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Abstract. Transparency is one of the “Ethical Principles in the Con-
text of AI Systems” as described in the Ethics Guidelines for Trustwor-
thy Artificial Intelligence (TAI). It is closely linked to four other prin-
ciples – respect for human autonomy, prevention of harm, traceability
and explainability – and involves numerous ways in which opaqueness
can have undesirable impacts, such as discrimination, inequality, segre-
gation, marginalisation, and manipulation. The opaqueness of many AI
tools and the inability to understand the underpinning black boxes con-
tradicts these principles as well as prevents people from fully trusting
them. In this paper we discuss the PSyKE technology, a platform pro-
viding general-purpose support to symbolic knowledge extraction from
different sorts of black-box predictors via many extraction algorithms.
The extracted knowledge results are easily injectable into existing AI
assets making them meet the transparency TAI requirement.

Keywords: Trustworthy Artificial Intelligence · Transparency · Explain-
ability · Symbolic knowledge extraction · PSyKE

1 Introduction

The innovative potential of Artificial Intelligence (AI) is clear, but AI tools can
reflect, amplify, and even create untrustworthy behaviours, beliefs, decisions or
results [15]. As we use AI systems to formalise, scale, and accelerate processes,
we have the opportunity, as well as the duty, to revise and enhance the existing
processes, avoiding perpetuating existing patterns of untrustworthiness, by de-
tecting, diagnosing, and repairing them. To trust these systems, domain experts
and stakeholders need to trust the decisions made by them. Europe’s strategy
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aims to create an AI Ecosystem of Excellence and Trust where ethical and legal
principles are pursued in all AI systems. Transparency is one of the “Ethical
Principles in the Context of AI Systems” as described in the Ethics Guidelines
for Trustworthy Artificial Intelligence (EGTAI) [9] and in the first AI regula-
tion (the “AI Act”) [8]. It is closely linked to four other principles (respect for
human autonomy, prevention of harm, traceability and explainability) and in-
volves numerous ways in which opaqueness can have undesirable impacts, such as
discrimination, inequality, exclusion, segregation, marginalisation, exploitation,
and manipulation.

However, the translation of ethical principles and EGTAI into practical re-
quirements are needed to boost high quality AI innovation in Europe. Concrete
methods to ensure that AI systems adhere to the transparency requirement can
be borrowed from the explainability domain, since providing explanations con-
curs to achieve transparency. Different strategies can be exploited to meet trans-
parency and explainability [11]. For instance, it is possible to obtain explainable
data-driven solutions only by using interpretable algorithms [16]—such as deci-
sion lists, decision trees and sparse integer linear models, and algorithms based
on discrete optimisation. However, this kind of technique often has repercus-
sions on the final predictive performance, since most effective algorithms – like
artificial neural networks – are not taken into account. Deriving post-hoc expla-
nations [14] is an alternative strategy aimed at reverse-engineering the black-box
(BB) inner behaviour to make it explicit. This is a way of combining the per-
formance of prediction-effective (even if opaque) machine learning models with
human-interpretable output predictions.

Symbolic knowledge extraction (SKE) represents one of the most promising
techniques to derive post-hoc explanations from sub-symbolic BB models and
interpret the notion of explainability under the transparency perspective, i.e.
proposing a transparent model adhering to the not transparent predictor. Its
main idea is to build a symbolic – and thus interpretable – model that mimics
the behaviour of the original BB, intended as the capability to provide outputs
that are as close as possible w.r.t. those of the underlying BB queried on the same
inputs. Symbols may consist of comprehensible knowledge—e.g., lists or trees of
rules that can be exploited to either derive predictions or to better understand
the BB behaviour and, as a further step, as knowledge on which to perform any
kind of logical reasoning. Currently, SKE techniques have been already applied
in a wide variety of areas, ranging from medical diagnosis [10] to finance [1] and
astrophysics [22]. Despite the wide adoption of SKE and the existence of different
techniques for extracting symbolic knowledge out of a BB, a unified and general-
purpose software technology supporting such methods and their comparison is
currently lacking. In other words, the burden of implementing SKE algorithms,
or selecting the best one from the state of the art, is currently on AI stakehold-
ers alone, who are likely to realise custom solutions for a specific application
need. Other than slowing down the adoption of SKE as an effective method for
reaching transparency, such a lack of viable technologies is somewhat anachro-
nistic in the data-driven AI era, where a plethora of libraries and frameworks



The PSyKE technology for TAI 3

are flourishing, targeting all major programming paradigms and platforms, and
making state-of-the-art machine learning (ML) algorithms easily accessible to
the general public—cf. SciKit-Learn1 for Python.

