in display in a la-

belled formula j ≤ A (resp. A ≤ m), and is in display in a pure structure t iff t = j ≤ T

(resp. t = T ≤ m) for some term T such that j does not occur in T.

A pure structure j ≤ T (resp. T ≤ m) is in display in a sequent s if j (resp. m) is in

display in each structure of s in which it occurs.

A labelled formula j ≤ A (resp. A ≤ m) is in display in a sequent s if j (resp. m) is

in display in each structure of s in which it occurs.

A proof system enjoys the display property iff for every derivable sequent s = Γ ⊢ ∆

and every structure σ ∈ s, the sequent s can be equivalently transformed, using the

rules of the system, into a sequent s′ s.t. σ occurs in display in s′ (in this case we might

say that σ is displayable).11

Definition 6 (Proper labelled calculi). A proof system is a proper labelled calculus if

it satisfies the following list of conditions:

C1: Preservation of formulas. Each formula occurring in a premise of an inference r

is a subformula of some formula in the conclusion of r.

C2: Shape-alikeness of parameters and formulas/terms in congruent structures. (i)

Congruent parameters are occurrences of the same (meta-)structure (i.e. instantiations

of structure metavariables in the application of a rule R except for switch rules); (ii) in-

stantiations of labelled formulas in the application of switch rules (in the case of A.LΣ,

occurrences of the form j ≤ C and C ≤ m) are congruent and the formulas in these

occurrences instantiate the same formula metavariable (namely C); (iii) instantiations

of pure structures in the application of switch rules (in the case of A.LΣ, occurrences of

the form j ≤ T′′ and T′′ ≤ m) are congruent and exactly one term in these occurrences

instantiate the same term metavariable (namely T′′).

C3: Non-proliferation of parameters and congruent structures. (i) Each parameter in

an inference r is congruent to at most one constituent in the conclusion of r. (ii) Each

nonparametric structure in the instantiation r of a switch rule R is congruent to at most

one nonparametric structure in the conclusion of r.

C4: Position-alikeness of parameters and congruent structures. Congruent parame-

ters and congruent structures occur in the same position (i.e. either in precedent posi-

tion or in succedent position) in their respective sequents.

C5: Display of principal constituents. If a labelled formula a is principal in the con-

clusion of an inference r, then a is in display.

C′
5
: Display-invariance of axioms and structural rules. If a structure σ occurs in the

conclusion s of a structural rule
s1, . . . , sn

Rs (where R is an axiom whenever the

set of premises is empty), then either σ occurs in display in s, or a structure σ′ and

a sequent s′ exist s.t. σ′ is in display in s′, and s′ is derivable from s via application

of switch and adjunction rules only, and σ and σ′ are congruent in this derivation.

Moreover, if the rule R is an axiom, then R′
s′ is an axiom of the calculus as well.

C6: Closure under substitution for succedent parts. Each rule is closed under simul-

taneous substitution of (sets of) arbitrary structures for congruent labelled formulas

occurring in succedent position.

11 Notice that we are not requiring that every meta-structure is displayable.
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C7: Closure under substitution for precedent parts. Each rule is closed under simul-

taneous substitution of (sets of) arbitrary structures for congruent labelled formulas

occurring in precedent position.

where σ is a multi-set of structures and σ/a means that σ are substituted for a.

This condition caters for the step in the cut-elimination procedure in which the cut

needs to be “pushed up” over rules in which the cut-formula in succedent position is

parametric.

C8: Eliminability of matching principal constituents. This condition requests a stan-

dard Gentzen-style checking, which is now limited to the case in which both cut formu-

las are principal, i.e. each of them has been introduced with the last rule application of

each corresponding subdeduction. In this case, analogously to the proof Gentzen-style,

condition C8 requires being able to transform the given deduction into a deduction with

the same conclusion in which either the cut is eliminated altogether, or is transformed in

one or more applications of the cut rule(s), involving proper subformulas of the original

cut-formula.

We now provide the proof of Theorem 1 stated in Section 4.4.

Proof. The proof is close to the proofs in [12] and [22, Section 3.3, Appendix A].

As to the principal move (i.e. both labelled cut formulas are principal), condition C8

guarantees that this cut application can be eliminated. As to the parametric moves (i.e. at

least one labelled cut formula is parametric), we are in the following situation:

... π1

(Π ⊢ Σ)[a]suc

... π2.1

(Γ1 ⊢ ∆1)[au1
]pre · · ·

... π2.n

(Γn ⊢ ∆n)[aun ]pre

. . .
... . .
.
π2

(Γ ⊢ ∆)[a]pre

Cut
Π, Γ ⊢ Σ, ∆

where we assume that the cut labelled formula a is parametric in the conclusion of π2

(the other case is symmetric), and (Γ ⊢ ∆)[a]pre (resp. (Π ⊢ Σ)[a]suc) means that a occur

in precedent (resp. succedent) position in Γ ⊢ ∆ (resp. Π ⊢ Σ).

