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Abstract. There is a growing interest in modeling and analyzing the spread of
diseases like the SARS-CoV-2 infection using stochastic models. These models
are typically analyzed quantitatively and are not often subject to validation us-
ing formal verification approaches, nor leverage policy syntheses and analysis
techniques developed in formal verification.
In this paper, we take a Markovian stochastic model for the spread of a SARS-
CoV-2-like infection. A state of this model represents the number of subjects in
different health conditions. The considered model considers the different parame-
ters that may have an impact on the spread of the disease and exposes the various
decision variables that can be used to control it. We show that the modeling of
the problem within state-of-the-art model checkers is feasible and it opens several
opportunities. However, there are severe limitations due to i) the espressivity of
the existing stochastic model checkers on one side, and ii) the size of the resulting
Markovian model even for small population sizes.

1 Introduction
The recent COVID-19 pandemic highlighted the importance to develop reliable models
to study, predict and control the evolution and spread of diseases. Several analytical
models have been proposed in the literature [3,15,1,5,11,10,4,16,24]. All these mod-
els are deterministic and aims at capturing the disease dynamics. These studies have
been complemented with studies proposing stochastic models, that differently from de-
terministic ones, allows to derive richer set of informations like e.g. show converge
to a disease-free state even if the corresponding deterministic models converge to an
endemic equilibrium [2]; computing the probability of an outbreak, the distribution of
the final size of a population or the expected duration of an epidemic [5,22]; comput-
ing the probability of transition between different state of COVID-19-affected patients
based on the age class [25]; or evaluating the effects of lock-down policies [21]. Re-
cently, the evolution of diseases has also been modeled with stochastic models in form
of Markov Processes [6,1,19]. The use of stochastic models opens for the possibility to
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use Stochastic Model Checking techniques to i) validate the model using probabilistic
temporal properties of the model as well as compute quantitative measures of the degree
of satisfaction of a given temporal property [20]; ii) evaluate the effects of a strategy
on a population during the evolution of a disease [8,7]. The work in [19] describes
a stochastic compartmental model (the population has been broken down into several
compartments) for the spread of COVID-19like diseases, with some preliminary results
on the use of stochastic model checking techniques to analyze a simplified version of
the epidemic model.

In this paper we make the following contributions. First, we consider the epidemic
model presented in [19] and we show how to encode it into languages suitable for being
analyzed with state-of-the-art stochastic model checkers. To this extent, we developed
a C++ open source tool that given the parameters of the epidemic model is able to
generate models in the PRISM formalism [17] to be then analyzed by tools supporting
that formalism (e.g. the PRISM [17] and the STORM [14] model checkers). Second,
we show that the encoding of the considered model in the language accepted by model
checkers is out of the espressivity capabilities of the input languages, and even for small
population sizes it results in very large files that easily reach unacceptable timings for
the storage and parsing of such models, thus preventing any further analysis. To this ex-
tent, we modified the developed tool to link with the STORM model checker to pass the
model directly in memory without the use of intermediate files. Third, we used the de-
veloped tool to study the model with increasing population sizes, analyzing the models
against given temporal properties, and evaluating the effects of different control poli-
cies. These results show that the approach is feasible, but they confirm the scalability
issues first noticed in [18,12], and pose challenges to the community to address large
population sizes on one hand, and espressivity requirements on the input languages, on
the other hand, to facilitate the specification of such complex mathematical models.

This paper is organized as follows. In Section 2 we briefly summarize the basic
concepts. In Section 3 we discuss the model presented in [19] and we show how to
compute the probabilistic transition function. In Section 4 we describe the tools and
the experiments carried out. In Section 5 we discuss the related works, an finally in
Section 6 we draw conclusions and discuss possible future works.

2 Background
An Markov Decision Process (MDP) is a tuple 〈S, SI , A, T,R〉 where S is a finite set
of states, SI ⊆ S is the set of initial states, A is a finite set of actions (i.e. control
variables), T : S → 2A×S×R is the transition probability function that associates to a
state s ∈ S, an action a ∈ A the probability p to end up in state s′,R : S×A→ R is the
reward function, giving the expected immediate reward r gained by for taking action
a ∈ A in state s ∈ S (we remark that, in many cases there is no reward function). A
Discrete Time Markov Chain (DTMC) is an MDP such that in each state s ∈ S there
is only one action to be considered with an associated probability to end-up in a state
s′ ∈ S (i.e. there is a single probability distribution over successor states). Partially
Observable MDPs, extend MDPs by a set of observations and label every state with
one of these observations. Thus, the states labeled by the same observation must be
considered undistinguishable.
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Fig. 1: Transitions between the different states of a single subject of the entire population.

Several formalism have been proposed to specify (PO)MDPs and DTMCs. We re-
fer to [14] for a thorough overview. In the following we briefly describe the PRISM
language [17] supported by the PRISM and STORM stochastic model checkers. The
PRISM language is a simple state-based language such that i) the user specifies vari-
ables with a finite domain (a complete assignment of a value to these variables at
any given time constitutes a possible state of the system); ii) the behavior is specified
through commands of the form [action] guard -> prob 1 : update 1 +
... + prob n : update n where: guard is a predicate over all the variables
in the model, each update i describes a transition which the model can make if the
guard is true (a transition specifies the new values of the variables, and is associ-
ated to the probability/rate prob i to take that update), and to an optional annotation
action (modeling a control variable). On a (PO)MDP/DTMC model one can check
several kind of properties, like e.g., temporal logic formulas based on PCTL [13] (e.g.,
property P<0.25[FOk = C] means the probability of reaching a state where the vari-
able Ok is equal to C is less than 0.25), or compute the probability with which a system
reaches a certain state (e.g., P=?[FOk = C] to compute the probability to reach a state
where Ok is equal to C), or perform conditional probability and cost queries, or com-
pute long-run average values (also known as steady-state or mean payoff values), or
synthesize a policy to satisfy a certain PCTL property. We refer the reader to [13,17,14]
for a thorough discussion of possible queries.