Accordingly, in this paper we present a general-purpose Platform for Sym-
bolic Knowledge Extraction – PSyKE – as a way to practicalise the TAI re-
quirement – transparency in particular – from high-level principles to concrete
methods. Moreover, one of the PSyKE goals is filling the gap between the cur-
rent state of the art of SKE and the available technology as well as providing a
concrete toolkit for testing, evaluating and reaching transparency in AI applica-
tions. It provides a controlled experimentation environment for transparency via
SKE methods enabling the creation of different simulations/experiments for the
specific application at hand. The framework comes as a toolkit in which experi-
ments on transparency can be built and run, comparing different solutions, and
selecting the best option. More precisely, PSyKE is conceived as an open library
where different sorts of knowledge extraction algorithms can be realised, ex-
ploited, or compared. PSyKE supports rule extraction from both classifiers and
regressors, and makes the extraction procedure as transparent as possible w.r.t.
the underlying BB, depending on the particular extraction procedure at hand.
The extraction of first-order logic clauses is also supported, with the twofold ad-
vantage of providing human- and machine-interpretable rules as output. These
can then be used as either an explanation for the original BB or as a starting
point for further symbolic computations and reasonings.

2 The PSyKE framework

PSyKE2 [18, 19] is a platform providing general-purpose support to symbolic
knowledge extraction from different sorts of black-box predictors via many ex-
traction algorithms.

2.1 Functionalities & main components

PSyKE comes as a software library providing general-purpose support to the
extraction of logic rules out of BB predictors by letting users choose the most
adequate SKE method for the task and data at hand. A unified API covering
virtually all extraction algorithms targeting supervised learning tasks is exposed
by the framework and experiments can also be run via a GUI. Currently, PSyKE
grants access to state-of-the-art SKE algorithms providing the implementations
of several interoperable, interchangeable, and comparable extraction SKE meth-
ods [6, 7, 13, 20, 2, 17]. PSyKE is conceived as an open-ended project, exploitable
to design and implement new extraction procedures behind a unique API.

Essentially, PSyKE is designed around the notion of extractor, whose over-
all design is depicted in Figure 1. Within the scope of PSyKE, an extractor

1 https://scikit-learn.org/stable
2 https://apice.unibo.it/xwiki/bin/view/PSyKE/
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Fig. 1: PSyKE design

is any algorithm accepting a machine learning predictor as input (classifier or
regressor), and producing a theory of logic rules as output.

PSyKE extractors require additional information to complete the extraction
task. Such information consists of the data set used to train the predictor and its
schema. Data sets are required to allow the extraction procedure to inspect the
BB behaviour – and therefore build the corresponding output rules – whereas
schemas are required to allow (i) the extraction procedure to take decisions
based on feature types, and (ii) the extracted knowledge to be more interpretable
by referring to the feature names. Accordingly, extractors expect also the data
set and its schema metadata as input. Figure 1 shows also the discretiser and
scaler components. The former aims at providing some facilities for discretising
(binarising) data sets including continuous (categorical) data. This is a procedure
often needed for data sets involving these kinds of attributes to be given as input
to extractors only accepting discrete or binary input features.

2.2 Architecture & API

As depicted in Figure 2, a key role in the design of PSyKE is played by the
Extractor interface, defining the general contract of any knowledge-extraction
procedure. Each Extractor encapsulates a single machine learning Predictor

and a particular Discretisation strategy. Given a set of inputs, an extractor is
capable of extracting a Theory of logic Rules out of a DataFrame, containing the
examples the Predictor has been trained upon.

PSyKE assumes underlying libraries to be available on the runtime adopted
for implementation, from which AI facilities can be inherited. These include:
a machine learning library, exposing ad-hoc types aimed at representing data
sets, data schemas, or predictors, and a symbolic AI library, exposing ad-hoc
types for representing and manipulating logic theories, clauses, and rules. PSyKE
inherits high-level abstractions from these libraries. These include the following
components:
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Fig. 2: PSyKE’s Extractor interface

DataFrame — a container of tabular data, where rows commonly denote in-
stances, and columns denote their features, while bulk operations are avail-
able to manipulate the table as a whole, as well as any row/column of its;

Predictor<R> — a computational entity which can be trained (a.k.a. fitted)
against a DataFrame and used to draw predictions of type R;

Classifier<R> — a particular case of predictor where R represents a type having
a finite amount of admissible values;

Regressor<R> — a particular case of predictor where R represents a type having
a potentially infinite (possibly continuous) amount of admissible values;

Rule —a semantic, intelligible representation of the function mapping Predictor’s
inputs into the corresponding outputs, for a portion of the input space;

Theory — an ordered collection of rules.

