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Abstract

Intersection graphs are well-studied in the area of graph algorithms. Some intersection
graph classes are known to have algorithms enumerating all unlabeled graphs by reverse search.
Since these algorithms output graphs one by one and the numbers of graphs in these classes
are vast, they work only for a small number of vertices. Binary decision diagrams (BDDs)
are compact data structures for various types of data and useful for solving optimization and
enumeration problems. This study proposes enumeration algorithms for five intersection graph
classes, which admit O(n)-bit string representations for their member graphs. Our algorithm
for each class enumerates all unlabeled graphs with n vertices over BDDs representing the
binary strings in time polynomial in n. Moreover, our algorithms are extended to enumerate
those with constraints on the maximum (bi)clique size and/or the number of edges.

1 Introduction

This paper is concerned with efficient enumeration of unlabeled intersection graphs. An intersection
graph has a geometric representation such that each vertex of the graph corresponds to a geometric
object and the intersection of two objects represents an edge between the two vertices in the
graph. Intersection graphs are well-studied for their practical and theoretical applications [2, 17].
For example, interval graphs, which are represented by intervals on a real line, are applied in
bioinformatics, scheduling, and so on [5]. Proper interval graphs are a subclass of interval graphs
with interval representations where no interval is properly contained to another. These graph
classes are related to important graph parameters: The bandwidth of a graph G is equal to the
smallest value of the maximum clique sizes in proper interval graphs that extend G [6].

The literature has considered the enumeration problems for many of the intersection graph
classes. The graph enumeration problem is to enumerate all the graphs with n vertices in a
specified graph class. If it requires not enumerating two isomorphic graphs, it is called unlabeled.
Otherwise, it is called labeled. Unlabeled enumeration algorithms based on reverse search [1] have
been proposed for subclasses of interval graphs and permutation graphs [14, 15, 18, 19]. Those
algorithms generate graphs in time polynomial in the number of vertices per graph. In this regard,
those algorithms are considered to be fast in theory. However, since those algorithms output
graphs one by one and the numbers of graphs in these classes are vast, the total running time will
be impractically long, and storing the output graphs requires a large amount of space.

The idea of using binary decision diagrams (BDDs) has been studied to overcome the difficulty
of the high complexity of enumeration. BDDs can be seen as indexing and compressed data
structures for various types of data, including graphs, via reasonable encodings. The technique so-
called frontier-based search, given an arbitrary graph, efficiently constructs a BDD which represents
all subgraphs satisfying a specific property [7, 10, 16]. Among those, Kawahara et al. [8] proposed
enumeration algorithms for several sorts of intersection graphs, e.g., chordal and interval graphs.
Using the obtained BDD, one can easily count the number of those graphs, generate a graph
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uniformly at random, and find an optimal one under some measurement, like the minimum weight.
However, the enumeration by those algorithms is labeled. In other words, the obtained BDDs by
those algorithms may have many isomorphic graphs. Hence, the technique cannot be used, for
example, for generating a graph at uniformly random when taking isomorphism into account.

This paper proposes polynomial-time algorithms for unlabeled intersection graph enumeration
using BDDs. The five intersection graph classes in concern are those of proper interval, cochain,
bipartite permutation, (bipartite) chain, and threshold graphs. It is known that the unlabeled
graphs with n vertices of these classes have natural O(n)-bit string encodings: We require 2n bits
for proper interval and bipartite permutation graphs [14, 15] and n bits for chain, cochain, and
threshold graphs [11, 13]. It may be a natural idea for enumerating those graphs to construct a
BDD that represents those encoding strings. Here, we remark that there are different strings that
represent isomorphic graphs, and we need to keep only a “canonical” one among those strings.
Actually, if we make a BDD naively represent those canonical strings, the resultant BDD will
be exponentially large. To solve the problem, we introduce new string encodings of intersection
graphs of the respective classes so that the sizes of the BDDs representing canonical strings are
polynomial in n. Our encodings are still natural enough to extend the enumeration technique to
more elaborate tasks: namely, enumerating graphs with bounded maximum (bi)clique size and/or
with maximum number of edges. One application of enumerating proper interval graphs with
maximum clique size k is, for example, to enumerate graphs with the bandwidth at most k. Recall
that the bandwidth of a graph is the minimum size of the maximum cliques in the proper interval
graphs obtained by adding edges. Thus, conversely, we can obtain graphs of bandwidth at most k
by removing edges from the enumerated graphs.

