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Abstract. The facility location problems (FLPs) are a typical class of
NP-hard combinatorial optimization problems, which are widely seen in
the supply chain and logistics. Many mathematical and heuristic algo-
rithms have been developed for optimizing the FLP. In addition to the
transportation cost, there are usually multiple conflicting objectives in
realistic applications. It is therefore desirable to design algorithms that
find a set of Pareto solutions efficiently without enormous search cost.
In this paper, we consider the multi-objective facility location problem
(MO-FLP) that simultaneously minimizes the overall cost and maxi-
mizes the system reliability. We develop a learning-based approach to
predicting the distribution probability of the entire Pareto set for a given
problem. To this end, the MO-FLP is modeled as a bipartite graph op-
timization problem and two graph neural networks are constructed to
learn the implicit graph representation on nodes and edges. The network
outputs are then converted into the probability distribution of the Pareto
set, from which a set of non-dominated solutions can be sampled non-
autoregressively. Experimental results on MO-FLP instances of different
scales show that the proposed approach achieves a comparable perfor-
mance to a widely used multi-objective evolutionary algorithm in terms
of the solution quality while significantly reducing the computational
cost for search.

Keywords: Combinatorial optimization · Multi-objective optimization
· Graph neural network.

1 Introduction

Multi-objective combinatorial optimization (MOCO) has received considerable
attention over the past few decades due to its wide applications in the real-
world. In MOCO, there are multiple conflicting objectives, and it is often non-
trivial to optimize them simultaneously [1]. The multi-objective facility location
problem (MO-FLP) is a typical NP-hard MOCO problem. It aims to determine
an optimal set of facility locations that can satisfy all the customer demands
within certain constraints, while minimizing the total costs and maximizing the
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system reliability. Decisions made in facility location have a long-term impact
on numerous operational and logistical strategies and are critical to both private
and public firms [14].

A lot of work has been devoted to developing mathematical methods or hand-
crafted heuristic algorithms for solving MOCO problems. An intuitive approach
is to reduce a multi-objective problem to a single-objective problem by calcu-
lating the weighted sum of multiple objectives. However, assigning a suitable
weight to each objective introduces an additional hyperparameter optimization
problem. Evolutionary algorithms (EAs) have been successful in approximat-
ing the Pareto set of MOCOs by maintaining and updating a set of solutions
[7,34,6]. However, EAs and other population-based methods often require a large
number of function evaluations during the search process, incurring prohibitive
computing overhead when the objective functions are expensive to evaluate [17].
Moreover, it is difficult to resue the knowledge about the optimal sets of solutions
for other instances of the same problem that have already been solved.

Most existing work considers MOCO as constrained mixed-integer linear pro-
gramming, overlooking the highly structured nature of the combinatorial op-
timisation problems. For example in the facility location problem (FLP), the
locations of all facilities and customers can be represented by a set of nodes
separately, and the transport overhead is the weight of the edge connecting two
nodes from different sets. Generally, permutation-based COPs can be formulated
as sequential decision-making tasks on graphs [18], and matching-based COPs
can be considered as node and edge classification or prediction tasks on graphs.
Therefore, machine learning methods can be used to extract high-dimensional
characteristics of the graph-based problems and learn optimal policies to solve
COPs instead of relying on handcrafted heuristics [1,31]. Graph neural networks
(GNNs) can exploit the message passing scheme to learn the structural informa-
tion of nodes and edges efficiently according to the graph topology. Consequently,
GNNs are well-suited for tackling the MOCO problems [16,11,4]. However, most
existing methods focus on solving permutation-based problems and only consider
one single objective, neglecting the study of more commonly seen matching-based
multi-objective COPs [9].

In this paper, we propose a learning-based approach leveraging graph con-
volutional networks (GCNs) to approximate the Pareto set distribution of the
multi-objective facility location problem. The overall framework is shown in
Fig. 1. The problem is formulated as a bipartite graph with edge connections be-
tween two independent sets of nodes. The model consists of two different residual
gated GCNs for node classification and edge prediction tasks, respectively. The
model takes bipartite graphs as the input, and transforms the original node and
edge features into high-dimensional embeddings. Several residual gated graph
convolutional layers are used to learn the structural information from the graph
topology and update the embeddings iteratively. The output of the first GCN is a
prediction of the probability of each factory being selected in the Pareto optimal
solutions. The output of the second GCN is a probabilistic model in the form of
an adjacency matrix, denoting the probability of each customer being assigned
to each selected factory. The output probability models can be sampled directly
to generate a set of Pareto solutions in a one-shot manner. The two networks are
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Fig. 1: An overview of the proposed approach. The MO-FLP instance is con-
verted into a bipartite graph as the input to the GCNs. The two GCN mod-
els perform node classification and edge prediction and output the probability
models, which are co-sampled to generate a set of non-dominated solutions in a
one-shot manner.

