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Abstract. This work focuses on cooperative argumentation and conver-
sation in multi-agent systems by introducing an extension of the Arg2P
technology that enables parallelisation and distribution of the argumen-
tation process. The computational model and the implementation un-
derpinning the Arg2P technology are presented and discussed.

Keywords: argumentation · Arg2P · cooperative argumentation · multi-
agent systems · cooperative reasoning

1 Introduction

Human-centred intelligent systems are densely populated by agents (either soft-
ware or human) capable of understanding, arguing about, and reporting, via
factual assertions and arguments, what is happening and what they could make
happen [19]. A multi-agent system (MAS) based on argumentation, dialogue,
and conversation can then work as the basis for designing human-centred intelli-
gent systems: through argumentation, dialogue, and adherence to social justice,
the behaviour of the intelligent system can be reached, shaped, and controlled
[1, 25], and conflict can be resolved by adopting a cooperative argumentation
approach [10].

There, the purpose of multi-agent argumentative dialogues is to let agents
reach an agreement on (i) the evaluation of goals and corresponding actions (or
plans), and (ii) the adoption of a decentralised strategy for reaching a goal, by
allowing agents to refine or revise other agents’ goals and defend one’s propos-
als. In this scenario, intelligent behaviours are likely to become associated with
the capability of arguing about situations as well as the current state and cir-
cumstances, by reaching a consensus on what is happening around and what is
needed, and by triggering and orchestrating proper decentralised semantic con-
versations so as to determine how to collectively act in order to reach a future
desirable state [8]. Thus, argumentation [14] and related technologies become
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a fundamental building block for the design of these systems, thanks to their
potential to be an effective communication medium for heterogeneous intelligent
agents while enabling a natural form of interaction between users and computa-
tional systems, towards explainability features.

However, for argumentation tools to be able to meet the aforementioned
expectations, a huge effort is required from a software engineering perspective.
The last decades’ continuous improvement in the design and development of
technologies for human-centred intelligent systems has not been matched by an
analogous improvement of argumentation technologies, where the technological
landscape is nowadays populated by very few systems—and most of them are
mere prototypes [6]. A key problem in existing argumentation technology is that
a widely-acknowledged well-founded computational model for argumentation is
currently missing: this makes it difficult to investigate convergence and scalability
of argumentation techniques in highly-distributed environments [18, 10]. At the
same time, the field has seen a constant flow of theoretical contributions [17, 20].

Arg2P [9] is a logic-based technology, offering a thorough instantiation of
the ASPIC+ framework [21] for structured argumentation. The purpose of this
paper is to effectively distribute the argumentation process (evaluation of argu-
ments) so as to enable the exploitation of Arg2P in the context of cooperative
argumentation, according to the aforementioned perspective. Accordingly, the
work is structured as follows. Section 2 contains a brief introduction to struc-
tured argumentation. Section 3 presents the core contribution of this work, i.e.,
the distribution of the argumentation process and its implementation. Finally,
Section 4 concludes the work.

2 Background notion: structured argumentation

Let us start by defining a generic structured argumentation framework. This
introduction has two purposes: (i) to give the reader with no specific knowledge
in the formal argumentation field an idea of its main concepts and notions,
(ii) to serve as a basis for the analysis contained in subsequent sections. For a
more complete introduction we invite the reader to consult the vast amount of
available literature on the topic [3, 4].

We first introduce the notion of argumentation language. In the argumenta-
tion language, a literal is either an atomic proposition or its negation.

Notation 1 For any literal ϕ, its complement is denoted as ϕ. That is, if ϕ is
a proposition p, then ϕ = ¬p, while if ϕ is ¬p, then ϕ is p.

Literals are brought into relation through rules.

Definition 1 (Rules). A defeasible rule r has the form: ρ : ϕ1, ..., ϕn ⇒ ψ
with 0 ≤ n, and where

– ρ is the unique identifier for r;
– each ϕ1, . . . ϕn, ψ is a literal;
– the set {ϕ1, . . . ϕn} is denoted by Antecedent(r) and ψ by Consequent(r).



Multi-Agent Cooperative Argumentation in Arg2P 3

Defeasible rules – denoted by DefRules – are rules that can be defeated by con-
trary evidence. Pragmatically, a defeasible rule is used to represent defeasible
knowledge, i.e., tentative information that may be used if nothing could be posed
against it. For the sake of simplicity, we define non-axiom premises via defeasible
rules with empty Antecedent . A theory consists of a set of rules.

