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Abstract. We introduce the concept of cyclic covers, which generalizes
the classical notion of covers in strings. Given any nonempty string X of
length n, a factor W of X is called a cyclic cover if every position of X
belongs to an occurrence of a cyclic shift of W . Two cyclic covers are
distinct if one is not a cyclic shift of the other. The cyclic cover problem
requires finding all distinct cyclic covers of X. We present an algorithm
that solves the cyclic cover problem in O(n logn) time. This is based
on finding a well-structured set of standard occurrences of a constant
number of factors of a cyclic cover candidate W , computing the regions
of X covered by cyclic shifts of W , extending those factors, and taking
the union of the results.
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1 Introduction

String periodicities and repetitions have been thoroughly studied in many fields
such as string combinatorics, pattern matching and automata theory [25, 26]
which can be linked to its importance across various applications, in addition
to its theoretical aspects. Detection algorithms and data structures for repeated
patterns and regularities span across several fields of computer science [13, 18],
for example computational biology, pattern matching, data compression, and
randomness testing.

Covers of strings have also been extensively studied in similar fields of com-
binatorics. The concept originates from quasiperiodicity, a generalization of pe-
riodicity which also allows those identical strings to overlap [5]. A factor W of a
nonempty string X is called a cover if every position of X belongs to some occur-
rence of W in X. Furthermore, a cover W must also be a border (i.e. appearing
as both a prefix and a suffix) of the string X. Moore and Smyth [30] developed a
linear-time algorithm which computes all covers of a string. Apostolico et al. [6]
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developed a linear-time algorithm for finding the shortest cover, which Bres-
lauer developed into an on-line algorithm [8]. Li and Smyth [24] produced an
on-line algorithm for the all-covers problem. Related string factorization prob-
lems include antiperiods [2] and anticovers [1], in addition to approximate [3]
and partial [22] covers and seeds [21]. Other combinatorial covering problems
consider applications to graphs [31, 11].

Cyclic strings have been commonly studied throughout various computer
science and mathematical fields, mostly occurring in the field of combinatorics.
A cyclic string is a string that does not have an initial or terminal position;
instead, the two ends of the string are joined together, and the string can be
viewed as a necklace of letters. A cyclic string of length n can be also viewed
as a traditional linear string, which has the left- and right-most letters wrapped
around and stuck together. Under this notion, the same cyclic string can be seen
as n linear strings, which would all be considered equivalent. One of the earliest
studies of cyclic strings occurs in Booth’s linear time algorithm [7] for computing
the lexicographically smallest cyclic factor of a string. Other closely related works
reference terms such as ‘Lyndon factorization’ and ’canonization’ [27, 28, 10, 4,
14, 16, 33]. Some recent advances on cyclic strings can be found in [12]. Aside from
combinatorics, cyclic strings have applications within Computational Biology,
such as detecting DNA viruses with circular structures [35, 34].

We introduce the concept of a cyclic cover of a nonempty string X of
length n = |X|, which generalizes the notion of a cover under cyclic shifts.
A factor W of X is called a cyclic cover if every position of X belongs to an
occurrence of a cyclic shift of W . Fig. 1 displays an example where X has a
cyclic cover where factors have length ℓ = 3, 4, 7, 10, 13, 16 (cyclic occurrences of
the shortest two are shown on the figure).
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Fig. 1. String X = aabbaabaabaabaab has a cyclic cover of length 3, as X[0 . . 2],
X[3 . . 5], X[4 . . 6], X[5 . . 7], X[6 . . 8], X[7 . . 9], X[8 . . 10], X[9 . . 11], X[10 . . 12],
X[11 . . 13], X[12 . . 14], X[13 . . 15] are all cyclic shifts of the same factor, and cover
all positions of X. Similarly X has a cyclic cover of length 4.
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Looking at the example, we observe that if two distinct factors W and Z, of
the same length ℓ, are cyclic covers of X, then W must be a cyclic shift of Z,
and vice versa. For this, we say that two cyclic covers are distinct if one is not
the cyclic shift of the other (in other words, they must have different length as
factors of X). Moreover, if a cyclic cover of length ℓ exists, then the prefix of X
of length ℓ is also a cyclic cover and, consequently, is the representative of all
factors of length ℓ that are cyclic covers of X (as the latter ones are all cyclic
shifts of the prefix). Because of this, it is enough to give ℓ as output.