2 Preliminary

Graphs. Let G = (V,E) be a simple graph with n vertices and m edges. A sequence P =
(v1, v2, . . . , vk) of vertices is a path from v1 to vk if vi and vj are distinct for i 6= j and (vi, vi+1) ∈ E
for i ∈ {1, . . . , k − 1}. The graph G is connected if for every two vertices vi, vj ∈ V , there exists
a path from vi to vj . The neighbor set of a vertex v is denoted by N(v), and the closed neighbor
set of v is denoted by N [v] = N(v) ∪ {v}. A vertex v is universal if |N(v)| = n − 1 and a vertex
v is isolate if |N(v)| = 0. For V ′ ⊆ V and E′ ⊆ E such that the endpoints of every edge in E′

are in V ′, G′ = (V ′, E′) is a subgraph of G. The graph G is complete if every vertex is universal.
If a subgraph G′ = (V ′, E′) of G is a complete graph, V ′ is called a clique of G. A clique C is
maximum if for any clique C′ in G, |C| ≥ |C′|. A vertex set S is called an independent set if
for each v ∈ S, N(v) ∩ S = ∅. The complement of G = (V,E) is the graph G = (V,E) where
E = {(u, v) | (u, v) /∈ E}.

For a graph G = (V,E), let (X,Y ) be a partition of V ; that is, V = X ∪ Y and X ∩ Y = ∅. A
graph G = (X ∪ Y,E) is bipartite if for every edge (u, v) ∈ E, either u ∈ X and v ∈ Y or u ∈ Y
and v ∈ X holds. The bipartite graph G is complete bipartite if E = {(x, y) | x ∈ X, y ∈ Y }. For a
subgraph G′ = (X ′ ∪ Y ′, E′) of G, X ′ ∪ Y ′ is called biclique if G′ is complete bipartite. A biclique
B is maximum if for any biclique B′ in G, |B| ≥ |B′|. Note that we here say that a biclique has
the “maximum” size if the number of not edges but vertices of it is maximum. For a bipartite
graph G = (X ∪ Y,E), G is called cobipartite. Note that X and Y are cliques in G. An ordering
x1, x2, . . . , x|X| on X is an inclusion ordering if N(xi) ∩ Y ⊆ N(xj) ∩ Y for every i, j with i < j.

Binary strings. We use the binary alphabet Σ = {L, R} in this paper. Let s = c1c2 . . . cn be a
binary string on Σ∗. The length of s is n and we denote it by |s|. Let L = R and R = L. For a string
s = c1c2 . . . cn, we define s = cn cn−1 . . . c1. The height hs(i) of s at i ∈ {0, 1, . . . , n} is defined by
hs(i) = |c1 . . . ci|L − |c1 . . . ci|R, where |t|c denotes the number of occurrences of c in a string t. The
string s is balanced if hs(n) = 0; that is, the number of L is equal to that of R in s. The height of s
is the maximum value in the height function for s and denoted by h(s); that is, h(s) = maxi hs(i).
We say s is larger than a string s′ with length n if there exists an index i ∈ {1, . . . , n} such that
hs(i

′) = hs′(i
′) for any i′ < i and hs(i) > hs′(i), and we denote it by s > s′. The alternate string

α(s) of s is obtained by reordering the characters of s from outside to center, alternately; that is,
α(s) = c1cnc2cn−1 . . . c⌈n/2⌉ if n is odd and α(s) = c1cnc2cn−1 . . . cn/2cn/2+1 otherwise.

Binary decision diagrams. A binary decision diagram (BDD) is an edge labeled directed
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acyclic graph D = (N,A) that classifies strings over a binary alphabet Σ of a fixed length n.
To distinguish BDDs from the graphs we enumerate, we call elements of N nodes and those of
A arcs. The nodes are partitioned into n + 1 groups: N = N1 ∪ · · · ∪ Nn+1. Nodes in Ni

are said to be at level i for 1 ≤ i ≤ n + 1. There is just one node at level 1, called the root.