In the following, we denote with n! = n · (n − 1) · ... · 1 the factorial (i.e.
the permutations of n elements), with

(
n
k

)
= n!

k!·(n−k)! the binomial coefficient, with
Mn,n1,n2,...,nk−1

=
(

n
n1,n2,...,nk

)
= n!∏k

i=1 ni!
the multinomial coefficient (i.e. the per-

mutations with repetitions obtained computing all the permutations of n elements taken
from k sets with n1, n2, . . . , nk elements such that nk = n −

∑k−1
i=1 ni), and with

B(N, p)X =
(
N
X

)
pX(1 − p)N−X the binomial probability distribution function where

X is the total number of successes, p is the probability of success on an individual trial,
and N is the number of trials.
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Sets
Sk = |Sk| N. of susceptible sub. Sk at step k, Ak = |Ak| N. of asymptomatic sub. Ak at step k,
Ik = |Ik| N. of symptomatic sub. Ik at step k, Rk = |Rk| N. of recovered sub.Rk at step k,
Rak = |Rak| N. of asympt. recovered sub.Rak at step k, Ok = |Ok| N. of hospitalised sub. Ok at step k,
Dk = |Dk| N. of deceased sub. Dk at step k, Qk = |Qk| N. of quarantined sub.Qk at step k,

Q
(R)
k =

∣∣∣Q(R)
k

∣∣∣ N. of quarantined sub. recoveredQ(R)
k at step k.

Deterministic Parameters
N Total number of subjects, C Available beds in hospital facilities.

Probabilistic Parameters
ω Prob. to contract the infection in one meeting, β Prob. for an infectious asympt. sub. to recover,
δ Prob. for an asympt. sub. to devel symptoms, µ Prob. for a symptomatic sub. to recover,
α Prob. for a symptomatic sub. to die, σ Prob. for an hospitalised sub. to die,
ξ Prob. for an hospitalised sub. to recover, γ Prob. for a tested infectious sub. to be positive,
ψ Prob. for a symptomatic sub. to be hospitalised, ι Prob. that a quarantined sub. devel symptoms,
υ Prob. that a quarantined sub. recovers.

Command Variables
Mk Num. of people met by any subject, tk Num. of people tested.

Fig. 2: Summary of symbols.

3 A stochastic model for SARS-CoV-2-like infection’s spread
We model a subject of the population as a stochastic discrete–time system with 8 states,
as illustrated in Figure 1, each representing a possible state of the subject: the suscepti-
ble S, infected I , recovered R, asymptomatic A (i.e., a group of infected people that do
not exhibit symptoms but are infective), hospitalised O, dead D, recovered Ra from an
asymptomatic state, and the case of swab-tested people that are quarantined (denoted
with Q) if they result positive. The evolution is observed at discrete time k and each
subject can belong to one of eight possible states. The subjects who are in a state at step
k will be denoted by a calligraphic letter (e.g., Sk is the set of susceptible subjects).
Figure 2 reports the symbols used to denote the different sets, their cardinality (e.g.,
Sk is the cardinality of Sk) and the different probabilities governing the transition of a
subject between the different sets. The states of the discrete–time Markov chain can be
characterized by a vector ~Vk = [Sk, Ak, Ik, Rk, Ok, Dk, Qk, Rak] such that the values
of all the different quantities are non-negative integers representing the cardinality of
their respective sets.

This model is based on the following assumptions: i) the presence of a virus can
be detected either if the subject starts to develop symptoms of the disease or when
the subject is tested positive; ii) if a subject is tested positive (i.e. infectious) she/he be-
comes quarantiened until recovery; iii) a quarantined subject either recovers or develops
the symptoms and becomes infectious; iv) a recovered subject cannot be re-infected;
v) since it is not possible to distinguish a subject who is susceptible, asymptomatic or
recovered without having developed symptoms, the states S, A, Ra are not observ-
able, while all the other states Q, I, O, D, R are observable; vi) the hospitals have a
maximum capacity of C ≤ N .

The elements of the vector ~Vk = [Sk, Ak, Ik, Rk, Ok, Dk, Qk, Rak] are subject
to the following constraints: Sk + Ak + Ik + Rk + Rak + Qk + Ok + Dk = N,
Ok ≤ C. We denote with ~∆v = ~Vk+1− ~Vk=[∆S , ∆A, ∆I , ∆R, ∆O, ∆D, ∆Q, ∆Ra]

T

the change of the state vector from ~Vk to ~Vk+1, such that the input/output flow from
each state of Figure 1 is respected (i.e. ∆S = −∆1, ∆A = ∆1 − ∆2 − ∆3 − ∆9,
∆I = ∆10 +∆2 −∆4 −∆5 −∆6, ∆R = ∆4 +∆8 +∆11, ∆O = ∆5 −∆7 −∆8,
∆D = ∆6 + ∆7, ∆Q = ∆9 − ∆10 − ∆11, ∆Ra = ∆3). Hereafter, we will refer to
these equations with name balance equations. To ensure that different subjects in the
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different states of this model are non-negative we also enforce the following constraints:
∆1 ≤ Sk, ∆2 + ∆3 + ∆9 ≤ Ak, ∆10 + ∆11 ≤ Qk, ∆4 + ∆5 + ∆6 ≤ Ik, and
∆7 +∆8 ≤ Ok.

