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Abstract

Position heaps are index structures of text strings used for the string matching problem. They
are rooted trees whose edges and nodes are labeled and numbered, respectively. This paper is
concerned with variants of the inverse problem of position heap construction and gives linear-time
algorithms for those problems. The basic problem is to restore a text string from a rooted tree
with labeled edges and numbered nodes. In the variant problems, the input trees may miss edge
labels or node numbers which we must restore as well.

1 Introduction

The string matching problem searches for occurrences of a pattern P in a text T . It has been widely
studied for many years and many efficient algorithms have been proposed. Those techniques can
be classified into mainly two approaches. The first one is to construct data structures from P by
preprocessing P . For example, the Knuth-Morris-Pratt algorithm [18] constructs border arrays, the
Boyer-Moore method [4] constructs suffix tables, and the Z-algorithm [15] constructs prefix tables
which is the dual notion of suffix tables. The other approach is preprocessing T to create indexing
structures, such as suffix trees [25], suffix arrays [20], LCP arrays [20], suffix graphs [2], compact suffix
graphs [3], and position heaps [11]. Indexing structures are advantageous when searching for many
different patterns in a text.

The reverse engineering of those data structures has also been widely studied. Studying reverse
engineering deepens our insight into those data structures. For example, it may enable us to design an
algorithm generating indexing structures with specific structural characteristics, which should be useful
for verifying other software processing them. The early studies targeted border arrays [8, 9, 13]. Later,
Clément et al. [7] proposed a linear time algorithm for inferring strings from prefix tables. Those data
structures are produced by preprocessing patterns. The reverse engineering for indexing structures has
been studied for suffix arrays [1, 10], LCP arrays [17], suffix graphs [1], and suffix trees [5, 16, 23]. The
techniques used in [16] and [23] involve finding an Eulerian cycles on a graph modifying an input tree.

In this paper, we discuss the reverse engineering of another type of indexing structures, called
position heaps [11, 19]. The position heap of a string T is a rooted tree with labeled edges and
numbered nodes. Actually, Ehrenfeucht et al. [11] and Kucherov [19] gave different definitions of
position heaps. By either definition, position heaps can be constructed in linear time online assuming
the alphabet size to be constant. In addition, we can find all occurrence positions of a pattern P in
O(|P |2 + k) time, where k is the output size. Moreover, by augmenting position heaps with additional
data structures, we can improve the searching time to O(|P |+ k).

We consider the following four types of reverse engineering of Kucherov’s position heaps [19]. The
first problem is to restore a source text T from an input edge-labeled and node-numbered rooted tree
so that the input should be the position heap PH(T ) of T . While this problem allows at most one
solution, the other problems may have many possible solutions. In the second problem, input trees
miss edge labels. In the third problem, input trees miss node numberings. Instance trees of the fourth
problem miss both edge labels and node numberings but have potential suffix links among nodes,
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which play an important role in the construction of position heaps. We show that all the problems
above can be solved in linear time in the input size. Among those, we devote the most pages to the
third problem. We reduce the problem to finding a special type of Eulerian cycle over the input tree
augmented with suffix links. By showing the problem of finding an Eulerian cycle of this special type
is linear-time solvable, we conclude that restoring a text from a position heap without node numbers
is linear-time solvable. This can be seen analogous to the techniques used in [16] and [23] for the
suffix tree reverse engineering. In addition, we present formulas for counting the number of possible
text strings, which can be computed in polynomial time. Moreover, we show efficient algorithms for
enumerating all possible text strings in output linear time.

2 Preliminaries

Let Σ be a finite alphabet and let the size of Σ be constant. For a string w over Σ, the length of w
is denoted by |w|. The empty string ε is the string of length 0. Throughout this paper, strings are
1-indexed. For 1 ≤ i ≤ j ≤ |w|, we let w[i] be the i-th letter of w, and w[i : j] be the substring of
w which starts at position i and ends at position j. In particular, we denote w[i : |w|] by w[i :] and
w[1 : j] by w[: j]. The concatenation of two strings s and t is denoted by st.