0 1

L

R
L R

L

R

L

R

L
R

Figure 1: An example BDD.

Level (n + 1) nodes are only two: the 0-terminal node and the
1-terminal node. Each node in Ni for i ≤ n has two outgoing
arcs pointing at nodes in Ni+1 ∪Nn+1. Thus, the length of every
path from the root to a node in Ni is just i − 1 for i ≤ n. The
terminal nodes have no outgoing arcs. The two arcs from a node
have different labels from Σ. We call those arcs L-arc and R-arc.
When a string s = c1 . . . cn is given, we follow the arcs labeled
c1, . . . , cn from the root node. If we reach the 1-terminal, then the
input is accepted. If we reach the 0-terminal, it is rejected. One
may reach a terminal node before reading the whole string. In that
case, we do not care the rest unread suffix of the string, and classify
the whole string in accordance with the terminal node. Figure 1
shows an example BDD, where LRLR and LLRR are accepted and LLRL and RLRL are rejected.

3 Algorithms

3.1 Proper interval graphs and cochain graphs

Definition and properties of proper interval graphs. A graph G = (V,E) with V =
{v1, . . . , vn} is an interval graph if there exists a set of n intervals I = {I1, . . . , In} such that
(vi, vj) ∈ E iff Ii ∩ Ij 6= ∅ for i, j ∈ {1, . . . , n}. The set I of intervals is called an interval
representation of G. For an interval I, we denote the left and right endpoints of I by l(I) and r(I),
respectively. Without loss of generality, we assume that any two endpoints in I are distinct. An
interval representation I is proper if there are no two distinct intervals Ii and Ij in I such that
l(Ii) < l(Ij) < r(Ij) < r(Ii) or l(Ij) < l(Ii) < r(Ii) < r(Ij). A graph G is proper interval if it has
a proper interval representation.

a
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L L L L L L L LR R R R R R R R

Figure 2: Proper interval graph and its proper interval representation. The string representation
of the proper interval representation is LLLRLRLLRRLRRLRR.

Proper interval graphs can be represented by binary strings as follows. Let G be a proper
interval graph with n vertices and I be a proper interval representation of G. We can represent I
as a string by sweeping I from left to right and encoding l(I) by L and r(I) by R, respectively. We
denote the obtained string by s(I) and call it the string representation of I. The length of s(I) is
2n.

Lemma 1 ([15]). Let s(I) = c1c2 . . . c2n be a string representation of a connected proper interval
graph G with n vertices.

1. c1 = L and c2n = R,

2. s(I) is balanced; that is, the number of L is same as that of R in s(I), and

3. hs(I)(i) > 0 for i ∈ {1, . . . , 2n− 1}.
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A connected proper interval graph has at most two string representations [4]. More strictly, for
any two string representations s and s′ of a connected proper interval graph G, s = s′ or s = s′.
The string representation is said to be canonical if s > s or s = s. Thus, the canonical string rep-
resentations have one-to-one correspondence to the proper interval graphs up to isomorphism [15].

Algorithm for n vertices. We here present an enumeration algorithm of all connected proper
interval graphs with n vertices up to isomorphism. We would like to construct a BDD representing
all canonical string representations of proper interval graphs. However, for the efficiency of the
BDD construction as described later, we instead construct a BDD representing alternate strings
of all canonical representations of proper interval graphs.

We describe an overview of our algorithm. We construct the BDD in a breadth-first manner
in the direction from the root node to the terminals. We create the root node in N1, and for
each node in Ni (i ∈ {1, . . . , 2n}), we create its L and R-arcs and make each arc point at one of
the existing nodes in Ni+1 or N2n+1 or a newly created node. We call making an arc point at
0-terminal node pruning. For each node ν, we store into ν information on the paths from the root
to ν as a tuple, which we call state. Two nodes having the same state never exist. When creating
an (L or R) arc of a node, we compute the state of the destination from the state of the original
node. If there is an existing node having the same state as the computed one, we make the arc
point at the existing node, which we call (node) sharing.