We denote by l(·) an assignment of variables: ∆i = δi, for i = 1, . . . , 11. For an
assignment of variable l(·) we use l(·) |= ϕ to mean that the assignment l(·) satisfies
formula ϕ. For instance, l (∆4 = δ4, ∆8 = δ8, ∆11 = δ11) |= ∆R = ∆4 +∆8 +∆11

means that the assignment δ4, δ8, δ22 to the variables∆4,∆8 and∆11 satisfies balance
equation ∆R = ∆4 +∆8 +∆11. We also introduce the following notations:

– l1 is an assignment linking the variable ∆1 defined via B1 as: l1: (δ1 = −∆S);
– l2 is a function linking the variables∆2, ∆3 and ∆9 (with the variable ∆9 obtained

via equation B2, and the variable ∆3 obtained via equation B8), defined as: l2:
(∆2 = δ2, ∆3 = ∆Ra , ∆9 =−∆S−∆A−∆Ra−δ2);

– l3 is a function linking ∆4, ∆5, ∆6 and given by: l3: (∆4 = δ4, ∆5 = δ5, ∆6 =
δ6);

– l4 is an assignment linking the remaining variables defined as:
l4: (∆7 = ∆D−δ6, ∆8 = δ5+δ6−∆D−∆O, ∆10 = ∆I−δ2+δ4+δ5+δ6, ∆11 =
∆R +∆D +∆O − δ4 − δ5 − δ6);

– l5, finally, assigns (∆2 = δ2, ∆3 = δ3, ∆9 = δ9).

Finally, we also consider the following terms: Cβ,δ = (1 − β − δ) ≥ 0, Cµ,ψ,α =
(1− µ− ψ − α) ≥ 0, Cσ,ξ = (1− σ − ξ) ≥ 0, Cι,υ = (1− ι− υ) ≥ 0.

The probability associated with a transition from state vector ~Vk to state vector
~Vk+1, such that exactly Mk encounters between susceptible subjects can happen and
exactly tk tests are performed, denoted with Pr{~Vk+1 |~Vk} can be computed as follows:

Pr{~Vk+1 |~Vk} = Pr{l1 |~Vk} ·
−∆S−∆A−∆Ra∑

δ2=0

Pr{l2 |~Vk ∧ l1}

·
δ2−∆I∑
δ4=0

δ2−∆I−δ4∑
δ5=0

δ2−∆I−δ4−δ5∑
δ6=0

Pr{l3 |~Vk ∧ l1 ∧ l2} (1)

· Pr{l4 |~Vk ∧ l1 ∧ l2 ∧ l3}

where:
– Pr{l1 |~Vk} is the probability that exactly δ1 susceptible become asymptomatic,

and is computed as Pr{l1 |~Vk} = B(Sk,Pr{gk |~Vk}Mk
)−∆S where, and

Pr{gk |~Vk}Mk
= 1−

(
1− ωAk

N−Dk−Ik−Ok−Qk

)Mk

.

– Pr{l2 |~Vk ∧ l1} is defined as
tk∑

H=δ9

Pr{sH}
δ9∑
F=0

ρ(δ2, δ3 + F, ~Vk)

(
Ak
H

)−1
K

where tk are the tests performed in the transition from ~Vk to ~Vk+1,

K =
(
δ3+F
F

)(
Ak−(δ2+δ3+F )

δ9−F
)(

δ2
H−δ9

)
, ρ(δ2, δ3, ~Vk) =

Ak! β
δ3 δδ2 C

Ak−δ2−δ3
β,δ

δ2!δ3!(Ak−δ2−δ3)! , and

Pr{sH} =
(
Nk
tk

)−1∑tk
p=0

(Sk+Rak
tk−p

)(
Ak
p

)
B(p, γ)H .
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– Pr{l3 |~Vk ∧ l1 ∧ l2} is defined as

Pr{l3 |~Vk ∧ l1 ∧ l2} =


0 if δ4 + δ5 + δ6 > Ik ∨ δ5 > C −Ok
M(δ4, δ5, δ6) if δ5 < C −Ok ∧ δ4 + δ5 + δ6 ≤ Ik
M ′(δ4, δ6) if δ5 = C −Ok ∧ δ4 + δ5 + δ6 ≤ Ik

where M(δ4, δ5, δ6) = MIk,δ4,δ5,δ6µ
δ4 ψδ5 αδ6 CIk−δ4−δ5−δ6µ,ψ,α and M ′(δ4, δ6) =∑Ik−δ4−δ6−(C−Ok)

h=0 M(δ4, (C −Ok) + h, δ6);
– Pr{l4 |~Vk∧l1∧l2∧l3} is defined as ζ(∆D−δ6, δ5+δ6−∆D−∆O, ~Vk)·χ(∆I−δ2+δ4+
δ5+δ6, ∆R+∆D+∆O−δ4−δ5−δ6, ~Vk) where ζ(δ7, δ8, ~Vk) = MOk,δ7,δ8σ

δ7 ξδ8 Cσ,ξ,
and χ(δ10, δ11, ~Vk) = MQk,δ10,δ11ι

δ10 υδ11 CQk−δ10−δ11ι, υ .
All the mathematical details and proofs to show the correctness of the above formulation
for computing the probability of a transition from ~Vk to ~Vk+1 subject to having exactly
Mk meetings and performing exactly tk tests for the model depicted in Figure 1 are out
of the scope of this paper and can be found in [19].

Given the above definitions, we can compute the transitions and the associated prob-
abilities from a state vector ~Vk given exactlyMk encounters, and exactly tk tests by enu-
merating all possible configurations ~Vk+1 that are compatible with the balance equa-
tions at page 4. Algorithm 1 in Appendix A shows how to perform this enumeration.