trained coordinately by supervised learning. The training data is a large set of
MO-FLP instances with various Pareto optimal solutions generated by a multi-
objective evolutionary algorithms, e.g., the fast elitism non-dominated sorting
genetic algorithm (NSGA-II) [7]. The main contributions of this paper include:

1. We formulate the MO-FLP as a bipartite graph optimization task and de-
velop a novel learning-based combinatorial optimization method to directly
approximate the Pareto set of new instances of the same problem without
extra search.

2. We propose an end-to-end probabilistic prediction model based on two GCNs
for node and edge predictions, respectively, and train the model with a su-
pervised learning using data generated by a multi-objective evolutionary
algorithm.

3. We demonstrate the efficiency of our proposed method for solving MO-
FLP instances with different scales. Our experimental results show that
the learning-based approach can approximate a set of Pareto optimal so-
lutions without additional search, significantly reducing the computational
cost compared to population-based algorithms.

2 Related Work

2.1 Facility Location Problem

FLPs are a typical class of NP-hard combinatorial problems in operations re-
search [23]. FLPs consider choosing an optimal set of facilities among all the
potential sites and determines an allocation scheme for all customers, under the
constraints that all customer demands must be satisfied by the constructed facil-
ities. A common objective of FLPs is to minimize the total costs, which consist
of the transportation cost and the fixed cost.

FLPs have several variants depending on different constraint settings and
objective functions. Each candidate facility may have a limited or unlimited
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maximum capacity, which classifies the problems into capacitated and uncapac-
itated facility location problems. When the number of established facilities is
fixed to k, there are two variants, namely the k-median problem [30] and the k-
center problem [5]. The k-median problem minimizes the sum of distances from
each customer to the closest facility, while the k-center problem minimizes the
maximum value of a distance from a customer to the closest facility. Another
category of variants is the covering problem, where the problems share a prop-
erty that a customer can receive the service only if it is located with a certain
distance from the nearest facility [10]. The set covering problem aims to find a set
of facilities with the minimum number that can satisfy all customers’ demands.
The maximum covering problem intends to find a set of facilities with a fixed
number to maximize the total demands it covers. From an objective perspective,
FLPs and its variants can be divided into single- and multi-objective problems.
In addition to the overall costs, multi-objective facility location problems may
also include other practical objectives such as the system reliability in logistics,
which is quite desirable in real-world applications [9].

2.2 Graph Representation Learning

Graph-structured data is ubiquitous in daily life. Various kinds of data can be
naturally expressed as graphs, such as social relationships, telecommunication
networks, chemical molecules, and also combinatorial optimization tasks [33].
Generally, a graph is a collection of objects (nodes) along with a set of interac-
tions (edges) between pairs of them [15]. With the development of machine learn-
ing techniques, graph representation learning has attracted increasing attention
for in-depth analysis and effective utilization of graph data. Graph representa-
tion learning derives node and edge embeddings based on the graph topology for
a variety of downstream tasks in machine learning, such as node classification
[32], edge prediction [21], and graph clustering. The traditional graph representa-
tion methods neither use the node features nor share parameters in the encoder,
and are not able to generalize to unseen nodes after training. To alleviate these
limitations, graph neural networks are proposed to learn node embeddings in a
more explainable way based on the topology and attributes of the input graph
[33,36]. Early attempts made by Sperduti and Starita [29] dealt with arbitrary
structured data as directed acyclic graphs with recursive neural networks. Gori
[13] and Scarselli [28] generalized the recursive neural networks for other types
of graph structures and introduced the concept of graph neural networks. With
the compelling performance shown by convolutional neural networks in computer
vision tasks, a lot of work has been devoted to the transfer of convolution opera-
tors to graph domain [35], which can be categorized into spectral-based methods
[3,8,24] and spatial-based methods [12,26,25]. GNNs have been practically ap-
plied to various domains and achieved encouraging performance [18,16,11].