For example, PSyKE borrows ML-related abstractions – such as DataFrame,
Predictor, or Classifier – from either Pandas or Scikit-Learn Python libraries.
Similarly, it borrows high-level symbolic-AI-related abstractions – such as Theory
or Rule – from 2P-Kt3 [5].

PSyKE constructs its notion of Extractor upon these inherited concepts—
thus designing an Extractor as any method capable of extracting logic Rules
out of some trained Predictor. PSyKE extractors are bound to the particular
underpinning black-box Predictor, as well as to the Discretisation strategy
exploited for the input space. Extractors also expose a method for extracting an
explainable Theory from the Predictor – namely, extract – and a method to draw
predictions by using the extracted rules—namely, predict. Any attempt to use
the extracted rules to draw explainable predictions triggers extraction first—i.e.,
the prediction procedure implies extraction. Both extraction and prediction rely
on a DataFrame that must be provided by the user upon invocation. Extractors, in
the general case, may also be used to perform rule induction from data, without
any intermediate predictor.

3 https://github.com/tuProlog/2ppy
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It is worth noting that Predictors are parametric types. The meta-parameter
R represents the type of predictions the predictor may produce. The rules possibly
extracted by such predictors – as well as the predictions extracted – may differ
significantly depending on the particular data and on the selected predictors.
For instance, when rules are extracted from mono-dimensional regressors, R may
be the type of floating point numbers, whereas, for multi-class classifiers, R may
consist of the set of types (like integer, string, ...). Depending on the nature of R,
the extracted rules possibly differ significantly. However, the proposed API makes
it possible to switch between different extraction algorithms and predictors with
no changes in the PSyKE architecture.

Output rules produced by PSyKE’s extractors may be more tailored on
human-interpretability or agent-/machine-interoperability [21]. In the former
case, a Prolog theory of logic clauses is provided as output. In the latter case,
the knowledge is extracted as an OWL ontology containing SWRL rules.

3 Examples

In this section some examples showing PSyKE working in different scenarios are
reported—i.e. the Iris data set4 as classification task and the Combined Cycle
Power Plant5 (CCPP) data set as a regression case study.

3.1 Classification: the Iris data set

In the following we report the outcome of PSyKE when applying different SKE
techniques to the Iris data set. All the results are resumed in Figure 3 and
Table 1. Column “Predictor” represents the ML step of the process. Column
“Extractor” represents the output of PSyKE. Different extraction procedures –
namely, Iter, GridEx, and Cart – are applied to some selected BB classifiers.
These predictors are a k-nearest neighbor with k = 5 (5-NN), a decision tree
(DT) and a multilayer perceptron (MLP).

A numerical assessment of the aforementioned predictors and extractors is
reported in Table 1 in terms of number of extracted rules and predictive perfor-
mance w.r.t. data and BB predictions. The predictive performance is expressed
through both classification accuracy and F1 score metrics. Values are averaged
upon 25 executions, each one with different random train/test splits, but the
same test set percentage and same parameters for predictors and extractors. Ta-
ble 1 also reports the underpinning BB predictor accuracy and the fidelity and
accuracy of the extraction procedure.

It is worth noting that different SKE techniques can be easily compared and
the best option for the scenario at hand can be selected thanks to the controlled
experimentation environment provided by PSyKE.

4 https://archive.ics.uci.edu/ml/datasets/iris
5 https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
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Extractor Predictor

5-NN DT MLP

No extraction

(a) (b) (c)

Iter

(d) (e) (f)

GridEx

(g) (h) (i)

Cart

(j) (k) (l)

Fig. 3: Comparison between Iris data set input space partitionings performed by
the algorithms implemented in PSyKE. Only the two most relevant features are
reported—i.e., petal width and length.

3.2 Regression: the Combined Cycle Power Plant data set

In this example, PSyKE is exploited to extract rules out of different BB regres-
sors trained upon the CCPP data set. The data set contains 9568 instances, each
one composed of 4 real-valued input attributes.

Diverse regressors are trained on the CCPP data set: a 3-NN, a DT and a
linear regressor (LR). Same as the previous example, PSyKE is used to extract
logic rules out of the selected BB models exploring some of the SKE methods
it supports—namely, Iter, GridEx, GridREx and Cart. Metrics for measuring
the fidelity of the extractor w.r.t. the underlying BB predictions as well as the
predictive accuracy w.r.t. the data are the mean absolute error (MAE) and R2

score. The same metrics are used to assess the predictive performance of the BBs
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Table 1: Comparison between predictive performance and fidelity measurements
applied to the Iris data set. The best extractors are highlighted.