Definition 2 (Theory). A defeasible theory is a set Rules ⊆ DefRules.

Arguments are built from defeasible rules. Given a defeasible theory, arguments
can be constructed by chaining rules from the theory, as specified in the definition
below—cf. [21].

Definition 3 (Argument). An argument A constructed from a defeasible the-
ory ⟨Rules⟩ is a finite construct of the form:

A : A1, . . . An ⇒r ϕ

with 0 ≤ n, where

– r is the top rule of A, denoted by TopRule(A);
– A is the argument’s unique identifier;
– Sub(A) denotes the entire set of subarguments of A, i.e., Sub(A) = Sub(A1)∪
. . . ∪ Sub(An) ∪ {A};

– ϕ is the conclusion of the argument, denoted by Conc(A);

Arguments can be in conflict, accordingly to two kinds of attack: rebuts and
undercutting, here defined as in [21].

Definition 4 (Attack). An argument A attacks an argument B (i.e., A is an
attacker of B) at B′ ∈ Sub(B) iff A undercuts or rebuts B (at B′), where:

– A undercuts B (at B′) iff Conc(A) = TopRule(B′)
– A rebuts B (at B′) iff Conc(A) = ϕ and Conc(B′) = ϕ

Then, an abstract argumentation framework can be defined by exploiting argu-
ments and attacks.

Definition 5 (Argumentation Framework). An argumentation frame-
work constructed from a defeasible theory T is a tuple ⟨A,⇝⟩, where A is the
set of all arguments constructed from T , and ⇝ is the attack relation over A.
The corresponding argumentation graph is a directed graph whose arcs are
attacks and nodes are arguments.

Notation 2 Given an argumentation framework G = ⟨A,⇝⟩, we write AG and
⇝G to denote the framework’s arguments and attacks, respectively.

Given an argumentation framework, we leverage on labelling semantics [14, 2] to
compute the sets of arguments that are accepted or rejected. Accordingly, each
argument is associated with one label which is either IN, OUT, or UND—respectively
meaning that the argument is either accepted, rejected, or undecided. Given a
labelling for a framework, a IN, OUT, UND labelling for the statements claimed by
the arguments in the graph can be also derived.
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3 Distributed argumentation in Arg2P

Arg2P is a logic-based technology, an easily-deployable argumentation tool built
to meet the requirements of intelligent software systems.3 It is built upon 2P-
Kt—a reboot of the tuProlog [11, 13] project offering a general, extensible, and
interoperable ecosystem for logic programming and symbolic AI. Whereas a com-
plete overview of the features of this specific implementation is out of the scope
of this paper, we refer the reader to [9, 7, 24] for more details. In this section we
focus on how to effectively distribute its argumentation process (evaluation of
arguments).

A first version of a message-based distributed argumentation algorithm is
here discussed as the basic pillar of a computational model for cooperative argu-
mentation in MAS. We ignore issues such as agent autonomy and MAS coordina-
tion artefacts [22, 23], and focus instead on the distribution issues of cooperative
argumentation, which enables agent dialogue and defeasible reasoning in MAS.

The first issue when facing computational issues of cooperative argumenta-
tion is the parallelisation of the argumentation process. Parallelisation needs to
be tackled under two distinct perspectives: (i) the algorithmic perspective and
(ii) the data perspective. Under the algorithmic perspective, we divide the argu-
ment evaluation (w.r.t. a given semantics) into smaller sub-tasks to be executed
in parallel. Under the data perspective, instead, we split the data used by the
algorithm—i.e., the argumentation defeasible theory. Action here is therefore at
the data level, looking for possible data partitioning on which the argumentation
process can be run in parallel. As a premise, we first introduce the algorithm that
served as a starting point in the parallelisation of the argumentation process.

Among the available libraries, Arg2P includes a query-based mode, which
allows for single-query evaluation according to the selected semantics.4 The fea-
ture is accessible in the default instance of the Arg2P framework through the
predicate

answerQuery(+Goal, -Yes, -No, -Und)

which requests the evaluation of the given Goal, and gets the set of facts match-
ing the goal distributed in the three sets IN, OUT, and UND as a result.