Let N0 and N1 be the set of natural numbers including and excluding 0, respectively. We denote
the cardinality of a set X by |X|.

2.1 Graphs

A directed multigraph G is a tuple (V,E,Γ) where V is the node set, E ⊆ V × V is the edge set, and
Γ: E → N1 gives each edge its multiplicity. The head and the tail of an edge (u, v) ∈ E are v and u,
respectively. This paper disallows self-loops: (v, v) /∈ E for any v ∈ V . When Γ(e) = 1 for all e ∈ E,
G is called a directed graph and is simply denoted by (V,E). An edge-labeled multigraph is a tuple
(V,E,Γ,Ψ) where Ψ: E → Σ for an alphabet Σ. A sequence p = 〈e1, . . . , eℓ〉 of edges is called a v0–vℓ
path if there are v0, . . . , vℓ ∈ V such that ei = (vi−1, vi) for all i ∈ {1, . . . , ℓ}. Note that, the same
node may occur more than once in a path in this paper. We call p a v0-cycle when v0 = vℓ. For a t–u
path p1 and a u–v path p2, we denote by p1 · p2 the concatenation of p1 and p2, which will be a t–v
path. By extending the domain of Ψ to sequences of edges, we define the path label Ψ(p) of p to be
the string Ψ(e1) · · ·Ψ(eℓ). When there exists just one v0–vℓ path, we call its label the v0–vℓ path label
and denote it by Ψ((v0, vℓ)) ∈ Σ∗.

A directed graph G is a t-rooted tree (t ∈ V ) if there exists exactly one t–v path for all v ∈ V . We
call t the root of G. Similarly, G is a t-oriented tree if there exists exactly one v–t path for all v ∈ V .
We call t the sink of G. For a t-rooted tree G = (V,E), if (u, v) ∈ E, then u is the parent of v and v
is a child of u. For two nodes u, v ∈ V such that a u–v path exists, v is a descendant of u, and u is an
ancestor of v. The depth of v is the length of the unique path from the root to v. We denote the set
of all descendants of v as DG(v).

Two directed multigraphs G = (V,E,Γ) and G′ = (V ′, E′,Γ′) are isomorphic, denoted by G ≡
G′, if there is a bijection φ over V such that V ′ = φ(V ), E′ = { (φ(u), φ(v)) | (u, v) ∈ E }, and
Γ′((φ(u), φ(v))) = Γ((u, v)). The definition of isomorphism is naturally extended and applied for edge-
labeled directed multigraphs. When G is a rooted tree, we can verify G ≡ G′ in linear time. If V ′ = V
and G′ is a t-oriented tree, then G′ is a t-oriented spanning tree of G.

Let G = (V,E,Γ) be a directed multigraph. For a node v ∈ V , δ−G(v) and δ+G(v) are the sets
of edges whose heads and tails are v, respectively. We denote the sum of the multiplicities of edges
contained in δ−G(v) and δ+G(v) by ∆−

G(v) =
∑

e∈δ−
G
(v) Γ(e) and ∆+

G(v) =
∑

e∈δ+
G
(v) Γ(e), respectively. A

cycle p is Eulerian when p contains e just Γ(e) times for all e ∈ E. We also call a directed multigraph
Eulerian if it has an Eulerian cycle. It is well-known that G is Eulerian if and only if G is connected
and ∆−

G(v) = ∆+
G(v) for all v ∈ V [12]. Therefore, we can check whether G is Eulerian in O(|V |+ |E|)

time. We often drop the subscript G from DG, δ+G, ∆−

G etc. when G is clear from the context.
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ε (h0)
T [1 :] = abaababc (h1)
T [2 :] = baababc (h2)
T [3 :] = aababc (h3)
T [4 :] = ababc (h4)
T [5 :] = babc (h5)
T [6 :] = abc (h6)
T [7 :] = bc (h7)
T [8 :] = c (h8)

Figure 1: PHS(abaababc) (dashed arrows are suffix links)