Our contribution. We introduce the following cyclic cover problem: given
an input string X of length n, find all the distinct cyclic covers of X, namely,
the prefixes of X that are cyclic covers (actually, their lengths ℓ). Under this
definition, we have at most n distinct cyclic covers whereas there might be Θ(n2)
distinct factors that are cyclic covers.6 In the example of Fig. 1, the output of
the cyclic cover problem is ℓ = 3, 4, 7, 10, 13, 16.

We show that for a string of length n, the cyclic cover problem can be solved
in O(n log n) time. We assume, that the input string is over a polynomially
bounded integer alphabet, and the word RAM model of computation with word
size O(log n) (both restrictions follow from the restrictions of cited and used
data structures).

The rest of the paper is organized as follows. In Section 2, we present the
preliminary concepts. Section 3 shows our findings for cyclic covers. Finally, we
present concluding remarks in Section 4.

2 Preliminaries

2.1 Basic Definitions

A string X of length n = |X| is a sequence of n letters over an integer alpha-
bet Σ = {0, . . . , nO(1)}. The letter at position i, for 0 ≤ i < n, is denoted as
X[i]. A positive integer p < n is called a period of X if X[i] = X[i + p] for all
i = 0, . . . , n− p− 1. By X[i . . j], we denote a factor of X equal to X[i] · · ·X[j],
whereby if i > j, then it is the empty string. The factor X[i . . j] is a prefix of X
if i = 0, and a suffix of X if j = n−1. If X[0 . . b−1] = X[n−b . . n−1], the factor
X[0 . . b−1] is called a border of X. A factor W is periodic if its smallest period is
at most |W |/2, and W is highly-periodic if its smallest period is at most |W |/4.
An important property used throughout the paper is Fine and Wilf’s periodicity
lemma.

Lemma 1 ([15]). If p, q are periods of a string X of length |X| ≥ p + q −
gcd(p, q), then gcd(p, q) is also a period of X.

A factor U is a cyclic shift of a factor W if W = AB and U = BA for some
strings A and B. In that case, we also say that U is a d-cyclic shift of W where

6 For example, for X = akbak and k > 1, all factors aibaj are cyclic covers of X, for
i, j ≥ 0 such that i+ j ≥ k. They are represented by the prefixes of length i+ j +1.
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d = |A|. (Clearly, d = 0 implies that U = W and so there is no cyclic shift.) A
factor W is called a cyclic cover of X if, for every position i (0 ≤ i < n), there
exists a factor X[l . . l+ |W |−1] that is a cyclic shift of W and contains position i
(i.e. 0 ≤ l ≤ i ≤ l + |W | − 1 < n). Two cyclic covers are distinct if they are not
cyclic shifts of one another. As observed in the introduction, the distinct cyclic
covers are represented by (the lengths of) the prefixes of X.

We denote by lcp(X[i . . j], X[k . . l]) the length of the longest common prefix
of factors X[i . . j] and X[k . . l]. Also, we denote by lcpr(X[i . . j], X[k . . l]) the
length of the longest common suffix of X[i . . j] and X[k . . l]. Both lcp and lcpr

can be computed in O(1) time after an O(n)-time preprocessing of X [19].

2.2 The IPM Data Structure

A useful data structure called the Internal Pattern Matching (IPM) data struc-
ture was introduced in [23]. The following three lemmas summarize some of its
properties. Let us denote by occ(W,Z) the (possibly empty) list of positions j
such that W = Z[j . . j + |W | − 1].

Lemma 2 ([23, 20]). Given a string X of length n, the IPM data structure of
X after O(n) time and space construction computes occ(A,B) for any factors
A and B of X where |A| ≤ |B| ≤ 2|A|, in O(1) time. Furthermore, the list of
positions is presented as an arithmetic progression.