Consider deciding whether a string s in Σ2n is canonical or not; that is, s > s or s = s holds.
Suppose that s = c1c2 . . . c2n and we have s = c2n c2n−1 . . . c1. This can be done by comparing ci
with c2n−i+1 for i = 1, . . . , 2n. When creating a node ν in the BDD construction process, we would
like to conduct pruning early if we can determine that all the path labels from the root via ν will
not be canonical. That is the reason we adopt alternate string representations. A node in level
i (∈ {1, . . . , 2n}) corresponds to the ⌈i/2⌉th character in the string representation if i is odd, and
the (2n+ 1 − i/2)th one otherwise. For example, consider the path LRLRRR. Any path extending
LRLRRR will represent a string of the form s = LLRtRRR for which s = LLLtLRR for some t ∈ Σ∗ and
s < s holds. This implies s cannot be canonical. The path goes to the 0-terminal.

We make each node, say ν, maintain state (i, hL, hR, F ). The first element i is the level where ν
is. We take an arbitrary path from the root node to ν, say c1c2nc2c2n−1 . . . c⌈i/2⌉−1c2n+2−⌈i/2⌉ (the
case where i is odd) or c1c2nc2c2n−1 . . . c2n+2−⌈i/2⌉c⌈i/2⌉ (the case where i is even). The second and
third elements hL, hR represent the heights of the sequences c1c2 . . . c⌊i/2⌋ and c2n c2n−1 . . . c2n+2−⌈i/2⌉,
respectively. Note that we must design an algorithm so that it is well-defined; that is, the values
of the sequences obtained from all the paths from the root node to ν are the same. F represents
whether (⋆) cı̂ = c2n+1−ı̂ holds for all ı̂ = 1, . . . , ⌈i/2⌉ − 1. If F = ⊤, (⋆) does not hold; that is,
there exists i′ such that ci′ 6= c2n+1−i′ . If ci′ = R and c2n+1−i′ = L, the canonicity condition does
not meet. As shown later, such a node never exists because we conduct the pruning. Therefore,
F = ⊤ means that ci′ = L, c2n+1−i′ = R and ci′′ = c2n+1−i′′ holds for all i

′′ ≤ i′ − 1, which implies
that the canonicity condition is satisfied whatever the other characters are. F = ⊥ means that (⋆)
holds.

We discuss how to store states and conduct pruning in the process of the BDD construction.
We make the root node have the state (1, 0, 0,⊥). Let ν be a node that has the state (i, hL, hR, F )
and νL and νR be nodes pointed at by L-arc and R-arc of ν. If i = 1, νR is 0-terminal, and if i = 2,
νL is 0-terminal because of the condition (i) in Lemma 1. First, we consider the case where i is
odd. L-arc and R-arc of ν mean that the ⌈i/2⌉th character is L and R, respectively. We make νL
have state (i+1, hL+1, hR, F ). As for R-arc, if hL− 1 ≤ 0, we make R-arc of ν point at 0-terminal
because R-arc means c⌈i/2⌉ = R and the height of c1c2 . . . c⌊(i+1)/2⌋ violates the condition of (iii) in
Lemma 1. Otherwise, we make νR have state (i+1, hL−1, hR, F ). Next, we consider the case where
i is even. L-arc and R-arc of ν mean that the (2n+ 1− ⌈i/2⌉)th character is L and R, respectively.
If F = ⊤, we make νL and νR maintain states (i + 1, hL, hR − 1,⊤) and (i + 1, hL, hR + 1,⊤),
respectively. (Recall that since F = ⊤ means that the canonicity condition has already been
satisfied, we need not update F .) We conduct pruning for L-arc if hR − 1 ≤ 0. Let us consider
the case where F = ⊥. Recall that (⋆) holds. Although we want to compare the ⌈i/2⌉th and
(2n+ 1 − ⌈i/2⌉)th characters to decide whether the canonicity condition holds or not, ν does not
have the information on the ⌈i/2⌉th character. Instead, ν has hL and hR. We consider two cases
(i) and (ii): (i) If hL − 1 = hR, it means that the ⌈i/2⌉th character is L. In this case, R-arc of ν
means that the (2n+ 1− ⌈i/2⌉)th character is R, which implies that (⋆) still holds. Therefore, we
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make νR maintain state (i+1, hL, hR+1,⊥). L-arc of ν means that the (2n+1−⌈i/2⌉)th character
is L, which implies that (⋆) no longer holds and the canonicity condition is satisfied. Therefore,
we make νL maintain state (i + 1, hL, hR − 1,⊤). (ii) If hL − 1 6= hR, it means that the ⌈i/2⌉th
character is R. In this case, R-arc of ν means that the (2n + 1 − ⌈i/2⌉)th character is R, which
violates the canonicity condition. We make R-arc of ν point at 0-terminal. L-arc of ν means that
the (2n + 1 − ⌈i/2⌉)th character is L, which implies that (⋆) still holds. Therefore, we make νL
maintain state (i + 1, hL, hR − 1,⊥).