2.2 Position heaps

A position heap is an index structure with which one can efficiently solve the pattern matching problem.
In this paper, we follow Kucherov’s definition [19]. Let T be a string of length n ending with a unique
letter, i.e., T [i] 6= T [n] for all i ∈ {1, . . . , n − 1}. The position heap PH(T ) of T is an edge-labeled
rooted tree (V,E,Ψ) defined as follows. Let h0 be ε, and hi be the shortest prefix of T [i :] not contained
in {h0, . . . , hi−1} for all i ∈ {1, . . . , n}. Since T ends with a unique letter, T [i :] 6= hj for any j < i,
and thus hi is always defined. Then, define V = {0, . . . , n}, E = {(i, j) | hic = hj for some c ∈ Σ},
and Ψ((i, j)) = c if hic = hj . Clearly, a position heap is 0-rooted and hi is the 0–i path label for all
i ∈ {0, . . . , n}. Moreover, we have i ≤ j if node i is an ancestor of node j. We call T the source text
of PH(T ). Kucherov showed that one can determine whether a pattern P occurs in T in O(|P |2) time
using PH(T ). Moreover, we can determine it in O(|P |) time with auxiliary data structures.

In Kucherov’s algorithm for constructing position heaps, the mapping S : V \{0} → V called suffix
links plays an important role. It is defined by S(i) = j such that hi = chj for some c ∈ Σ for i > 0.
The suffix links are well-defined. It is clear that the depth of node i is the depth of node S(i) plus 1.
We often treat S as a subset of V × V . We denote the position heap augmented with its suffix links
by PHS(T ) = (V,E,Ψ,S). Figure 1 shows PHS(T ) for T = abaababc.

2.3 Problem definitions

In this paper, we consider the following inverse problems of position heap construction. The first
problem is inferring the source text T from a position heap.

Problem 1 (Inferring source texts from node-numbered edge-labeled trees).
Input: An edge-labeled rooted tree (V,E,Ψ) with V = {0, . . . , |V | − 1}.
Output: A string T such that PH(T ) = (V,E,Ψ) if such T exists. Otherwise, “invalid”.

We will also consider the problem where edge labels are missing.

Problem 2 (Inferring source texts from node-numbered trees).
Input: A rooted tree (V,E) with V = {0, . . . , |V | − 1}.
Output: A string T such that PH(T ) = (V,E,Ψ) for some Ψ if such T exists. Otherwise, “invalid”.

The third problem is inferring source texts T from trees whose nodes are not numbered but edges
are labeled.

Problem 3 (Inferring source texts from edge-labeled trees).
Input: An edge-labeled rooted tree (V,E,Ψ).
Output: A string T such that PH(T ) ≡ (V,E,Ψ) if such T exists. Otherwise, “invalid”.

In the end, we will address the problem where the input trees miss both node numbers and edge
labels but have potential suffix links.
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Figure 2: Examples of inputs to instances of (a) Problem 2 and (b) Problem 3.

Problem 4 (Inferring source texts from trees with links).
Input: A pair (G,S) of a rooted tree G = (V,E) and a partial map S : V ֌ V .
Output: A string T such that PHS(T ) ≡ (V,E,Ψ,S) for some Ψ if such T exists. Otherwise, “invalid”.

Figure 2 shows examples of instances of Problem 2 and 3 and Figure 3 shows all possible answers
for the instance of Figure 2(b).

3 Proposed algorithms

3.1 Inferring source texts from node-numbered edge-labeled trees

Solving Problem 1 is easy. Given an edge-labeled tree (V,E,Ψ) where V = {0, . . . , n}, let hi be the
0–i path label on G for every i ∈ V . If the input is the position heap of some string T , it must
hold T [i] = hi[1]. Therefore, by DFS on G remembering the initial letter of each path label, we can
construct the candidate string T in linear time. Then, we can verify whether PH(T ) = (V,E,Ψ) in
linear time, since the position heap of T can be constructed in linear time [19].

Theorem 1. Problem 1 is solvable in linear time.