Lemma 3 ([23, 20]). Given a string X of length n, the IPM data structure of
X after O(n) time and space construction determines if A is a cyclic shift of B
in O(1) time, for any two factors A and B of X.

Lemma 4 ([23]). Given a string X of length n, the 2-Period data structure of
X after O(n) time and space construction determines if A is periodic and if that
is the case computes its shortest period in O(1) time for any factor A of X.

In [23] the structures of Lemmas 2 and 3 are constructed in O(n) expected
time. These constructions were made worst-case in [20]. The structure of Lemma 4
was constructed in O(n) worst-case time already in [23].

3 Cyclic Covers

Consider a string X[0 . . n − 1] and its length-ℓ factor W [0 . . ℓ − 1]. A straight-
forward approach to verify if X is cyclically covered by W leads to a quadratic
algorithm, as follows: we apply Lemma 3 to test whether X[i . . i+ℓ−1] is a cyclic
shift of X[0 . . ℓ− 1], for all i = 0, 1, . . . , n− ℓ. If the cyclic shifts of X[0 . . ℓ− 1]
cover all positions of X, we report X[0 . . ℓ− 1] as a cyclic cover of X[0 . . n− 1].
Such verification takes O(n − ℓ) time. The cyclic cover problem can be solved
by verifying all ℓ ∈ {1, . . . , n− 1}, which takes O(n2) time in total.

Below, we show that this problem can be solved in O(n log n) time. Before
we detail the algorithm, we first outline 3 techniques:
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1. Section 3.1 gives a function FindFixedCover(W,X, i, j) that verifies if X is
cyclically covered by W with the constraint that W [i] aligns to X[j].

2. Based on the function FindFixedCover(W,X, i, j), Section 3.2 gives an
O(n/ℓ)-time algorithm that finds regions in X covered by W when W is
highly-periodic.

3. Based on the function FindFixedCover(W,X, i, j), Section 3.3 gives an
O(n/ℓ)-time algorithm that finds regions in X covered by W when W is
not highly-periodic.

3.1 Find regions in X covered by cyclic shifts of W with the
constraint that W [i] aligns to X[j]

Consider a string X[0 . . n − 1] and its length-ℓ factor W [0 . . ℓ − 1]. For any
j′ ∈ [j − ℓ + 1 . . j], a length-ℓ factor X[j′ . . j′ + ℓ − 1] of X is called a cyclic
shift of W [0 . . ℓ − 1] with W [i] aligned to X[j] if the i-cyclic shift of W equals
the (j − j′)-cyclic shift of X[j′ . . j′ + ℓ − 1]. The lemma below computes the
region X[α . . β] in X that is cyclically covered by W with the constraint that
W [i] aligns to X[j].

Lemma 5. Consider a string X[0 . . n− 1] and its length-ℓ factor W [0 . . ℓ− 1].
Let ℓ1 = lcp(W [i . . ℓ−1]W [0 . . i−1], X[j . . n−1]) and ℓ2 = lcpr(W [i+ 1 . . ℓ− 1]
W [0 . . i], X[0 . . j]) − 1. If ℓ1 + ℓ2 ≥ ℓ, then X[j − ℓ2 . . j + ℓ1 − 1] is cyclically
covered by W with the constraint that W [i] aligns to X[j]; otherwise, such a
cyclic cover does not exist.

Proof. Let U = W [i . . ℓ− 1]W [0 . . i− 1]. Observe that X[j − ℓ2 . . j + ℓ1 − 1] =
U2[ℓ− ℓ2 . . ℓ+ ℓ1 − 1] from the definitions of ℓ1 and ℓ2. Every factor of length ℓ
of this string is a cyclic shift of U , hence also of W , thus it is cyclically covered
by W , with the constraint that U [0] aligns to X[j] (hence W [i] aligns to X[j]).