The transitions from a state vector ~Vk subjected to encounters from a set of
minimum encounters Mmin to a maximum of Mmax encounters, and tests from
a minimum of Tmin to a maximum of Tmax can be computed by enumerating
all possible (m, t) such that m ∈ [Mmin,Mmax] and t ∈ [Tmin, Tmax] us-
ing previous algorithm (see Algorithm 2 in Appendix A for details). These algo-
rithms are the building blocks for computing the MDP for the full stochastic model
for the spread of a SARS-CoV-2-like infection for a population of size N such
that each subject evolves as illustrated in Figure 1. The set of states of the MDP
are all those vector states ~Vk = [Sk, Ak, Ik, Rk, Ok, Dk, Qk, Rak] such that they
satisfy the constraint Sk + Ak + Ik + Rk + Ok + Dk + Qk + Rak = N
for a population of N subjects1. The set of actions can be computed as A =
{〈Mk, tk〉 | Mk ∈ [Mmin,Mmax], tk ∈ [tmin, tmax]}, for the possibility to meet
subjects from Mmin to Mmax, and to perform tests from tmin to tmax. The tran-
sition probability function T = {〈~Vk, 〈Mk, tk〉, ~Vk+1,Pr{~Vk+1 |~Vk}〉 |〈Mk, tk〉 ∈
A, ~Vk ∈ S, 〈~Vk, 〈Mk, tk〉, ~Vk+1,Pr{~Vk+1 |~Vk}〉 ∈ TRANSITIONS(~Vk,Mk, tk)}. Fi-
nally, SI ⊆ S is the set of initial states. In this model, we do not consider any reward
function.

This framework allows for the application of several policies to control the
(PO)MDP. To this extent, we see a policy as a function P(~Vk) → 2A that associates
with a state ~Vk a pair 〈Mk, tk〉 such that Mk ∈ [Mmin,Mmax] and tk ∈ [tmin, tmax].
This can be achieved by restricting the transition probability function to follow policyP
as follows: T = {〈~Vk, 〈Mk, tk〉, ~Vk+1,Pr{~Vk+1 |~Vk}〉 |〈Mk, tk〉 ∈ P(~Vk) ⊆ A, ~Vk ∈

1 As shown in [19], this model is such that, for a population ofN subjects, assuming there are n
possible configurations (in our case n = 8), the maximum number of possible states that can
be generated is

(
N+n−1

N

)
that corresponds to the Bose-Einstein statistics.
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S, 〈~Vk, 〈Mk, tk〉, ~Vk+1,Pr{~Vk+1 |~Vk}〉 ∈ TRANSITIONS(~Vk,Mk, tk)}. Algorithms 1
and 2 can be easily adapted to restrict the actions to obey a given policy P(~Vk). In par-
ticulara, it is sufficient in Algorithm 2 to replace the two nested for loops with a single
loop over elements of a set of pairs 〈m, t〉 ∈ P(~Vk).

4 Experimenting with state-of-the-art stochastic model checkers
Once the (PO)MDP model has been built, one can convert it into the input format of a
stochastic model checker like e.g. PRISM [17] or STORM [14], and use this model to
verify PCTL [13] properties, for synthesizing policies satisfying a given PCTL property,
to evaluate formally the effects of a policy, and to compute steady state probabilities.

To this extent, we have developed a C++ proof of concept open-source tool, name
covid tool2. As an input, this tool receives (encoded in a json file) the population
size N , all the probability parameters described in Figure 2, the Mmin, Mmax, tmin,
tmax and the hospital capacity C. The tool also accepts in input a set of possible initial
states where for each initial state is fully specified by the respective ~V . Moreover, to
evaluate the possible effect of manually specified control policies, we integrated in the
tools four policies P−1, P0, P1, and P2. P−1 corresponds to not applying any policy,
and this results in generating all possible pairs in A (see e.g., Algorithm 2). P0 is a
constant policy that regardless of the state ~Vk returns a singleton element 〈M, t〉 (i.e.,
∀~Vk ∈ S.P0(~Vk) = {〈M, t〉}). Policies P1 and P2 have the following form P(~Vk) =
{〈Mk, t〉|Mk = F(~Vk), t ∈ [tmin, tmax]} where

F(~Vk)=


Mmax if f(~Vk) ≤ T↓
Mmin if f(~Vk) ≥ T↑
Mmax+(Mmin−Mmax)

f(~Vk)−T↓
T↑−T↓ otherwise.

(2)

P1 uses f(~Vk) = Ik + Ok/(N − Dk) while P2 uses f(~Vk) = Ak/(N − Dk). In
P1 when the percentage of the number of symptomatic and hospitalized patients over
the living population is below the threshold T↓, we impose no restrictions for social
life. If this number is above a threshold T↑, we adopt the maximum restriction (the
minimum value Mmin for M ). Otherwise we adopt a linear interpolation between the
minimum and the maximum values of M . P2 is similar to P1, but here we consider
the ratio between asymptomatic infected subjects and the living population. The tool
and all the material to reproduce the experiments reported hereafter are available at
https://bitbucket.org/luigipalopoli/covd tool.

This tool uses Algorithms 1 and 2 to build the MDP for the model of Figure 1, and
the respective adaptation of such algorithms to generate the DTMCs resulting from the
application of a given pre-defined policy P . Among the different possibilities this tool
provides, we highlight here the ability to generate a (PO)MDP symbolic model as ac-
cepted by PRISM and STORM. The symbolic model encodes the state vector ~V with 8
integer variables (S, A, I, R, O, D, Q, Ra) with values ranging from 0 to N . We encode
actions with a label action m t for meeting exactly m subjects and performing ex-
actly t tests. Then using Algorithm 1 to compute the possible next states and respective

2 https://bitbucket.org/luigipalopoli/covd tool

https://bitbucket.org/luigipalopoli/covd_tool
https://bitbucket.org/luigipalopoli/covd_tool
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mdp / / The k ind of model
module covid mdp / / The main module