Consider the case where i = 2n (final level). Let the computed state as the destination of
L- or R-arc of a node in N2n be (2n + 1, h′

L, h
′
R, F

′). If h′
L 6= h′

R, the destination is pruned (0-
terminal) because it violates the condition of (ii) in Lemma 1. Otherwise, we make the arc point
at 1-terminal.

Theorem 2. Our algorithm constructs a BDD representing all canonical string representations of
connected proper interval graphs in O(n3) time and space.

Proof. We here analyze the complexity of the algorithm. For each level i ∈ {0, 1, . . . , 2n}, the
number of nodes in Ni is O(n2) because 0 ≤ hL, hR ≤ n and F ∈ {⊥,⊤}. Thus, the total
size of BDD is O(n3). The computation of the next state for each node can be run in constant
time because it has only increment and we can access the nodes in constant time by using O(n2)
pointers.

Algorithm for maximum clique size k. We here present an algorithm that given natural
numbers n and k, enumerates all proper interval graphs with n vertices and the maximum clique
size at most k. It is well known that a clique of an interval graph G corresponds to overlap intervals
of a point in an interval representation of G [3]. The number of overlapping intervals is same as
the height of string representation of a proper interval graph. Thus, the enumeration of all proper
interval graphs with the maximum clique size at most k can be seen as that of all canonical string
representations with the height at most k. We modify the algorithm for n vertices by adding one
pruning for the case when either of the heights hL or hR becomes larger than k. Therefore, our
extended algorithm runs in O(k2n) time and space since the ranges of hL and hR become k from
n.

Algorithm for m edges. To extend the algorithm for n vertices and m edges, we here show
how to count the number of edges from the string representation. Let s be a string representation
of a proper interval graph with m edges. Sweeping the string representation from left to right, for
each i ∈ {1, . . . , 2n} with ci = L, the height hs(i) is the number of intervals Ij with j < i that
overlap with i. This means that the vertex v corresponding to ci is incident to hs(i) edges in G.
Thus, we obtain the number of edges from the string representation as follows.

Lemma 3. Let s = c1 . . . c2n be a string representation of a connected proper interval graph G
with m edges and J be the set of indices i of s such that ci = L. The summation of heights in J is
equal to m; i.e.,

∑
i∈J hs(i) = m.

In the construction of a BDD, each node stores the value to maintain the number of edges m′.
The state of each node is now a quintuple (i, hL, hR, F,m

′). For the L-arc of a node ν, the number
of edges m′ is updated to m′ + hL if i is odd and to m′ + hR − 1 otherwise. When either i is odd
and m′ + hL > m or i is even and m′ + hR − 1 > m holds, we make the L-arc of ν point at the
0-terminal since the number of edges is larger than m. We make each arc point at the 1-terminal if
it gives a state (2n+ 1, h, h, F,m) for some h and F based on the state updating rule. Otherwise,
it must point at the 0-terminal. For each i ∈ {1, . . . , 2n}, the number of nodes in Ni is O(n2m)
since 0 ≤ hL, hR ≤ n and 0 ≤ m′ ≤ m and the number of levels is 2n. Therefore, the algorithm
runs in O(n3m) time.

Theorem 4. A BDD representing all connected proper interval graphs with n vertices and maxi-
mum clique size k and with n vertices and m edges can be constructed in O(k2n) time and O(n3m)
time, respectively.