If ℓ1+ℓ2 < ℓ, then X does not contain any cyclic shift of U , with U [0] aligned
to X[j] since U [ℓ− ℓ2 − 1] ̸= X[j − ℓ2 − 1] and U [ℓ1] ̸= X[j + ℓ1], and any such
cyclic shift (as a factor of X) would contain one of those two positions (those
positions are less then ℓ positions apart, and position j is in between them). ⊓⊔

For example, given the word X = babbbababb, the factor W = bbab and the
constraint that X[3] aligns with W [1], X[1 . . 6] is is cyclically covered by W (see
Figure 2).

W = bbab and X = abbbab where W [1] aligns with X[3]. Thus W cyclically
covers the region X[1 . . 6].

Based on the above lemma, we denote FindFixedCover(W,X, i, j) as the
function that returns the region X[α . . β] that is cyclically covered by W with
the constraint that W [i] aligns to X[j]. If no such cyclic cover exists, the function
returns an empty region.

Lemma 6. After linear time preprocessing, we can compute
FindFixedCover(W,X, i, j) for any factor W of X in O(1) time.
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Fig. 2. Given X = babbbababb, W = bbab and the constraint that X[3] aligns with
W [1], the factor X[1 . . 6] is cyclically covered by W . The lengths ℓ1 and ℓ2 denote
lcp(W [1 . . 3]W [0], X[4 . . 9]) and lcpr(W [2 . . 3]W [0 . . 1], X[0 . . 4])− 1, respectively.

Proof. We first build the lcp data structures for X and for its reverse in linear
time and then use them to compute ℓ1 and ℓ2. Even though W [i . . ℓ−1]W [0 . . i−
1] does not need to occur in X in such a case, we simply compute ℓ1 in two steps.
If lcp(W [i . . ℓ − 1], X[j . . n − 1]) < ℓ − i, then it represents the sought value.
Otherwise ℓ1 = (ℓ − i) + lcp(W [0 . . i − 1], X[j + ℓ − i . . n − 1]). Note that ℓ2 is
computed analogously. ⊓⊔

3.2 Finding regions in X that are cyclically covered by a
highly-periodic factor W

Lemma 8 describes how to find regions that are cyclically covered by W [0 . . ℓ−1]
if W is of period q where q ≤ ℓ/4. To show it, we make use of Lemma 7 from
[29] (see also [9, 17]) to represent occurrences in a convenient way. Below, we
let (j1, q,m) denote the arithmetic progression j1, j2, . . . , jm with js+1 = js + q,
where 1 ≤ s < m.

Lemma 7 ([29], Lemma 3.1). Suppose the minimum period of W [0 . . ℓ − 1]
is q. For a length-2ℓ factor Y , occ(W,Y ) equals a single arithmetic progression
(j1, q

′,m′). If m′ ≥ 3, then q′ = q.

Lemma 8. Suppose the smallest period of W [0 . . ℓ− 1] is q ≤ ℓ/4. We can find
which parts of X[i . . i+ ℓ− 1] are cyclically covered by W in O(1) time.

Proof. Any cyclic shift of W that covers any position of X[i . . i + ℓ − 1] must
be fully contained inside X[i− ℓ . . i+ 2ℓ− 1], hence we are going to restrict our
search to that region.

Let Y = W [0 . . ⌊ℓ/2q⌋q − 1], which is W [0 . . q − 1]⌊ℓ/2q⌋. Note that ℓ/3 <
|Y | ≤ ℓ/2, and also |Y | ≥ 2q, hence q is its smallest period (a smaller period
would imply a smaller period of X by Lemma 1). Any cyclic shift of W must
contain Y as a factor.

We first find the occurrences of Y in X[i− ℓ . . i+2ℓ−1]. By Lemma 2, these
occurrences can be found in O(1) time by computing occ(Y,X[i′ . . i′+2|Y |]) for
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i′ ∈ {i − ℓ + h|Y | | h = 0, 1, 2, . . . ⌊3ℓ/|Y |⌋}. Since 3ℓ/|Y | < 9 we have at most
9 arithmetic progressions with period q (by Lemma 7) plus up to 18 standalone
occurrences.