Predictor Extractor
Type Accuracy F1 Algorithm Rules Accuracy F1 score

score (data) (BB) (data) (BB)

5-NN 0.96 0.96 Iter 3 0.91 0.93 0.91 0.93
GridEx 3 0.94 0.96 0.94 0.96
Cart 3 0.92 0.93 0.92 0.93

DT 0.96 0.96 Iter 3 0.96 0.94 0.96 0.94
GridEx 3 0.94 0.96 0.94 0.96
Cart 3 0.89 0.93 0.89 0.93

MLP 0.99 0.99 Iter 5 0.80 0.79 0.78 0.76
GridEx 3 0.94 0.96 0.94 0.96
Cart 3 0.95 0.93 0.95 0.93

and as for the Iris case study the extracted knowledge readability is expressed
as number of rules.

The results of PSyKE applied to the CCPP data set are summarised in Fig-
ure 4 and Table 2. Each one of the extraction procedures suitable for regression
tasks is applied to all the aforementioned BB regressors.

Figure 4 shows that all the extractors are able to capture the behaviour of
the output values w.r.t. the input variables.

Table 2 reports the predictive performance of predictors and extractors. Val-
ues are averaged upon 25 executions, each one with different train/test splits,
but with the same parameters for both predictors and extractors. Results show
that in the case at hand all predictors have comparable performance in terms of
MAE and R2 score. Conversely, it is possible to notice that Cart, GridEx and
GridREx always appear more explainable than Iter in terms of the number of
extracted rules. From the Table it may be easily noticed also that GridEx and
Cart generally present analogous performance. This fact depends on the na-
ture of the corresponding output rules. Indeed, they both produce rules having
constant output values, introducing an undesired discretisation of the predicted
variable. Both of them are able to outperform Iter also in terms of predictive
performance (smaller MAE and larger R2 score).

On the other hand, GridREx outperforms all the other algorithms, achiev-
ing higher fidelity and readability. This depends on the regressive nature of its
outputs, enabling the creation of more concise output rules performing more
accurate predictions. Indeed, GridREx rules have as postconditions linear com-
binations of the input variables.

The nature of the different predictors and extractors used in this case study
may be easily noticed in Figure 4. The boundaries identified by the 3-NN clearly
follow a proximity pattern. Conversely, the DT performs variable slicing along
each input dimension and the LR produces a gradual output value decrement
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Fig. 4: Comparison between CCPP data set output predictions provided by the
algorithms implemented in PSyKE. Only the two most relevant features are
reported—i.e., ambient temperature and exhaust vacuum.

for growing input values. As for the extractors, for Cart the same consider-
ations made for the DT hold. The hypercubic nature of Iter and GridEx is
detectable by observing the rectangular boundaries provided by them. Finally,
GridREx provides local linear regressive laws for hypercubic regions, merging
the advantages of both DTs and LRs.



10 Calegari, Sabbatini

Table 2: Comparison between predictive performance and fidelity measurements
applied to the CCPP data set. The number of extracted rules is also reported.
The best extractors are highlighted.

Predictor Extractor
Type MAE R2 Algorithm Rules MAE R2 score

score (data) (BB) (data) (BB)

3-NN 3.09 0.94 Iter 22 4.19 3.78 0.94 0.96
GridEx 5 5.02 4.63 0.87 0.88

GridREx 5 3.25 2.52 0.94 0.96
Cart 6 4.45 3.90 0.89 0.91

DT 3.31 0.92 Iter 14 4.27 4.32 0.93 0.92
GridEx 5 5.02 5.10 0.87 0.86

GridREx 5 3.24 3.38 0.94 0.93
Cart 6 4.46 4.50 0.89 0.88

LR 3.59 0.92 Iter 43 4.42 2.74 0.93 1.00
GridEx 5 5.15 3.80 0.86 0.92

GridREx 1 3.59 0.00 0.93 1.00
Cart 6 4.97 3.49 0.87 0.93

Once again it is worth noting how PSyKE technology enables different SKE
techniques to be compared. Such a comparison provide also a measure in terms
of explainability and transparency that can be achieved out of the BB predictor.