/ / The v a r i a b l e s
nS : [ 0 . . 1 0 ] ; nA : [ 0 . . 1 0 ] ; n I : [ 0 . . 1 0 ] ; nR : [ 0 . . 1 0 ] ; nO : [ 0 . . 1 0 ] ; nD : [ 0 . . 1 0 ] ;
. . . / / o m i t t e d f o r l a c k o f s p a c e
[ ac t M is 5 ] ( ( nS = 0) & (nA = 0) & ( n I = 0) & (nR = 0) & (nO = 1) & (nD = 9) ) −>

0.5 : (nS ’ = 0) & (nA ’ = 0) & ( n I ’ = 0) & (nR ’ = 1) & (nO ’ = 0) & (nD ’ = 9)
+ 0.2 : (nS ’ = 0) & (nA ’ = 0) & ( n I ’ = 0) & (nR ’ = 0) & (nO ’ = 1) & (nD ’ = 9)
+ 0.3 : (nS ’ = 0) & (nA ’ = 0) & ( n I ’ = 0) & (nR ’ = 0) & (nO ’ = 0) & (nD ’ = 10) ;

. . . / / o m i t t e d f o r l a c k o f s p a c e
endmodule
i n i t / / The s e t o f i n i t i a l s t a t e s

( (nS = 7) & (nA = 3) & ( n I = 0) & (nR = 0) & (nO = 0) & (nD = 0)
| (nS = 9) & (nA = 1) & ( n I = 0) & (nR = 0) & (nO = 0) & (nD = 0) )

endini t

Listing 1.1: Excerpt of a PRISM file generated for a SAIROD model with a population of 10
individuals. The entire file is about 103Mb on disk.

probabilities. The tool is also able to generate a symbolic Partially Observable Markov
Decision Problems in PRISM format by specifying that the S, A, Ra are not observable.
Moreover, the tool can handle two cases, the full model with all the eight states as per
Figure 1, and a simplified model that does not considers quarantined and the possibility
to recover from asymptomatic state (that corresponds to a SAIROD model). We intro-
duced this possibility for two main reasons. First, the SAIROD model has been already
studied, and it is easier to retrieve the parameters governing the behavior [11]. Second,
as we will see later on, the full model is subject to scalability issues much quickly than
the simple SAIROD one. Listing 1.1 is an excerpt of a simple PRISM model corre-
sponding to a population composed of 10 subjects.

The generation of models in PRISM language is subject to severe efficiency and
espressivity problems. First, the PRISM language can represent symbolically the tran-
sitions once the Pr{~Vk+1 |~Vk} are pre-computed for each transition, but there is no
efficient way to encode Pr{~Vk+1 |~Vk} in the language due to the limited espressivity of
the PRISM language (the involved math is not supported by the language). A possibility
that we considered was to build a defined symbols to represent the Pr{~Vk+1 |~Vk} for
all possible values of the ~Vk, Mk, and tk, however the resulting file will be huge (larger
than a gigabyte) even for a very small population ( < 10 subjects). Thus, we ended up
pre-computing such probabilities, and associating the resulting value with each tran-
sition. The size of the file is problematic for two reasons: first problem is a storage
problem. Second problem, assuming the huge file has been generated successfully, the
PRISM and STORM model checkers require a large amount of memory and huge tim-
ing (days) to parse the file before even starting verification on modern high-performance
computers equipped with large memory (Terabytes). Here we remark that STORM is
slightly more efficient than PRISM in handling large input files. This might be due to
N C Pmin Pmax Creation of T (s) STORM model creation (s) STORM model checking (s)
5 1 0.250 0.312 0.088 0.297 0.005
10 1 0.260 0.346 25.161 58.705 56.955
15 1 0.264 0.382 1118.465 3205.290 33.257
20 1 memout
10 2 0.005 0.019 36.080 103.292 2.191
15 3 memout

Table 1: Experiments using the extended model, no policy (P−1).
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a number of reasons, notably the fact that STORM uses an efficient C++ parser, while
PRISM uses Java. To overcome these limitations, we considered two directions. First,
we considered the possibility to generate the explicit transition matrix files in the differ-
ent formats accepted by the STORM and PRISM model checkers (the generated files
with this flow are smaller than the symbolic approach, but still large and requiring large
computation and memory to handle them). Second, we followed the direction to have
a more strict integration with the model checker by linking the model checker in mem-
ory (thus avoiding intermediate file generation). In particular, we did a tight integration
with the STORM model checker by directly building in memory the data structures to
enable model checking. We have chosen STORM for two main reasons. Fist, it is writ-
ten in C++ while PRISM is written in Java. Second, STORM provides a clear API to
facilitate the integration in other tools. Currently, we are only building the sparse matrix
representation [14], and thus we are limited to the verification capabilities by STORM
with this model representation. (See https://www.stormchecker.org/ for further details.)

All the experiments have been executed on a cluster equipped with 112 Intel(R)
Xeon(R) CPU cores 2.20GHz and 256Gb of RAM. We considered a memory limit of
256GB and a CPU time limit of 5400 seconds.