For each standalone occurrence starting at position j we can simply run
FindFixedCover(W,X, 0, j) separately. Processing of the arithmetic progres-
sions is a little more complex however.

To see how to do it efficiently, we first prove a crucial claim. For
an arithmetic progression (j1, q,m) and 1 ≤ s ≤ m, let X[αs . . βs] =
FindFixedCover(W,X, 0, js). We claim that the following inequalities hold:
βs ≤ βs+1 and αs ≤ αs+1. The former inequality βs = js+lcp(W,X[js . . n−1])−
1 ≤ js+lcp(W [0 . . q−1]W,X[js . . n−1])−1 = js+q+lcp(W,X[js+1 . . n−1])−1 =
βs+1 is simple to see as W is a prefix of W [0 . . q− 1]W . For the latter inequality
αs ≤ αs+1, notice that if |W | is a multiple of q, then we can simply apply a
proof symmetric to the one for β’s. Otherwise αs+1 < αs ≤ js for s ≥ 1 would
imply a non-trivial border of W of length q, which in turn would imply that
W − |q| is a period of W . By Lemma 1, we have gcd(q, |W | − q) < q, which is a
contradiction. This completes the proof of the claim.

Due to this claim, the region obtained for this sequence is X[α1 . . βm], and
only two calls of FindFixedCover are needed. ⊓⊔

In conclusion, as factors X[kℓ . . (k + 1)ℓ− 1] for k ∈ [0, ⌊n
ℓ ⌋ − 1] and

X[n− ℓ . . n− 1] contain all positions of X, we have the following corollary.

Corollary 1. After an O(n) time preprocessing of the string X[0 . . n − 1], for
any highly-periodic factor W [0 . . ℓ− 1], we can compute the regions in X which
are cyclically covered by W in O(n/ℓ) time.

3.3 Finding regions in X that are cyclically covered by a
non-highly-periodic factor W

The lemma below states that factors that are not highly-periodic do not occur
frequently in X, and follows directly from the definition of a period.

Lemma 9. Consider a string X[0 . . n − 1] and a non-highly-periodic factor
W [0 . . ℓ− 1]. Any two occurrences of W in X are at distance at least ℓ/4.

Let W ′ be some factor of W . If a cyclic shift of W contains W ′, we call it a
W ′-containing cyclic shift of W .

Consider W [0 . . ℓ − 1] = WlWr where |Wl| = ⌊ℓ/2⌋. The following lemma
gives a way to find all regions in X covered by cyclic shifts of W .

Lemma 10. Consider W [0 . . ℓ−1] = WlWr where |Wl| = ⌊ℓ/2⌋. For a string X,
let A be the set of all regions in X covered by Wl-containing cyclic shifts of WlWr,
and let B be the set of all regions in X covered by Wr-containing cyclic shifts of
WrWl. Then A ∪B forms the set of all regions in X that are cyclically covered
by W .
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Proof. Observe that every cyclic shift ofW must contain eitherWl orWr. Hence,
the lemma follows. ⊓⊔

Below we focus on describing an algorithm that finds all regions in X cov-
ered by Wl-containing cyclic shifts of WlWr. All regions in X covered by Wr-
containing cyclic shifts of WrWl can be found by an analogous algorithm.

To find all regions in X covered by Wl-containing cyclic shifts of WlWr, we
consider two cases: Wl is highly-periodic or not.

If Wl is not highly-periodic, then it has O(n/ℓ) occurrences in X[0 . . n − 1]
(Lemma 9). Thus we can find all these occurrences in O(n/ℓ) time given the
IPM data structure (Lemma 3). Then, using FindFixedCover(), the regions in
X covered by these Wl-containing cyclic shifts of W can be found using O(n/ℓ)
time.