3.2 Inferring source texts from node-numbered trees

Figure 2(a) shows an input to an instance of Problem 2. The following procedure solves Problem 2.
We label the outgoing edges of the root with arbitrary but distinct letters of Σ. Then, we construct
an output candidate T following the method for Problem 1 in the previous subsection.

Theorem 2. Problem 2 is solvable in linear time.

There can be many correct outputs for input unless it is invalid. The number of possible source
texts to output equals the number of how to attach the labels to edges from the root r. Since the
number of letters that appear in T equals ∆+(r), the number of possible texts is |Σ|! /

(

|Σ| −∆+(r)
)

!.
One can enumerate such T in output linear time because one can enumerate all ∆+(r)-permutations
of Σ in output linear time [22].

3.3 Inferring source texts from edge-labeled trees

Compared to the previous two problems, solving Problem 3 in linear time requires more elaborate
arguments. In this subsection, we assume that two distinct outgoing edges of a node have different
labels, since otherwise obviously the input cannot be extended to a position heap. We will investigate
the structural properties of position heaps augmented with the suffix links, and see that the text T
will appear as the label of a path with a specific property over PHS(T ).
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Figure 3: All possible answers to Problem 3 when the graph in Figure 2(b) is given.

Lemma 1. Let PHS(T ) = (V,E,Ψ,S) with V = {0, . . . , n}. We have S(n) = 0 and i + 1 ∈ D(S(v))
for all i ∈ V \ {0, n}.

Proof. We show the lemma by induction on the depth of node i. When the depth of node i is 1, S(i)
is the root 0, which is an ancestor of every node including i + 1. Note that the depth of node n is
1 since T ends with a unique letter. Suppose the depth of node i < n is two or more. In this case,
let the 0–i path label hi be awb for some a, b ∈ Σ and w ∈ Σ∗. Let j be the parent of i, for which
hj = aw. Let is = S(i) and js = S(j), i.e., his = wb and hjs = w. By the induction hypothesis, we
have j + 1 ∈ D(js), i.e., hj+1 = hjsw

′ for some w′ ∈ Σ∗, which implies that j + 1 ≥ js. Together with
the fact that i > j, we have i+1 > js. Since hi and hi+1 are prefixes of T [i :] and T [i+1 :], respectively,
either hi[2 :] = wb is a prefix of hi+1 or the other way around. The fact hjs = w and i+1 > js implies
that wb is a prefix of hi+1. That is, his is a prefix of hi+1, which means i+ 1 ∈ D(is).

Hereafter, by a path/cycle of PHS(T ) = (V,E,Ψ,S), we mean a path/cycle of (V,E ∪ S). We
call elements of E ∪ S arcs while reserving the term edges for elements of E. From Lemma 1, for all
i ∈ {1, . . . , n − 1}, PHS(T ) has a special i–(i + 1) path which starts with the suffix link followed by
zero or some number of edges. We define a cycle by concatenating all special i–(i+ 1) paths.

Definition 1. For PHS(T ) = (V,E,Ψ,S), let fi = (i,S(i)), p0 the path from 0 to 1, and pi the path
from S(i) to i+1 for i > 0. The T -trace cycle of PHS(T ) is the sequence p0 · f1 · p1 · · · fn−1 · pn−1 · fn.

Figure 4 shows the T -trace cycle of PHS(T ) for T = abaababc. Note that the T -trace cycle is
a cycle in the graph (V,E ∪ S), where each element of S appears exactly once. Since following an
edge from E and a suffix link from S increases and decreases the depth by one, respectively, the total
numbers of occurrences of edges and suffix links in the T -trace cycle should be balanced. That is, the
T -trace cycle contains exactly n occurrences of edges from E. The following lemma explains why we
call the cycle T -trace cycle.

Lemma 2. Let e ∈ E be the i-th occurrence of an edge in the T -trace cycle of PHS(T ). Then
Ψ(e) = T [i].