3.3 PSyKE GUI

Figure 5 shows an example of PSyKE GUI screenshot in order to highlight how
the toolkit also enables achieving fast and easy interactions with users. The GUI
is simple and user-friendly, divided into 4 panels. The top panel is dedicated to
the task selection (classification vs. regression) and to data set selection/pre-
processing. Users can choose between several pre-defined data sets, as well as
load a custom file. Furthermore, they can choose to discretise/scale the features
and, on the right, it is possible to select among all the available features (i) the
one to be used as output; (ii) those to be used as inputs; and (iii) those to be
neglected. On the same panel it is possible to select two input features to be
plotted together with the output feature. Plots appear in the right-most central
panel of the GUI. The first one represents the data set instances, the second
depicts the decision boundaries of the trained BB predictor and the third does
the same for the selected extractor. Plots are shown after the proper button
pressing, but each plot depends on the previous operations performed by the
users. The predictor plot requires a BB predictor to be previously chosen and
trained. This can be done by acting on the left-most central panel of the interface.
Several models are available, each one with corresponding text boxes to allow
users customise the required hyper-parameters. Users can also choose the train-
test splitting percentage. Each parameter has a default value, so user inputs
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Fig. 5: PSyKE GUI

are optional. Analogously, the bottom-most panel is dedicated to the selection,
training and tuning of knowledge extractors. Training an extractor enables the
visualisation of the third plot.

The knowledge extracted with PSyKE extractors is displayed below the plots,
in Prolog syntax. Finally, information about the chosen data set (e.g., number of
features, classes and instances), predictor (e.g., parameters and predictive per-
formance) and extractor (e.g., parameters, predictive performance and fidelity
measurements) are shown next to the corresponding selection commands (after
their selection).

The example reported in Figure 5 shows the application of PSyKE to the Iris
data set. The data set has been loaded without discretisation and feature prun-
ing, then a 5-NN has been trained on 80% of the data set. The Cart extractor
has finally been chosen, with maximum depth and maximum leaf amount equal
to 3. Only input features about petal width and length have been selected to be
plotted.

In conclusion, the framework provides the possibility to build different ex-
periments in a controlled environment, enabling an easy exploitation of the tech-
nology and offering the possibility to compare the results in a simple way.

4 Impact

The PSyKE technology may impact many research areas. It provides a well-
grounded technological basis and a software engineering practice for implement-
ing/experimenting with the transparency and explainability dimensions in AI
applications. It provides an extensible framework for collecting the SKE meth-
ods and approaches proposed in the literature, creating a controlled environment
for testing, evaluating and comparing transparency. PSyKE has an important
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role from the point of view of software engineering, providing a methodology that
can be exploited for grounding all the TAI dimensions—i.e., the design and the
implementation of a controlled experimentation environment that can act also as
a sandbox for simulating the trustworthiness of an AI system. Accordingly, the
framework provides a concrete example of the feasibility of building a practical
toolkit for AI stakeholders to test the dimensions of TAI. Moreover, PSyKE has
a role to play in the field of XAI [12]. Integrating symbolic and sub-symbolic
AI – i.e., using them in synergy, as an ensemble – is a strategical research di-
rection [4], and PSyKE offers a sound technological foundation for this purpose.
Finally, the distributed systems community has the need for interoperable and
general-purpose logic-based technologies that can be easy injectable into already
existing systems [3]. There, PSyKE provides a technological layer easy injectable
in distributed systems supporting agents’ reasoning via the production of logical
knowledge that can be exploited by agents.

Given all the potential of the described framework, there is room for sev-
eral future research directions. PSyKE already enables the investigation of rel-
evant research questions involving symbolic manipulation or automated reason-
ing, thanks to its modularity and interoperability. Under such a perspective,
PSyKE enables exploring how to: (i) blend SKE with other AI techniques, and
(ii) exploit SKE to build flexible intelligent systems.

Along these lines, future research directions will take into account the inte-
gration in the framework of a larger suite of methods for dealing with the most
variety of datasets and predictors. Some preliminary experiments showed that
the SKE algorithms can be exploited also for rule induction starting from data.
This line is particularly interesting for all the cases in which a BB predictor is
not available. Moreover, new SKE techniques are under development exploiting
the combination of SKE with explainable clustering techniques increasing both
performance and fidelity.

Finally, the framework is a preliminary example of how TAI dimensions can
be tested and evaluated, and an interesting research line is to extend the envi-
ronment in order to achieve a certification of the level of transparency – or more
in general trustworthiness – for given AI applications. The challenge here is to
find a way for defining effective metrics for the certification of TAI dimensions.

5 Conclusion

In this paper we discuss the PSyKE technology, a platform providing general-
purpose support to symbolic knowledge extraction from different sorts of black-
box predictors via many extraction algorithms, to be easily injectable into ex-
isting AI assets making them meet the transparency TAI requirement.

The framework provides a controlled experimentation environment in which
transparency and explainability can be tested, assessed and compared. Even
if still in a preliminary stage, it provides a software engineering practice for
grounding all the TAI dimensions, translating them from high-level principles to
practical requirements.
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