Conditions C2-C4 make it possible to follow the history of that occurrence of a,

since these conditions enforce that the history takes the shape of a tree, of which we

consider each leaf. Let aui
(abbreviated to au from now on) be one such uppermost-

occurrence in the history-tree of the parametric cut term a occurring in π2, and let π2.i

be the subderivation ending in the sequent Γi ⊢ ∆i, in which au is introduced.

Wansing’s parametric case (1) splits into two subcases: (1a) au is introduced in

display; (1b) au is not introduced in display. Condition C′
5

guarantees that (1b) can only

be the case when au has been introduced via an axiom.

If (1a), then we can perform the following transformation:

... π1

(Π ⊢ Σ)[a]suc

... π2.i

(Γi ⊢ ∆i)[au]pre

... π2

(Γ ⊢ ∆)[a]pre

Cut
Π, Γ ⊢ Σ, ∆  

... π1

(Π ⊢ Σ)[a]suc

... π2.i

(Γi ⊢ ∆i)[au]pre

Cut’
Π, Γi ⊢ Σ, ∆i

... π2 [{Π,Σ}/a]

Π, Γ ⊢ Σ, ∆
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where π2 [{Π, Σ}/a] is the derivation obtained by π2 by substituting Π, Σ for a in π2.12

Notice that the assumption that a is parametric in the conclusion of π2 and that au is

principal implies that π2 has more than one node, and hence the transformation above

results in a cut application of strictly lower height. Moreover, condition C7 implies that

Cut’ is well defined and the substitution of {Π, Σ} for a in π2 gives rise to an admissible

derivation π2 [{Π, Σ}/a]pre in the calculus (use C6 for the symmetric case). If (1b), i.e. if

au is the principal formula of an axiom, the situation is illustrated below in the derivation

on the left-hand side:

... π1

(Π ⊢ Σ)[a]suc

(Γi ⊢ ∆i)[au]pre

... π2

(Γ ⊢ ∆)[a]pre

Cut
(Π, Γ ⊢ Σ, ∆  

... π1

(Π ⊢ Σ)[a]suc (Γ′
i
⊢ ∆′

i
)[au]pre

Cut’
Π, Γ′ ⊢ Σ, ∆′

... π
′

(Γi ⊢ ∆i)[{Π,Σ}/a]

... π2 [{Π, Σ}/a]

Π, Γ ⊢ Σ, ∆

where (Γi ⊢ ∆i)[au]pre[a]suc is an axiom. Then, condition C′
5

implies that some sequent

(Γ′
i
⊢ ∆′

i
)[au]pre[a]suc exists, which is display-equivalent to the first axiom, and in which

au occurs in display. This new sequent can be either identical to (Γi ⊢ ∆i)[au]pre[a]suc,

in which case we proceed as in case (1a), or it can be different, in which case, condition

C′
5

guarantees that it is an axiom as well. Further, if π is the derivation consisting of

applications of adjunction and switch rules which transform the latter axiom into the

former, then let π′ = π [{Π, Σ}/au]. As discussed when treating (1a), the assumptions

imply that π2 has more than one node, so the transformation described above results in a

cut application of strictly lower height. Moreover, condition C7 implies that Cut’ is well

defined and substituting {Π, Σ} for au in π2 and in π gives rise to admissible derivations

π2 [{Π, Σ}/au] and π′ in the calculus (use C6 for the symmetric case).

As to Wansing’s case (2), assume that au has been introduced as a parameter in the

conclusion of π2.i by an application r of the rule R.

Therefore, the transformation below yields a derivation where π1 is not used at all

and the cut is not applied.

... π1

(Π ⊢ Σ)[a]suc

... π2.i

(Γi ⊢ ∆i)[au]pre

... π2

(Γ ⊢ ∆)[a]pre

Cut
Π, Γ ⊢ Σ, ∆  

... π
′
2.i

(Γi ⊢ ∆i)[{Π, Σ}/au]

... π2 [{Π,Σ}/a]

Π, Γ ⊢ Σ, ∆

From this point on, the proof proceeds like in [22].

12 Notice that the writing π2 [{Π,Σ}/a] does not mean that Π and Σ remain untouched in π2,

namely it does not mean that every sequent in π2 is of the form Π, Γ′′ ⊢ Σ, ∆′′ for some Γ′′, ∆′′.

Indeed, structures in Π or in Σ might play the role of active structures in some applications of

switch rules occurring in π2, if any.
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