We conducted experiments with varying population sizes N , hospital capacities C
and policies used. The values of Mmin and Mmax used were 1 and 5, respectively. The
values of tmin and tmax used were 1 and 3, respectively. These values are reasonable for
the population sizes we managed to consider (see the results later in this section). All
the values of the parameters (e.g., transition probabilities) were based on discussions
with experts. The precise values used in all these experiments can be found in the afore-
mentioned bitbucket Git repository of the tool. We performed the experiments on two
versions of the model: i) the “full” model described in previous section (the results are
reported in Tables 1 and 2), and ii) the “reduced” model, which does not consider the
possibility of entering in quarantine (Q) and the possibility for an asymptomatic to re-
cover (Ra) (the results are reported in Tables 3 and 4 in the appendix). Moreover, we
also considered the effects of the different considered policies. Tables 1 and 3 report
the results for P−1, while Tables 2 and 4 show cases for policies P0, P1 and P2. In
the experiments with policies P0, P1, P2 we considered the verification of the PCTL
formula P=?[FO = C] (i.e. the probability of eventually reaching a state in which the
hospital is saturated), while in the experiments with P0, we find minimum and maxi-
mum probabilities (Pmin=?[FO = C] and Pmax=?[FO = C], respectively). These
properties were chosen given the interest of experts and decision makers of knowing the
probabilities to saturate hospitals in different conditions. Constant policies ConstHigh
and ConstLow use the M values of 1 and 5, respectively. With Adapt1 we denote the
adaptive policy with T↓ = 0.1 and T↑ = 0.5. Adapt2 denotes the adaptive policy with
T↓ = 0.05 and T↑ = 0.15.

For each experiment we report: i) the time in seconds required to build the com-
plete transition matrix with the approach described in the previous section; ii) the time
in seconds to fill and build the model in memory within the STORM model checker;
iii) the time in seconds required by STORM to model check the given property on the
previously built model; iv) the computed probabilities for the considered properties.

https://www.stormchecker.org/
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Policy N C P Creation of T (s) STORM model creation (s) STORM model checking (s)

C
on

st
L

ow
P0 5 1 0.280 0.088 0.178 0.001
P0 10 1 0.300 25.111 33.044 0.170
P0 15 1 0.308 1131.249 988.710 5.031
P0 10 2 0.011 36.010 49.453 0.301
P0 15 3 0.0006 2371.702 2179.716 16.505
P0 20 4 memout

C
on

st
H

ig
h

P0 5 1 0.280 0.088 0.175 0.001
P0 10 1 0.300 25.032 33.642 0.182
P0 15 1 0.308 1130.826 956.313 5.050
P0 20 1 timeout
P0 10 2 0.011 35.977 48.314 0.304
P0 15 3 0.308 1130.826 956.313 5.051
P0 20 4 timeout

A
da

pt
1

P1 5 1 0.280 0.088 0.179 0.001
P1 10 1 0.300 25.279 34.985 0.181
P1 15 1 0.308 1132.725 957.143 5.005
P1 20 1 memout
P1 10 2 0.011 35.885 49.046 0.301
P1 15 3 timeout

A
da

pt
1

P2 5 1 0.280 0.088 0.187 0.001
P2 10 1 0.300 25.062 32.684 0.184
P2 15 1 0.308 1124.658 968.644 5.735
P2 20 1 memout
P2 10 2 0.011 35.931 48.781 0.306
P2 15 3 0.0006 2528.367 2473.946 15.958
P2 20 4 timeout

A
da

pt
2

P1 5 1 0.280 0.087 0.179 0.001
P1 10 1 0.300 25.048 32.583 0.169
P1 15 1 0.308 1134.407 974.875 5.013
P1 20 1 memout
P1 10 2 0.011 35.885 48.797 0.316
P1 15 3 timeout

A
da

pt
2

P2 5 1 0.280 0.088 0.183 0.001
P2 10 1 0.300 25.080 32.528 0.181
P2 15 1 0.308 1124.280 949.528 5.051
P2 20 1 memout
P2 10 2 0.280 0.088 0.347 0.001
P2 15 3 timeout

Table 2: Experiments using the extended model, policies P0, P1 and P2.

The results in the tables clearly show that the time is mostly divided between com-
puting the transition probability matrix and creating the STORM model (with checking
the property taking relatively little time). This is due to the large number of states and
transitions even for the small population sizes considered. With the hardware at our
disposal, we mostly manage to deal with population sizes up to 25. All the experiments
ran out of memory with larger values of N while computing the transition probability
matrix. We spent a significant engineering effort to limit this explosion trying to find
efficient methods to represent states and transitions, as well as memorizing the result of
the computation of the transition probabilities. However, despite this engineering effort,
the large state space required reached easily the limits of the hardware at our disposal.
We remark that, it is in principle possible to address scalability to large population
size by considering a unit of population in the model as the representative of a (larger)
number of people with a numerically quantifiable error (a similar approach has been
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discussed in [18], and is left as future work). The results also shows that, as expected,
the probability of hospitals being saturated increases with increasing population sizes
and decreases with greater hospital capacities.

We remark that, despite the limited scalability issues we encountered, this work
constitute a basis to challenge stochastic model checkers along different directions (e.g.,
expressivity to allow for a concise representation of cases like this one, and efficiency to
allow handle more realistic size scenarios). Moreover, it opens to the possibility to lever-
age the feature provided by stochastic model checkers to compute policies to achieve
given properties of interest for a decision maker (although we have not yet experimented
with this feature, and we will leave as future work).

5 Related works
There have been several works that addressed the problem of mathematically mod-
eling the spread of diseases [3,15,1,5,11,10,4,16,24]3. These works consider models
where the population has been break down into several compartments like e.g. the
Susceptible-Infected-Recovered (SIR) model which is a simplified version w.r.t. the
one adopted in this paper. Some of the recent works (like e.g. [1,5]) focused on ana-
lyzing strategies to keep in check the evolution of the epidemic leveraging the control
variables with the goal to construct interesting control theoretical results. For instance,
in [11] has been presented a model with many compartments. In [16] has been ana-
lyzed the problem of stability, while policies for COVID-19 based on Optimal Control
are discussed in [24]. All of these models are deterministic and aim at capturing the
disease dynamics. Stochastic models, differently from deterministic ones, allows to de-
rive richer set of informations. For instance, stochastic models i) may converge to a
disease-free state even if the corresponding deterministic models converge to an en-
demic equilibrium [2]; ii) may allow for computing the probability of an outbreak, the
distribution of the final size of a population or the expected duration of an epidemic
(see e.g. [5,22]); iii) may allow to quantify the probability of transition between differ-
ent state of COVID-19-affected patients based on the age class (see e.g. [25]); iv) al-
low to evaluate the effects of lock-down policies (see e.g. [21]). An important class of
models amenable to analytical analysis are Markov Processes [6,1]. When we observe
the system in discrete–time, Markov Models are called discrete-time Markov chains
(DTMC). When command variables become part of the model, Markov Models are
called Markov Decision Processes (MDP), and where not all states are directly observ-
able (e.g., asymptomatic persons), we have a Partially Observable MDPs (POMDP).
These models, contrary to other stochastic models such as Stochastic Differential Equa-
tions (SDE), adopt a numerable state space composed of discrete variables.