The algorithm used to evaluate a single claim (or query) according to grounded
semantics is inspired by the DeLP dialectical trees evaluation [15]. Listing 1.1
shows the pseudo-code – AnswerQuery(Goal) – for the answerQuery/4 predi-
cate: given a claim (Goal) as input, the function first builds all the arguments
sustaining that claim (buildSustainingArguments(Goal)), and then requires
their evaluation via the Evaluate(A, Chain) function. In order to assess the
A1, ..., An status (acceptability or rejection), three conditions are evaluated:

(Cond1) if a conflicting argument labelled as IN exists, then A1 is OUT;
(Cond2) if a cycle in the route from the root to the leaves (Chain) exists, then A1

argument is UND;
3 http://arg2p.apice.unibo.it
4 At the time of writing, only grounded semantics is fully implemented
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Listing 1.1. Structured argumentation, Arg2P answer query algorithm for grounded
semantic (pseudo-code).

AnswerQuery(Goal):
A1, ..., An = buildSustainingArguments(Goal)
Res = ∅
for A in A1, ..., An:

Res = Res ∪ Evaluate(A, ∅)
return Res.

Evaluate(A, Chain ):
if(∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN)

return OUT
if(∃ B ∈ Attacker(A): B ∈ Chain)

return UND
if(∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = UND)

return UND
return IN.

(Cond3) if a conflicting argument labelled as UND exists, then also the A1 argument
is UND.

If none of the above conditions is met, then the argument can be accepted.

Example 1. Let us consider the following theory and the corresponding argu-
ments (depicted in Fig. 1).

r1 : ⇒ a
r2 : a ⇒ b
r3 : ⇒ ¬b
r4 : b ⇒ c

A0 : ⇒r1 a
A1 : A0 ⇒r2 b
A2 : ⇒r3 ¬b
A3 : A1 ⇒r4 c

According to grounded semantic A0 is IN – there are no arguments contending
its claim or undercutting its inferences – whereas A1, A2 and A3 are UND—A1
and A2 have opposite conclusions and thus attack each other; the conflict is then
propagated to the derived argument A3.

Let us suppose we require the evaluation of claim b via the AnswerQuery(Goal)
function in Listing 1.1. First, the arguments sustaining b are created, in this case
only A1. Then the evaluation conditions on A1 attackers – only A2 in this case –
are assessed. However, A2 admissibility depends, in turn, on A1—as you can see
in Fig. 1 also A1 attacks A2. There is a cycle in the graph (Cond2), and no other
attackers matching (Cond1). As a consequence, A2 is UND and thus A1 (Cond3).
Accordingly, claim b is labelled UND as expected.

Let us now consider the algorithm in Listing 1.1 to analyse the requirements
and implications of its parallelisation. The algorithm structure is simple: the
argument evaluation leverages the evaluation obtained from its attackers—i.e.,
the attackers are recursively evaluated using the same algorithm and the result is
exploited to determine the state of the target argument. Intuitively, a first point
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Fig. 1. Argumentation graph for arguments from Example 1, in which nodes are argu-
ments and edges are attacks between arguments.

of parallelisation can be found in the search and evaluation of the Attackers.
Indeed, every condition exploited by the algorithm – (Cond1), (Cond2), and
(Cond3) – to evaluate an argument requires one and only one attacker to match
the constraint. Those conditions directly suggest a parallelisation in the search
and evaluation of the attackers. We could evaluate the arguments simultaneously
under different branches, and the success in one of the branches would lead to
the success of the entire search.

However, the algorithm exposes another point of parallalisation. The order in
the evaluation of the conditions is essential for the soundness of the algorithm—
as illustrated by the following example.

Example 2. Let us consider argument A and its two attackers B and C. Let it
be the case in which we know B and C’s labelling, IN for the former and UND

for the latter. If we do not respect the order dictated by the algorithm, A’s
labelling is either UND (Cond3) or OUT (Cond1). Of course, the first result would
be in contrast with the original grounded semantic requirements for which every
argument having an IN attacker should be definitively OUT. Conversely, if we
respect the evaluation order, A’s labelling would be OUT in every scenario.

Although the evaluation order is strict, we can evaluate all the conditions
simultaneously and consider the ordering only while providing the labelling for
the target argument. In other words, the three conditions are evaluated in par-
allel, but the result is given accordingly to the defined priorities. If (Cond1) is
met, the argument is labelled as OUT. Conversely, even if (Cond2) or (Cond3) are
met, one should first verify that (Cond1) does not hold. Only then the argument
can be labelled as UND.