For a highly periodic Wl, let ql ≤ ℓ/8 denote its shortest period, and let dl
denote the longest prefix of W which is ql-periodic. Let us also denote Wl′ =
W [0 . . dl − 1] and Wr′ = W [dl . . ℓ− 1]. Notice that if Wr′Wl′ is highly-periodic
we can simply reduce our problem to the case with a highly-periodic W as any
cyclic shift ofW is also a cyclic shift ofWr′Wl′ . Notice, also, that aWl-containing
cyclic shift of W (d-cyclic shift of W for d = 0 or d ≥ |Wl|) is always a Wl′W [dl]-
containing factor of W (for d = 0 or d > dl) or a Wr′Wl-containing factor of W
(for |Wl| ≤ d ≤ dl).

Now it is enough to show that, for a highly-periodic Wl when W and Wr′Wl′

are not highly-periodic, Wl′W [dl] and Wr′Wl are not highly-periodic as well.

Lemma 11. Wl′W [dl] is non-periodic (hence also non-highly-periodic).

Proof. By contradiction, suppose that W [0 . . dl] = Wl′W [dl] has period q′ ≤
(dl + 1)/2. This means that Wl′ has both periods ql and q′. Since ql + q′ ≤
ℓ/8+(dl+1)/2 ≤ dl, we have that gcd(ql, q

′) is also a period of Wl′ by Lemma 1.

We observe that q′ cannot be a multiple of ql as in this case W [dl] = W [dl −
q′] = W [dl− q], which contradicts the definition of dl. Hence we get gcd(ql, q

′) <
ql, which in turn contradicts the fact that ql is the shortest period of Wl′ . ⊓⊔

Lemma 12. Wr′Wl is not highly-periodic.

Proof. Suppose, on the contrary, that Wr′Wl has period q′ ≤ |Wr′Wl|/4 ≤ ℓ/4.
This means, that Wl has both periods ql and q′. Since ql+ q′ ≤ ℓ/2 by Lemma 1
gcd(ql, q

′) is also a period of Wl.

If q′ is a multiple of ql, then Wr′Wl′ is also q′ ≤ ℓ/4 periodic contrary to the
assumptions, otherwise gcd(ql, q

′) < ql which contradicts that ql is the shortest
period of Wl. ⊓⊔

Now, we are ready to describe a function FindCyclicCover(WlWr, X) that
returns all regions in X that are covered by Wl-containing cyclic shifts of W .
This function is described in Algorithm 1.
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Algorithm 1 FindCyclicCover(Wl,Wr, X)

Output: Regions in X covered by Wl-containing cyclic shifts of W
1: If W = WlWr or Wr′Wl′ is of period ≤ ℓ/4, we apply Corollary 1 to find the

regions of X covered by W using O(n/ℓ) time and return the answer.
2: Ans = ∅
3: if Wl is not highly-periodic then
4: Find j1, . . . , jm such that X[js . . js + |Wl| − 1] = Wl using O(n/ℓ) time.
5: For each js, Ans = Ans ∪ FindFixedCover(W,X, 0, js)
6: else
7: Find j1, . . . , jm such that X[js . . js + dl] = Wl′W [dl] using O(n/ℓ) time.
8: For each js, Ans = Ans ∪ FindFixedCover(W,X, 0, js)
9: Find j1, . . . , jm such that X[js . . js+ |Wr′Wl|−1] = Wr′Wl using O(n/ℓ) time.
10: For each js, Ans = Ans ∪ FindFixedCover(W,X, dl, js)
11: end if
12: Return Ans

Lemma 13 summarizes the time complexity of FindCyclicCover(Wl,Wr, X).

Lemma 13. Given the lcp, IPM and 2-Period data structures of X, we can
compute FindCyclicCover(Wl,Wr, X) (and FindCyclicCover(Wr,Wl, X)) in
O(n/ℓ) time.

Proof. Let us first assume that we know an occurrence in X of any given
string. To check whether W and Wl are (highly-)periodic, it is enough to per-
form the 2-Period queries (Lemma 4). Later, with the use of a single lcp query
(lcp(X,X[ql . . n − 1]) in this case), one can compute dl. Wr′Wl′ can only be
highly periodic if Wl is periodic with the same period, hence a check of whether
it is highly periodic only requires a comparison between parts of Wl and Wr

which takes O(1) time in total. After determining which method to use, the al-
gorithm performs O(n/l) FindFixedCover() queries, which results in a O(n/l)
total time complexity.