In the literature two paradigms have been adopted to model a disease spread as a
DTMC, namely the Reed-Frost model and the Greenwood model [9,23]. In all these
models the transition probabilities are governed by binomial random variables. Ex-
tensions of this model were presented by. The use of stochastic models opens for the
possibility to use Stochastic Model Checking in order to study probabilistic temporal
properties to evaluate the effects of a strategy on a population during the evolution of a

3 We refer the reader to [19] for a more detailed discussion of the literature on modeling and
analyzing the spread of diseases with analytical models.
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disease [20,8,7]. An adapted version of the Susceptible-Exposed-Infectious-Recovered-
Delayed-Quarantined (Susceptible/Recovered) continuous time Markov chain model
has been used in [20] to analyze the spread of internet worms using the PRISM model
checker [17]. A stochastic model to compute with the PRISM model checker the min-
imum number of influenza hemagglutinin trimmers required for fusion to be between
one and eight has been proposed in [8]. The use of stochastic simulations to compute
timing parameters for a timed automaton has been studied in [7]. All these stochas-
tic models are rather simplified and abstract models of the disease spread, and the main
reason for such is tractability. Indeed, considering large models with complex dynamics
(as shown in this paper) reach quickly to computation limits even on recent computa-
tion infrastructures. Moreover, all these models, to make the model tractable by model
checkers, enforce that only one subject can change her/his state across one transition or
do not consider command variables. In this work, leveraging on the stochastic model
defined in [19] we allow for multiple subjects to change state simultaneously across one
transition, and we allow for command variables. In this work we show the limits of this
more realistic model and show challenges for making next generation stochastic model
checkers suitable for analyzing complex disease stochastic models.

The problem of scalability of epidemic models has been discussed in [18,12]. The
work in [18] addressed the scalability to large population size by considering a unit of
population in the model as the representative of a number of people. [12] addresses the
problem by considering a graph of MDPs, each governed by the same update rules, that
interact with their neighbors following the given graph topology. It would be interest-
ing to see how verification techniques could leverage these abstractions to address the
scalability issues. However, this is left to future work.

6 Conclusions and future works
In this paper we considered the study of an epidemic model for the evolution of diseases
modeled with stochastic models in form of Markov Processes, and we showed how to
encode such complex model into formalisms suitable for being analyzed with state-
of-the-art stochastic model checkers. We developed an open source tool that given the
parameters of the epidemic model is able to generate models in the PRISM formalism
(a widely used formalism), as well as to build directly in memory the STORM sparse
model by linking our tool with the STORM model checker. We used the developed tool
to study the model with increasing population sizes, analyzing the models against given
temporal properties, and evaluating the effects of different control policies w.r.t. some
interesting temporal properties. The results showed that the approach is feasible, but it
is subject to scalability issues even with small population sizes. Moreover, this work
highlighted several challenges for the community to address large population sizes on
one hand, and espressivity requirements on the input languages on the other hand to
simplify the specification of such complex mathematical models.

As future work, we want to investigate the use of abstraction techniques to improve
the performance and to handle large population sizes. Moreover, we aim also to leverage
the framework to synthesize policies with a clear guarantee on the respective effects.
In terms of modeling, the model could be further extended to consider the vaccinated
population as well as vaccinations.
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A Algorithms for computing the transition probabilities
The algorithms to compute the transitions and the associated probabilities from a state
vector ~Vk given exactly Mk encounters, and exactly tk tests.

Algorithm 1 TRANSITIONS(~Vk,Mk, tk) : Transitions from state ~Vk subjected to Mk

encounters, and tk tests.
Input: ~Vk = [Sk, Ak, Ik, Rk, Ok, Dk, Qk, Rak], Mk, tk
Output: Trans
1: Trans = ∅
2: for δ1 = 0 to Sk do
3: for δ2 = 0 to Ak do
4: for δ3 = 0 to Ak − δ2 do
5: for δ4 = 0 to Ik do
6: for δ5 = 0 to Ik − δ4 do
7: for δ6 = 0 to Ik − δ4 − δ5 do
8: for δ7 = 0 to Ok do
9: for δ8 = 0 to Ok − δ7 do

10: for δ9 = 0 to Ak − δ2 − δ3 do
11: for δ10 = 0 to Qk do
12: for δ11 = 0 to Qk − δ10 do
13: Sk+1 = Sk − δ1
14: Ak+1 = Ak + δ1 − δ2 − δ3 − δ9
15: Ik+1 = Ik + δ10 + δ2 − δ4 − δ5 − δ6
16: Rk+1 = Rk + δ4 + δ8 + δ11
17: Ok+1 = Ok + δ5 − δ7 − δ8
18: Dk+1 = Dk + δ6 + δ7
19: Qk+1 = Qk + δ9 − δ10 − δ11
20: Rak+1 = Rak + δ3
21: ~Vk+1 = [Sk+1, Ak+1, Ik+1, Rk+1, Ok+1, Dk+1, Qk+1, Rak+1]
22: Trans = Trans ∪ 〈~Vk, 〈Mk, tk〉, ~Vk+1,Pr{~Vk+1 |~Vk}〉
23: return Trans

The transitions from a state vector ~Vk subjected to encounters from a set of mini-
mum encounters Mmin to a maximum of Mmax encounters, and tests from a minimum
of Tmin to a maximum of Tmax can be computed with Algorithm 2.