Cochain graphs. A graphG = (X∪Y,E) is a cochain graph if G is cobipartite and each ofX and
Y has an inclusion ordering. In other words, X and Y are cliques in G and we have two orderings
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over X = {x1, . . . , xnX
} and Y = {y1, . . . , ynY

} such that (xi, yj) ∈ E implies (xi′ , yj′) ∈ E for any
i ≤ i′ and j ≤ j′. It is well-known [2] that cochain graphs are a subclass of proper interval graphs.
Here, we give a concrete proper interval representation {I1, . . . , InX

, J1, . . . , JnY
} of G, where xi

and yj correspond to Ii and Jj , respectively, by

• l(I1) < · · · < l(InX
) < r(I1) < · · · < r(InX

) < r(JnY
),

• l(InX
) < l(JnY

) < · · · < l(J1) < r(JnY
) < · · · < r(J1),

• l(Jj) < r(Ii) iff (xi, yj) ∈ E for 1 ≤ i ≤ nX and 1 ≤ j ≤ nY .

The inclusion ordering constraint guarantees that the above is well-defined and gives a proper
interval representation. Therefore, one can specify a cochain graph as a proper interval graph
by a 2n-bit string representation. Moreover, the strong restriction of cochain graphs allows us to
reduce the number of bits to specify a cochain graph. Obviously, the first nX bits of the proper
interval string representation of a cochain graph are all L and the last nY bits are all R. Thus,
those n = nX + nY bits are redundant and removable. Indeed, one can recover the numbers nX

and nY from the remaining n bits. Since every surviving bit of R corresponds to r(Ii) for some
i, the number of those bits is just nX . Similarly, nY is the number of bits of L in the new n-
bit representation. Conversely, every n-bit string s can be seen as the string representation of a
cochain graph with n vertices. However, the n-bit strings are not in one-to-one correspondence to
the cochain graphs because universal vertices in the cochain graphs can be seen in either X or Y .
To avoid the duplication, we assume that all universal vertices are in Y , so we only consider n-bit
strings without R as a suffix. Using this n-bit string representation, we obtain an enumeration
algorithm for cochain graph, and it runs in O(n) time.

For the constraint problems, we use 2n-bit strings because we need to compute the size of
cliques or the number of edges. Our algorithms with constraints for cochain graphs are similar to
that of proper interval graphs and need to recognize whether the strings represent cochain graphs.

Theorem 5. A BDD representing all canonical string representations of cochain graphs with n
vertices, n vertices and maximum clique size k, and n vertices and m edges can be constructed in
O(n), O(k2n), and O(n3m) time, respectively.

3.2 Bipartite permutation graphs and chain graphs

Definition and properties of bipartite permutation graphs. Let π be a permutation on
V ; that is, π is a bijection from V to {1, . . . , n}. We define π as π(v) = n+ 1− π(v) for all v ∈ V .
We denote by π−1 the inverse of π.

A graph G = (V,E) is permutation if it has a pair (π1, π2) of two permutations on V such
that there exists an edge (u, v) ∈ E iff (π1(u)− π1(v))(π2(u)− π2(v)) < 0. The pair P = (π1, π2)
can be seen as the following intersection model on two parallel horizontal lines L1 and L2: the
vertices in V are arranged on the line L1 (resp. line L2) according to π1 (resp. π2). Each vertex
w corresponds to a line segment lw, which joins w on L1 and w on L2. An edge (u, v) is in E
iff lu and lv intersects, which is equivalent to (π1(u) − π1(v))(π2(u) − π2(v)) < 0. The model
P = (π1, π2) is called a permutation diagram. A graph G is bipartite permutation if G is bipartite
and permutation.

Let P = (π1, π2) be a permutation diagram of a connected bipartite permutation graph G =
(V,E). Let us observe properties of π1 and π2, which are discussed in [14]. First, there is no
vertex u ∈ V such that π1(u) = π2(u) unless n = 1. Secondly, for all vertices u, v ∈ V such that
π1(u) < π2(u), π1(v) < π2(v) and π1(u) < π1(v) hold, π2(u) > π2(v) does not hold; that is, lu and
lv never intersects. Therefore, X = {u | π1(u) < π2(u)} and Y = {u | π1(u) > π2(u)} give the
vertex partition of G. By expressing the above observation with the intersection model, the line
segments are never straight vertical and classified into X and Y depending on their tilt directions:
lines in X go from upper left to lower right and those in Y go from lower left to upper right.