Proof. Suppose the i-th edge e = (u, v) in the T -trace cycle p = p0 · f1 · · · pn−1 · fn occurs in the pj
segment. In other words, p can be written as p′ · (u, v) · p′′, where p′ contains j suffix links and i− 1
edges. Then, the depth of v is i − j. Moreover, the edge e is on the path from the root to the node
j + 1, whose label is a prefix of T [j + 1 :]. That is, Ψ(e) is the (i − j)-th letter of T [j + 1 :]. Hence,
Ψ(e) = T [(j + 1) + (i− j)− 1] = T [i].
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Figure 4: The T -trace cycle of PHS(T ) with T =
abaababc, which is an answer to the input graph
in Figure 2(b). Dashed lines represent suffix links.

Figure 5: The trace graph of the input graph in
Figure 2(b). The multiplicities of doubled edges
are 2 and the others are 1. Dashed arrows show
suffix links.

Lemma 2 allows us to spell T by following the T -trace cycle without referring to node numbers.
To solve Problem 3, we will construct the T -trace cycle of PHS(T ) ≡ (V,E,Ψ,SG) for some T from
the input graph G = (V,E,Ψ). For this end, we first reconstruct the suffix links S.

Lemma 3. From an edge-labeled rooted tree G = (V,E,Ψ), one can uniquely construct S in linear
time such that PHS(T ) ≡ (V,E,Ψ,S) for some T if any exist.

Proof. We recover the suffix links of nodes from shallower to deeper. Let r be the root of G. From
the definition of suffix links, we have S(v) = r for every node of depth 1. For e = (u, v) ∈ E with
Ψ(e) = c, we assume S(u) has already been determined. Let aw be the r–u path label where a ∈ Σ
and w ∈ Σ∗. The r–S(u) path label is w and the r–v path label is awc. Therefore, the r–S(v) path
label is wc. Hence, an edge (S(u),S(v)) labeled c exists. So, for the node t ∈ V such that (S(u), t) ∈ E
and Ψ((S(u), t)) = c, we determine S(v) = t.

If we fail to give a suffix link to any of the nodes by the procedure described in the proof of Lemma 3,
the answer to Problem 3 is “invalid”.

While the T -trace cycle contains just one occurrence of each suffix link, the numbers of occurrences
of respective edges vary. Actually, one can uniquely determine the multiplicity of each edge in the
T -trace cycle from G.

Lemma 4. Let σ(e) be the number of occurrences of e in the T -trace cycle for all e ∈ E. Then, it
holds that

σ(e) = 1−
∣

∣{u ∈ V | SG(u) = v}
∣

∣+
∑

e′∈δ+
G
(v)

σ(e′) (1)

where v is the head of e.

Note that δ+G(v) contains no suffix links of PHS(T ).

Proof. The T -trace cycle must include the same number of occurrences of arcs coming into and going
out from node v. Since each suffix link occurs just once in the T -trace cycle, we obtain the lemma.

Lemma 5. The system of equations (1) in σ has a unique solution. Moreover, it can be computed in
linear time.

Proof. One can uniquely determine the value of σ(e) inductively on the height of e ∈ E. Then, the
linear-time computation is obvious.

Let us call a cycle p of (V,E,Ψ,S) a legitimate cycle if it is the T -trace cycle for some T . Based
on Lemmas 4 and 5, we define the directed multigraph for which every legitimate cycle is Eulerian.

6



Definition 2 (Trace graph). The trace graph G(G) of an edge-labeled tree G = (V,E,Ψ) is a tuple
(V,E′,S,Γ) where E′ = {e ∈ E | σ(e) > 0} and Γ: E′ ∪ S → N1 is defined by

Γ(e) =

{

1 if e ∈ S,

σ(e) if e ∈ E′,

where S and σ are given in Lemmas 3 and 5, respectively.

Figure 5 shows the trace graph of Figure 2(b). The doubled arrows have multiplicity 2 and the
others have 1. The dashed arrows are suffix links.