Listing 1.2 contains the version of the algorithm taking into account both
points of parallelisation. The three conditions – (Cond1), (Cond2) and (Cond3)
– are evaluated at the same time. Then the results of the three sub-tasks are
combined to provide the final solution according to the conditions’ priority. Of
course, if we consider a scenario where only the first condition (Cond1) is required
to determine the status of the argument in input, the parallel evaluation of all
three conditions would lead to a waste of computational resources. However, this
problem is easily mitigated by evaluating the sub-task results as soon as they
are individually available—i.e. in the case we receive a positive result from a
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Listing 1.2. Evaluate predicate with both parallel conditions evaluation and parallel
attackers

Evaluate(A, Chain ):
PARALLEL {

Cond1 = PARALLEL { ∃ B ∈ Attacker(A):
Evaluate(B, A ∪ Chain) = IN }

Cond2 = PARALLEL { ∃ B ∈ Attacker(A): B ∈ Chain }
Cond3 = PARALLEL { ∃ B ∈ Attacker(A):

Evaluate(B, A ∪ Chain) = UND }
}
if(Cond1) return OUT
if(Cond2 AND NOT Cond1) return UND
if(Cond3 AND NOT Cond1) return UND
if(NOT Cond1 AND NOT Cond2 AND NOT Cond3) return IN

single sub-task, and it is enough to compute the argument status, we can cut
the superfluous computational branches and return the final solution.

In the first part of our analysis we focused on the parallelisation problem from
a pure computational perspective, by discussing whether the evaluation task
could be split into a group of sub-task to be executed simultaneously. However,
there is another perspective to take into account when parallelising: the one
concerning the data.

Example 3. For instance, let us consider a job computing the sum and the prod-
uct of a set of numbers. Using the sub-task approach, we could have two subrou-
tines running in parallel, one computing the sum and the other computing the
product of the numbers. However, leveraging the associative property of addition
and multiplication, we can split the problem into a series of tasks computing both
sum and product on a subset of the original data. Then the final result would
be the sum and the multiplication of the tasks’ results.

Let us suppose to apply the same principle to the argumentation task. We
build arguments from a base theory according to the relations illustrated in
Section 2. The logic theory is, for all intents, the input data of our algorithm
(argumentation task). Now, the question is whether we can effectively split the
data into sub-portions to be evaluated in parallel without affecting the global
soundness of the original algorithm. Let us consider a splitting principle based
on rules dependency – i.e., if two rules can be chained, they must stay together
–, and the algorithm in Listing 1.2. According to the algorithm, the search and
evaluation of the attackers are performed in a distinct subtask (concurrent eval-
uation). Then, we can split the knowledge concerning attacked and attackers
into separate sets, since the subtasks evaluating an attacker require only the
knowledge to infer such an attacker—i.e., the Dependency principle must be
respected. Indeed, there is no task that needs to know how to build both an
argument and its attackers, since the search is delegated to another process. In
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other words, a single subprocess in charge of evaluating an argument needs only
the portion of the theory needed to infer the argument itself—i.e., the chainable
rules concluding the target claim.

3.1 Computational model: the master-slave actor model

We can now provide a complete and sound mechanism for the admissibility task
in a fully-concurrent way, exploiting the insights from Section 3 and applying
them to an actor-based model [16].

In short, the actor model is based on a set of computational entities – the
actors – communicating with each other through messages. The interaction be-
tween actors is the key to computation. Actors are pure reactive entities that,
only in response to a message, can:

– create new actors;
– send messages to other actors;
– change their internal state through a predefined behaviour.

Actors work in a fully-concurrent way – asynchronous communication and mes-
sage passing are fundamental to this end – making the actor model suited to
concurrent applications and scenarios. We choose this model for its simplicity:
it presents very few abstractions making it easy to study both how to model a
concurrent system and its properties. The final goal is to provide a sound model
for agents’ cooperative argumentation in MAS, enabling concurrent evaluation
of the argumentation algorithms (focusing on distribution). The actor paradigm
is a straightforward choice for an analysis of this sort.

Since the actor model focuses on actors and their communication, the fol-
lowing design will review the structure and behaviour of the actors involved.
Although a fully-distributed version of the model is possible, we choose to adopt
a master-slave approach in order to simplify the functioning of the system as
much as possible. Accordingly, two main sorts of actors are conceived in the
system: master and worker. Master actors coordinate the knowledge-base dis-
tribution phase, while the workers hold a portion of the theory, concurring with
the evaluation of a claim through their interaction.