Based on the above discussion, let us give a string representation s(P) of the permutation
diagram P . We define sx(P) = x1 . . . xn and sy(P) = y1 . . . yn as follows: For i = 1, . . . , n, xi = L

if π1(π
−1
1 (i))(= i) < π2(π

−1
1 (i)), and xi = R otherwise. Similarly, for i = 1, . . . , n, yi = R if

π2(π
−1
2 (i))(= i) > π1(π

−1
2 (i)), and yi = L otherwise. In other words, xi = L iff the ith intersection

6



point of L1 is with a line segment fromX in the intersection model. On the other hand, yi = L iff the
ith intersection point of L2 is with a line segment from Y . We define the string representation s(P)
of P by s(P) = x1y1x2y2 . . . xnyn. The string representation s(P) has the following properties [14].

Lemma 6. Let s = c1c2 . . . c2n be a string representation of a connected bipartite permutation
graph G with n vertices. Then,

(i) c1 = L and c2n = R,

(ii) s is balanced; that is, the number of L is the same as that of R in s, and

(iii) hs(i) > 0 for i ∈ {1, . . . , 2n− 1}.

By horizontally, vertically, and rotationally flipping P , we obtain essentially equivalent diagrams
PV = (π2, π1), PH = (π1, π2), and PR = (π2, π1) of G, respectively.

Lemma 7 ([14]). Let P1 and P2 be permutation diagrams of a connected bipartite permutation
graph. At least one of the equations s(P1) = s(P2), s(P1) = s(PV

2 ), s(P1) = s(PH
2 ), or s(P1) =

s(PR
2 ) holds.

A string representation s(P) is said to be canonical if all the inequalities s(P) ≥ s(PV),
s(P) ≥ s(PH), and s(P) ≥ s(PR) hold.

Algorithm for n vertices. We construct the BDD representing the set of bipartite permutation
graphs using the alternate strings of the canonical representation strings. Each BDD node is
identified with a state tuple (i, hL, hR, cL, cR,
FV, FH, FR). The integer i is the level where the node is. The heights hL and hR are those of
x1x2 . . . xn and yn yn−1 . . . y1, respectively, the purpose of which is the same as in Sec. 3.1.

Let us describe FV, FH and FR. FR is ⊥ or ⊤, which is used for deciding whether s(P) ≥ s(PR)
holds or not. Recall that if s(P) = x1y1x2y2 . . . xnyn, s(PR) = yn xn yn−1 xn−1 . . . y1 x1. According
to the variable order α(s(P)), we can decide whether s(P) > s(PR) holds or not using the heights
hL and hR by the way described in Sec. 3.1. Then, FR has the same role as F in Sec. 3.1.
Next, we consider FV, which is used for deciding the canonicity of s(P) ≥ s(PV). Recall that if
s(P) = x1y1x2y2 . . . xnyn, s(PV) = y1x1y2x2 . . . ynxn. We need to compare x1 with y1, y1 with
x1, . . . , and yn with xn in order. Recall that on the BDD, the value of yi is represented by arcs of
each node in level 4i − 1. The value of xi has already been determined by arcs of a node in level
4i− 3. Therefore, to compare xi with yi, we store the value of xi into nodes. Strictly speaking, if i
is odd, then, cL = x⌈i/2⌉−1 and cR = y2n−⌈i/2⌉+2. If i is even, then, cL = xi/2 and cR = y2n−i/2+2.
The stored values cL and cR are also used for deciding whether s(P) ≥ s(PH) holds or not in a
similar way.

We estimate the number of BDD nodes by counting the possible values of a state (i, hL, hR, cL, cR,
FV, FH, FR). Since 1 ≤ i ≤ 2n, 0 ≤ hL ≤ n, 0 ≤ hR ≤ n, and the number of possible states of
cL, cR, FV, FH, FR are two, the number of possible values of tuples is 2n× (n+ 1)2 × 25 = O(n3).