Algorithm 2 TRANSITIONS(~Vk,Mmin,Mmax, tmin, tmax) : Transitions from state ~Vk
subjected to encounters from Mmin to Mmax, and tests from tmin to tmax.
Input: ~Vk = [Sk, Ak, Ik, Rk, Ok, Dk, Qk, Rak], Mmin, Mmax, tmin, tmax

Output: Trans
1: Trans = ∅
2: for m =Mmin to Mmax do
3: for t = tmin to tmax do
4: Trans = Trans ∪ TRANSITIONS(~Vk,m, t)
5: return Trans

B Additional experimental evaluation
Results for the experimental evaluation considering the reduced model where there are
not quarantined and there is no possibility for asymptomatic to recover.
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N C Pmin Pmax
Transition matrix
creation (s)

STORM model
creation (s)

STORM model
checking (s)

5 1 0.376 0.672 0.012 0.002 0.002
10 1 0.423 0.872 0.933 0.421 0.236
15 1 0.442 0.931 17.846 13.734 7.200
20 1 0.452 0.948 174.414 189.355 117.356
25 1 0.459 0.953 1158.304 1569.474 2231.289
30 1 memout
10 2 0.036 0.275 1.437 0.805 0.247
15 3 0.003 0.110 41.746 51.842 7.114
20 4 0.0004 0.046 604.500 1314.256 94.942
25 5 memout

Table 3: Experiments using the reduced model, no policy (P−1).
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Parameters Policy N C P
Transition matrix
creation (s)

STORM model
creation (s)

STORM model
checking (s)

ConstLow P0 5 1 0.565 0.013 0.002 0.0004
ConstLow P0 10 1 0.720 0.938 0.151 0.009
ConstLow P0 15 1 0.775 17.864 2.452 0.160
ConstLow P0 20 1 0.796 185.085 26.213 1.165
ConstLow P0 25 1 0.806 1316.994 134.697 5.518
ConstLow P0 30 1 memout
ConstLow P0 10 2 0.176 1.434 0.247 0.018
ConstLow P0 15 3 0.056 41.832 6.082 0.467
ConstLow P0 20 4 0.019 600.543 76.463 4.916
ConstLow P0 25 5 timeout
ConstHigh P0 5 1 0.565 0.013 0.002 0.0005
ConstHigh P0 10 1 0.720 0.947 0.153 0.009
ConstHigh P0 15 1 0.775 18.076 2.496 0.151
ConstHigh P0 20 1 0.796 183.782 22.601 1.153
ConstHigh P0 25 1 0.806 1223.294 141.436 5.652
ConstHigh P0 10 2 0.176 1.447 0.239 0.018
ConstHigh P0 15 3 0.056 41.967 6.116 0.483
ConstHigh P0 20 4 0.019 606.336 75.643 4.953
ConstHigh P0 25 5 timeout
Adapt1 P1 5 1 0.565 0.013 0.002 0.0004
Adapt1 P1 10 1 0.720 0.947 0.154 0.009
Adapt1 P1 15 1 0.775 18.447 2.576 0.158
Adapt1 P1 20 1 0.796 183.212 22.466 1.170
Adapt1 P1 25 1 0.806 1221.046 134.130 5.702
Adapt1 P1 10 2 0.176 1.455 0.237 0.018
Adapt1 P1 15 3 0.056 44.092 6.341 0.487
Adapt1 P1 20 4 0.019 646.790 82.957 5.172
Adapt1 P1 25 5 timeout
Adapt1 P2 5 1 0.565 0.013 0.002 0.0004
Adapt1 P2 10 1 0.720 0.947 0.154 0.009
Adapt1 P2 15 1 0.775 18.955 2.567 0.157
Adapt1 P2 20 1 0.796 183.792 23.435 1.139
Adapt1 P2 25 1 0.806 1299.858 138.476 5.565
Adapt1 P2 10 2 0.176 1.451 0.240 0.018
Adapt1 P2 15 3 0.056 44.013 6.304 0.486
Adapt1 P2 20 4 0.019 636.757 77.979 5.105
Adapt1 P2 25 5 timeout
Adapt2 P1 5 1 0.367 0.014 0.003 0.0006
Adapt2 P1 10 1 0.514 1.043 0.183 0.013
Adapt2 P1 15 1 0.596 19.987 2.971 0.192
Adapt2 P1 20 1 0.643 193.802 28.890 1.536
Adapt2 P1 25 1 0.671 1264.983 164.665 8.181
Adapt2 P1 10 2 0.082 1.659 0.311 0.027
Adapt2 P1 15 3 0.020 48.194 8.473 0.664
Adapt2 P1 20 4 0.005 699.542 122.907 7.225
Adapt2 P1 25 5 timeout
Adapt2 P2 5 1 0.367 0.014 0.003 0.0005
Adapt2 P2 10 1 0.514 1.065 0.183 0.012
Adapt2 P2 15 1 0.596 20.024 2.970 0.192
Adapt2 P2 20 1 0.643 193.420 27.144 1.416
Adapt2 P2 25 1 0.671 1286.592 165.563 7.132
Adapt2 P2 10 2 0.082 1.643 0.309 0.026
Adapt2 P2 15 3 0.020 48.357 8.465 0.6662
Adapt2 P2 20 4 0.005 690.604 106.317 7.093
Adapt2 P2 25 5 memout

Table 4: Experiments using the reduced model, policies P0, P1 and P2.
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