Let us start with the knowledge distribution. Since actors are reactive entities,
in order to completely adhere to the actor model the master knowledge base can
be changed from outside the actor system. If the master receives the order to
add a new element to the theory, three possible scenarios can be configured:

1. none of the workers contains a compatible knowledge base (kb) – i.e., it is
not possible to chain the new rule to the knowledge base – and consequently,
the master creates a new worker containing the portion of the theory;

2. one or more workers have a compatible knowledge base, and they add the
element to their kb;

3. a set of workers possess overlapping knowledge bases – i.e. the union set of
workers’ knowledge bases can be used to create a unique inference chain –,
and, as a consequence, we merge their knowledge bases and destroy the extra
workers;
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Iterating this procedure for all the elements of an input knowledge base, as a
result, we should obtain a set of workers each of them containing a portion of
the theory in accordance with the dependency splitting principle.

Once the knowledge has been correctly split between workers, we can proceed
with the actor-based evaluation of an argument. Each actor is responsible for
evaluating those arguments that can be built using his portion of the theory.
When the actor receives an evaluation request, it first checks if attackers exist,
w.r.t. its portion of the knowledge base. Then, the actor can: (i) register the
impossibility to evaluate the argument – only if a cycle through the evaluation
chain is detected –, (ii) require the attacker arguments evaluation to all the other
actors. In the latter case, the actor shall answer the original evaluation request
only after receiving a response from others actors. The conditions to match while
evaluating an argument are the same as the original algorithm in Listing 1.1:

– if one counterargument is admissible, we evaluate the argument as OUT;
– if any number of actors decide for the argument undecidability with none

advancing its rejection, we mark the argument as UND;
– if all the actors agree that no counterarguments can be provided as accept-

able, we evaluate the argument as IN;

Actors provide their suggestions on the state of the requested argument according
to all the labels of their counterarguments.

We can describe the interactions between the system’s actors as a sequence
diagram (Fig. 2) of messages exchanged between masters and workers, where:

– Add, sent from the master to a worker, through which the master sends the
new theory member to be stored in the workers’ kb; the decision on which is
the right worker to send the data to is the responsibility of the master that
knows the entire state of the system and how data has been divided;

– RequireEvaluation, sent from outside the system to the master to require
the evaluation of a claim;

– Eval, sent from the master to all workers to require the evaluation of a claim
– FindAttacker, sent from a worker to master to require the broadcasting of

a request for counterarguments to all the available workers;
– ExpectedResponses, sent from master to a worker to communicate the num-

ber of expected responses to a request for counterarguments;
– AttackerResponse, sent from a worker to a worker in response to a request

for counterarguments; the message contains the state of the counterargument
obtained through a new FindAttacker evaluation;

– EvalResponse, sent from workers to the master to communicate their deci-
sion on a claim; the decision is taken after all the AttackerResponse con-
taining the state of possible counterarguments have been received;

– EvaluationResponse, message sent from master containing the system de-
cision on the state of a claim.

Note that the Add and RequireEvaluation messages come from outside the
actor system and start the distribution and evaluation process. This interaction
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Fig. 2. Master-slave interaction for argument evaluation.

model implements both the parallelisation strategies described in Listing 1.2: the
search for counterarguments is executed concurrently by all the worker nodes,
as also the evaluation of the admissibility of arguments.

Example 4. Let us consider again the theory in Example 1. Let us assume a
single MasterActor and the following order in the inclusion of the rules in the
system: r1, r3, r4, r2.5 As for the first three rules, the behaviour is the same.
Since the rules are not chainable, it creates three distinct workers and sends a
single rule to every one of them via the Add message. We now have Worker 1,
Worker 2, and Worker 3 with respectively r1, r3, and r4 in their knowledge
bases. Then the inclusion of rule r2 is required, and both workers 1 and 3 results
in having a chainable knowledge base. Rule r2 is, in fact, the missing link in
the inference chain of r1 and r4. As a consequence, the Master stops the two
workers, creates a new one, and then requires to it the inclusion of rules r1,
r4, r2 via three Add messages. At the end of the distribution phase, we have
two workers, one containing r1, r2, r4, and the other just r3. The dependency
principle is thus respected. Going on with the example, we require the evaluation
of claim b via the RequireEvaluation message: so, the Master sends an Eval

5 The order of inclusion affects the steps required to converge, not the final state of
the system.
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message to all the actors. Worker 1 succeeds in building an argument (A1)
and sends to all the other Workers – also Worker 1 is included in the list – a
FindAttacker message requiring attackers evaluation—the broadcasting of the
message is done by the Master actor. The master also communicates the number
of responses that are expected (ExpectedResponses message)—only two in that
case. Worker 1 answers with a AttackerResponse communicating that there are
no attacking arguments according to its knowledge, while Worker 2 sends back a
AttackerResponse with an Und result. Indeed, Worker 2 is able to create a valid
counterargument (A2), but a cycle is detected in the inference chain. According
to the evaluation algorithm, receiving an Und response, Worker 1 can finally
label A1 as UND and let the master know that via a EvalResponse message.