From the definition, it is obvious that the T -trace cycle is an r-Eulerian cycle of G(G) where r is
the root of G. However, not every Eulerian cycle of G(G) can be a legitimate cycle. Recall that in the
definition of the T -trace cycle, the suffix link of every node u proceeds all outgoing edges of u. We say
that an Eulerian cycle p of G(G) respects S if no edges of δ+G(u) occur before (u,S(u)) in p.

Lemma 6. A cycle p is an r-Eulerian cycle respecting S if and only if p is the T -trace cycle of some
T .

Proof. (⇐=) By definition.
(=⇒) Let n = |V | and r be the root of G. Let pi and fi+1 be the sequences of edges and the suffix

links for i = 0, . . . , n−1 so that p = p0 ·f1 ·p1 . . . pn−1 ·fn. Since p ends at r and only suffix links point
to r, p always ends with a suffix link. We define the bijection Λ: V → {0, . . . , n} such that Λ(r) = 0
and Λ(s) = i if fi = (s,S(s)) for all s ∈ V \ {r}. Let si be the node such that Λ(si) = i.

We first show Λ(u) < Λ(v) for all (u, v) ∈ E by induction on Λ(v). Suppose the claim holds true for
all v such that Λ(v) < i. Then, we will show the claim holds for the edge whose head is si. If |pi| ≥ 1,
the edge (sk, si) occurs just before fi = (si,S(si)) in p. Since p respects S, fk = (sk,S(sk)) occurs
before (sk, si). Thus, we have k < i. If |pi| = 0, fi−1 = (si−1, si). Let the parents of si−1 and si be sj
and sk, respectively. By the induction hypothesis, j < i− 1. By the definition of S, fj = (sj, sk) ∈ S.
Since p respects S, fk = (sk,S(sk)) appears either before fj or right after fj. That is, k ≤ j+1 holds.
Therefore, k < i.

Now, we define a string T by T [i] = Ψ(ei) where ei is the i-th edge in p for i = 1, . . . , n, and define
hi inductively to be the shortest prefix of T [i :] which is not in {h0, . . . , hi−1} where h0 = ε. We will
show by induction on i that for all j ≤ i, the s0–sj path label Ψ((s0, sj)) is hj = T [j : xj ] where
xj = |p0 . . . pj−1|. This implies (V,E,Ψ) ≡ PH(T ) when i = n. Then the constructed S is the correct
suffix links of PH(T ) by Lemma 3 and thus p is the T -trace cycle.

Let gi = Ψ((s0, si)). The claim clearly holds for i = 0 by g0 = h0 = ε. Suppose the claim holds
true for i. That is, gi = hi = T [i : xi] where xi = |p0 . . . pi−1|. Let u = S(si). By the definition of
S, we have Ψ((s0, u)) = gi[2 :] = T [i + 1 : xi]. By the definition of T , Ψ((u, si+1)) = pi = T [xi + 1 :
xi + |pi|] = T [xi + 1 : xi+1], where xi+1 = |p0 . . . pi|. By concatenating these two paths, we obtain
gi+1 = Ψ((s0, si+1)) = T [i+ 1 : xi+1]. Since the labels of all proper ancestors of si+1 are at most i, all
prefixes of gi+1 appears in {g0, . . . , gi} = {h0, . . . , hi}. That is, gi+1 is the least prefix of T [i+ 1 :] not
in {h0, . . . , hi}, i.e., gi+1 = hi+1.

Therefore, to find a source text T , it is enough to find an r-Eulerian cycle over (V,E,S,Γ) that
respects S where r is the root. We show that this problem can be solved in linear time on general
graphs.

Problem 5 (The ECP (Eulerian cycle with priority edges) problem).
Input: A tuple (G,F, r) of a directed multigraph G = (V,E,Γ), an edge subset F ⊆ E, and a start
node r ∈ V such that |F ∩ δ+(v)| ≤ 1 for all v ∈ V and Γ(e) = 1 for all e ∈ F .
Output: An r-Eulerian cycle that respects F if any. Otherwise, “invalid”.