In general, we do not know the occurrences of some of the strings (for example
WrWl), or even if they occur in X at all. To address this issue and be able to
use the internal data structures we make some adjustments.

For the cyclic shifts of W , namely, WrWl,Wr′Wl′ and its counterpart used by
FindCyclicCover(Wr,Wl, X), we only need to check whether they are highly-
periodic and employ the lcp (or lcpr) with another string. To address the first
point, it is sufficient to check whether their longest factor which appears in W is
periodic, and whether the period can be extended to the whole string (with lcp
queries). This factor must be of length at least ℓ/2; hence, it must be periodic if
the whole string is highly-periodic. Its shortest period is the only candidate for
the shortest period (of length at most ℓ/4) of the whole string. As for the second
point, lcp, this is only used by Lemma 6, where this problem has already been
solved.

Another string which does not need to appear in X is Wr′Wl (symmetri-
cally (WrWl)[0 . . dr] used by FindCyclicCover(Wr,Wl, X)). We make use of
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this string only if Wl is highly periodic. Using the lcpr query, we can find how
far this period extends to the left in Wr′Wl. Now, instead of looking for the
whole Wr′Wl in the parts of X, we simply look for Wl. If a whole arithmetic
sequence (j1, ql,m) of occurrences is found, then we know that only one of those
occurrences can be extended to the whole Wr′Wl (with jk+1, where k is equal
to the number of periods of Wl at the end of Wr′). This way we can process the
whole X in O(n/ℓ) time. ⊓⊔

Theorem 1 (Cyclic cover problem). Given a string X of length n, over
an integer alphabet, we can find all integers ℓ > 0 such that the prefix W =
X[0 . . ℓ− 1] is a cyclic cover of X, in O(n log n) total time.

Proof. In the preprocessing step we construct the Internal Data Structure an-
swering lcp, IPM and 2-Period queries in O(n) time (Lemmas 2 and 4). For
any fixed ℓ, let Wl = X[0 . . ⌊ℓ/2⌋ − 1] and Wr = X[⌊ℓ/2⌋ . . ℓ − 1]. We
can check if W = X[0 . . ℓ − 1] is a cyclic cover of X[0 . . n − 1] by apply-
ing FindCyclicCover(Wl,Wr, X) and FindCyclicCover(Wr,Wl, X). Lemma 13
shows that these two functions run in O(nℓ ) time. The total time to test
ℓ = 1, . . . , n is upper bounded by O(

∑n
ℓ=1

n
ℓ ) = O(n log n). ⊓⊔

4 Concluding Remarks

In this paper we showed that all distinct cyclic covers can be found in O(n log n)
time. The techniques introduced in our solution can also give (much simpler)
algorithms for two other related problems.

The first one is to find all cyclic borders of X, namely, all values of ℓ such
that prefix X[0 . . ℓ−1] is a cyclic shift of suffix X[n− ℓ . . n−1]. It can be solved
in O(n) time by simply using Lemma 3 n times.

The second problem is to find all the cyclic factorizations, which are a special
case of the cyclic covers: X is partitioned into factors of length ℓ, for all feasible
ℓ, so that each resulting factor is a cyclic shift of the others. We obtain an
O(n log log n) time algorithm by using Lemma 3 O(nℓ ) times for every length ℓ
that divides n (denoted as ℓ|n). The complexity follows from the bound

∑
ℓ|n

n
ℓ =

O(n log log n) given in [32, Thm.2].
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queries in a text and applications. In: Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms. pp. 532–551. SIAM (2014)

24. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002)

25. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Math-
ematics and its Applications, Cambridge University Press (2005).
https://doi.org/10.1017/CBO9781107341005

26. Lothaire, M.: Algebraic combinatorics on words, vol. 90. Cambridge University
Press, New York (2002)

27. Melançon, G.: Lyndon factorization of infinite words. In: Annual Symposium on
Theoretical Aspects of Computer Science. pp. 147–154. Springer (1996)
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