3.2 Implementation: the parallel library

The model in Subsection 3.1 has been implemented as a library – the Parallel
library – for the Arg2P framework.6 The goal of the implementation is twofold:
(i) providing a mechanism for the concurrent evaluation of a claim by a single
Arg2P instance – actors in execution on a single machine can achieve real paral-
lelisation thanks to multicore hardware architectures – (ii) enabling cooperative
argumentation by allowing different Arg2P instances to create a single actor
system, thus sharing their knowledge base or their hardware resources.

Among the available technologies for the implementation, we selected Akka.7
[12] Akka is an open source middleware for programming concurrent and dis-
tributed actor systems based on the original Actor model by Hewitt [16]. Built
upon the JVM platform, the framework offers an easy way of deploying network
distributed systems observant of the original actor principles—e.g. reactivity,
asynchronous communications, and absence of states of shared memory between
actors. All these features made the Akka framework one of the reference tech-
nologies in the distributed landscape.

The final implementation makes use of the Akka Clustering features to en-
able the collaboration of different Arg2P instances. In particular, we rely on
Cluster Singletons8 to handle the Master actor lifecycle, and Cluster Sharding9

for Worker nodes. The Parallel library makes available five directives:

– join(Port), requesting the creation of an actor system on the local machine
exposed on port Port;

– join(Port, Address), to join an actor system on the machine at the given
Address, exposed on port Port;

– load, requesting the distribution of the rules contained in the knowledge
base of the local instance between all the members of the actor systems;

– reset, requesting the deletion of the data previously distributed in the actor
system via the load directive;

6 Sources available at https://github.com/tuProlog/arg2p-kt
7 https://akka.io/
8 https://doc.akka.io/docs/akka/current/typed/cluster-singleton.html
9 https://doc.akka.io/docs/akka/current/typed/cluster-sharding.html
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– solve(Goal, In, Out, Und), requesting the evaluation of the Goal claim
to the actor system according to the procedure in Fig. 2. Results are the set
of facts matching the goal distributed in the three sets IN, OUT, and UND.

All the application scenarios can be modelled by using the directives above. We
achieve a parallel evaluation of a claim on a single Arg2P instance in three steps:
(i) creating a local actor system (join(Port)), (ii) distributing the theory be-
tween local actors (load), (iii) requiring the evaluation of a statement through
the solve(Goal, In, Out, Und) directive. At the same time we could have oth-
ers Arg2P instances offering their hardware resources (join(Port, Address))
or also participating in the resolution if they share their own knowledge (load).

4 Conclusion

In this work, given the relevance of issues such as pervasiveness and interconnec-
tion in the current technological landscape, we address the problem of distribu-
tion of the argumentation workload. We follow some insights from [5] and [22, 23].
In [5] the first proposal of a tuProlog-based is presented that exploits a dialogi-
cal argumentation mechanism—i.e., argumentation is performed across multiple
processes proposing arguments and counterarguments. However, the argumenta-
tion algorithm distribution has not been addressed there. Conversely, in [22, 23]
authors directly address the problem of enabling argumentation techniques in
MAS. Nonetheless, their approach just depicts a general-purpose architectural
solution for the multi-party argumentation problem in the MAS context, pro-
viding for neither an actual technology nor a precise model for the distribution
and parallelisation of the argumentation process.

Overall, we believe that our approach is a step forward in the direction of a
full argumentation-based MAS, and more in general of the diffusion of argumen-
tation theories as a solid foundation for the engineering of complex intelligent sys-
tems. Yet, many issues are still to be considered. We should provide a complete
analysis of the computational properties of the presented model – e.g., correct-
ness, completeness, termination –, and also consider its relation with alternative
distribution schemes (e.g., peer-to-peer). Moreover, an empirical evaluation of
the performance of the system compared to traditional solvers should also be
provided. Another topic of future investigations is the extension to different ar-
gumentation semantics. The main difference would be in the labelling conditions
used to classify the arguments according to the different semantics. Moreover, a
branching mechanism to allow the coexistence of multiple labellings should be
devised in order to support the semantics with multiple extensions. However,
most of the ideas behind the presented model should still remain applicable.
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