We call edges of F priority edges. Without loss of generality, we may assume a node has a priority
outgoing edge only if it has another outgoing edge. If a node has only one outgoing edge and it has
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priority, then one can remove it from F and make it a non-priority edge. This does not affect possible
solutions. In what follows, we show how to solve the ECP problem in linear time.

First, let us review a linear-time algorithm for constructing an r-Eulerian cycle. The following
procedure gives a justification for the so-called BEST theorem [24, 6], which counts the number of
Eulerian cycles in a directed multigraph.

1. Construct an arbitrary r-oriented spanning tree H of G,

2. Starting from r, choose an arbitrary unused edge to follow next, except that an edge in H can
be chosen only when it is the only remaining choice, until we follow all the edges of G.

This process guarantees to find an Eulerian cycle without getting stuck. We modify this procedure so
that the output shall respect F .

1. Construct an arbitrary t-oriented spanning tree H of (V,E \ F ),

2. Starting from r, choose an arbitrary unused edge to follow next, except that

• choose an unused priority edge if the current node has any,

• an edge in H can be chosen only when it is the only remaining choice,

until we follow all the edges of G.

Theorem 3. We can compute an answer to the ECP problem in linear time.

One can count the number of r-ECPs by modifying the BEST theorem formula. Letting G′ =
(V,E \ F,Γ′) with the restriction Γ′ of Γ to E \ F , the number of r-ECPs is given as

∆+
G′(r) ·

∏

v∈V

(∆+
G′(v)− 1)!

∏

e∈δ+
G′

(v) Γ
′(e)!

·
∑

(V,E′)∈T
G′ (r)

∏

e∈E′

Γ′(e) (2)

where TG′(r) is the set of r-oriented spanning trees of G′. One can compute (2) in polynomial time by
the matrix-tree theorem [21].

Theorem 4. We can calculate the number of r-ECPs in polynomial time.

One can also enumerate r-ECPs. We have already described a linear-time nondeterministic algo-
rithm to find an r-ECP. Gabow and Myers proposed an algorithm [14] to enumerate spanning trees
in output linear time. By searching all the possible choices of the procedure, we enumerate all the
r-ECPs.

Theorem 5. We can enumerate r-ECPs in linear time per solution.

Corollary 1. Problem 3 is solvable in linear time. Moreover, one can count and enumerate all possible
answers in polynomial time and output linear time, respectively.

Proof. The first claim follows from Theorem 3. By Theorems 4 and 5, it suffices to show that two
distinct legitimate cycles p and p′ over a trace graph give different source texts. Suppose e and e′ are
the first mismatch of p and p′. Since choosing a suffix link is obligatory, e 6= e′ implies e, e′ ∈ E. Since
distinct edges with the same tail have distinct labels, Ψ(e) 6= Ψ(e′), and thus those two cycles spell
different source texts.

3.4 Inferring source texts from trees with links

Instance trees of Problem 4 miss both node numbers and edge labels but have possible suffix links.
This problem can be solved by combining ideas for solving Problems 2 and 3. We first label the
outgoing edges of the root node with arbitrary distinct letters. Then, the other edge labels are uniquely
determined by the definition of suffix links, as long as the input is valid. Now, the algorithm for
Problem 3 can be applied. Similarly one can solve the counting and enumerating variants of Problem 4.

Theorem 6. We can solve Problem 4 in linear time. Moreover, one can count the number of output
strings in polynomial time, and enumerate all output strings in linear time per each.
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4 Conclusion

We studied four types of reverse engineering problems on Kucherov’s position heaps [19] and showed
that all problems can be solved in linear time. One can think of an even more restrictive variant, where
the input tree has no edge labels, no node numbers, and no suffix links. In this setting, we need to
find “valid” suffix links, which seems a challenging task.

One can also study the reverse engineering problems of position heaps based on the definition by
Ehrenfeucht et al. [11]. We conjecture that those problems can be solved by quite similar techniques
presented in this paper.

Another interesting direction of future work is to study the reverse engineering of augmented
position heaps [11].
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