Algorithm for m edges. We present an algorithm that constructs the BDD representing the
set of (string representations of) bipartite permutation graphs with n vertices and m edges when n
and m are given. The number of edges of a bipartite permutation graph G is that of intersections
of the permutation diagram of G. We use the following lemma.

Lemma 8. The number of edges is
∑n

i=1 hs(P)(2i).

We can easily obtain

n∑

i=1

hs(P)(2i) =

⌈n/2⌉∑

i=1

hs(P)(2i) +

⌊n/2⌋∑

i=1

hs(PR)(2i). (1)

To count the number of edges, we store this value into each BDD node. Let us describe the detail.
We make each BDD node maintain a tuple (i, hL, hR, cL, cR,
FV, FH, FR,m

′). The first eight elements are the same as the ones described above. The last
element m′ is the current value of (1). Thus, the running time of the algorithm is O(n3m).
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Theorem 9. A BDD representing all connected bipartite permutation graphs with n vertices, and
n vertices and m edges can be constructed in O(n3) and O(n3m) time, respectively.

Chain graphs. A graph G = (X ∪ Y,E) is a chain graph if G is bipartite and each of X and Y
has an inclusion ordering. Let (x1, x2, . . . , x|X|) and (y1, y2, . . . , y|Y |) be an inclusion ordering of X
and Y , respectively. Chain graphs are known to be a subclass of bipartite permutation graphs [2]
and have the following permutation diagrams P = (π1, π2) [12]:

• π1 = (x1, x2, . . . , x|X|, y|Y |, y|Y |−1, . . . , y1),

• for i, j ∈ {1, . . . , |X |} with i < j, π2(xi) < π2(xj),

• for i, j ∈ {1, . . . , |Y |} with i < j, π2(yj) < π2(yi).

Chain graphs as bipartite permutation graphs have 2n-bit string representations based on the
permutation diagrams. From the diagram and Lemma 7, we observe that the string of π1 is
uniquely determined except for exchanging X and Y . Since π1 can be fixed as above, any chain
graph can be represented using an n-bit string by sweeping π2: The ith element of π2 is encoded as
L if π−1

2 (i) ∈ X and is encoded as R if π−1
2 (i) ∈ Y . If a chain graph G is disconnected, G consists

of two parts: a connected chain graph component and a set of isolated vertices [9]. We observe
that the connected chain graphs have a one-to-one correspondence with the string representations
up to reversal [13]. On the other hand, isolated vertices may arbitrarily belong to X or Y . To
determine a unique string representation, we assume that isolated vertices are all in X , where the
representation strings must not end with R. Thus, we obtain an algorithm to construct a BDD
representing all canonical n-bit string representations of chain graphs and it runs in O(n). For the
restriction problems, we adopt 2n-bit strings defined as representations of bipartite permutation
graphs instead of n-bit representations to compute the number of edges or the size of bicliques. In
the algorithms, we need to check whether the constructed strings represent chain graphs satisfying
the conditions described above.

Theorem 10. A BDD representing all chain graphs with n vertices, n vertices and maximum
biclique size k, and n vertices and m edges can be constructed in O(n), O(k2n), O(n3m) time,
respectively.

3.3 Threshold graphs

A graph G is a threshold graph if the vertex set of G can be partitioned into X and Y such
that X is a clique and Y is an independent set and each of X and Y has an inclusion ordering.
Threshold graphs are a subclass of interval graphs, and any threshold graph can be constructed
by the following process [2, 11]. First, if the size of the vertex set is one, the graph is threshold.
Then, for a threshold graph G, (1) the graph by adding an isolated vertex to G is also threshold,
and (2) the graph adding a universal vertex to G is also threshold. The sequence of the two
operations (1) and (2) to construct a threshold graph is called a construction sequence. It is easy
to see that the two threshold graphs G1 and G2 are not isomorphic if the construction sequences
of (1) and (2) of G1 and G2 are different. From this characterization of threshold graphs, we
obtain algorithms to construct a BDD representing all unlabeled threshold graphs by encoding the
construction sequences of the operation (1) to L and (2) to R.

Theorem 11. A BDD representing all threshold graphs with n vertices, n vertices and maximum
clique size k, and n vertices and m edges can be constructed in O(n) time, O(kn) time, and O(nm)
time, respectively.
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