2.3 Machine Learning for Combinatorial Optimization on Graphs

NP-hard combinatorial optimization problems are non-trivial to solve, but the
instances are relatively easy to generate. In many practical scenarios, decision-
makers need to solve different instances of the same optimization task, where
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the instances share the same problem structure and only differ in data [1,20,4].
Traditional heuristic methods require extensive expert knowledge and a huge
computational cost, and their solutions cannot be transferred to other instances.
To address this limitation, recent years have seen a surge in research on machine
learning approaches to combinatorial optimization to automate the solution of
different instances of combinatorial optimization problems [31,4]. Combinatorial
optimization problems often depict a collection of entities and their relations,
which are graph-structured data in essence. Therefore, many GNN-based ma-
chine learning methods are proposed to solve combinatorial optimization prob-
lems [18,19,20]. Kool et al. developed a GNN model in an encoder-decoder archi-
tecture based on attention layers, and trained it using REINFORCE for solving
routing problems [22]. In addition to solving COPs directly, machine learning
techniques can also be used to provide valuable information to operation re-
search algorithms [11]. Although a lot of effort has been devoted to developing
ML methods for COPs, most work has focused on single-objective permutation-
based problems, and little research on multi-objective matching-based problems
has been reported.

3 Problem Formulation

This section begins with a formal definition of the multi-objective uncapacitated
facility location problem, which is mathematically formulated as integer linear
programming. Subsequently, we discuss how to measure the logistics system
reliability in facility location problems.

Multi-objective uncapacitated facility location. Consider a set of can-
didate facility locations and a set of demand points (customers) with fixed lo-
cations. Every customer has its own quantity of demand to be satisfied. Each
potential facility has its own fixed cost for construction, and there are different
transportation costs between facilities and customers associated with their dis-
tances. Each customer should be served by only one facility, while each facility
can serve multiple customers simultaneously. The target is to identify the se-
lected collection of facilities for construction and assign an allocation plan for
all customers, in order to minimize the total costs and maximize the system
reliability.

Mathematical Formulation. With the minimization of the total costs (in-
cluding fixed costs and transportation costs) and the maximization of the system
reliability as the two objectives, the multi-objective uncapacitated facility loca-
tion problem can be defined as follows:

minCtotal =
∑
i∈M

fiXi +
∑
i∈M

∑
j∈N

qjdijcijYij (1)

maxRsys =

∑
i∈M

∑
j∈N qjXi

[
1− FVij

(
dij

tj

)]
∑

j∈N qj
(2)

s.t.
∑
i∈M

Yij = 1 j ∈ N (3)
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Xi, Yij = {0, 1}, Yij ≤ Xi i ∈M, j ∈ N (4)

In the MO-FLP, assume there are m candidate facility locations denoted as a
set M = {1, 2, . . . ,m}, and n customer points denoted as a set N = {1, 2, . . . , n}.
fi ∈ R+ denotes the fixed cost of constructing the facility at candidate location
i (i ∈M), and qj ∈ R+ is the demand volume of customer j (j ∈ N). dij ∈ R+

and cij ∈ R+ are the distance and the unit transportation cost between facility
i and customer j respectively. Vij denotes the speed for vehicles travelling from
facility i to customer j, and FVij

(·) is a statistically regular velocity distribution.
tj is the delivery timescale required by customer j.

The decision variables areXi ∈ {0, 1}, which denotes whether facility location
j is selected (Xi = 1) or not (Xi = 0), and Yij ∈ {0, 1}, which denotes whether
customer j is served by facility i (Yij = 1) or not (Yij = 0). The two objectives
are the minimization of the total costs Ctotal and maximization of the system
reliability Rsys.

Logistics system reliability. Reliability is the probability that a system
performs its intended function under the stated conditions [27]. Logistics system
reliability is defined as the probability at which the system will successfully
provide services to customers under certain conditions and within a specified
time. System reliability is a common metric for assessing service levels in modern
logistics. The service reliability Rij between factory i and customer j is defined
as:

Rij = P (Tij ≤ tj) = P

(
dij
Vij
≤ tj

)
= P

(
Vij ≥

dij
tj

)
= 1− FVij

(
dij
tj

)
, (5)

where Tij is the time cost for delivery from facility i to customer j, and FVij (·) is
a statistically regular velocity distribution function that usually follows the char-
acteristics of a normal distribution. Based on this, the logistics system reliability
of facilities serving multiple customers is calculated by:

Rsys =

∑
i∈M

∑
j∈N qjRij∑

j∈N qj
=

∑
i∈M

∑
j∈N qj

[
1− FVij

(
dij

tj

)]
∑

j∈N qj
(6)

4 Method

We first convert an MO-FLP instance to a bipartite graph based on its inherent
structural properties, and then train a dual GCN-based model to directly out-
put the probabilistic model of the Pareto optimal solutions for the given task.
The proposed model consists of two graph convolutional networks GCNnode and
GCNedge. GCNnode learns high-dimensional representations of nodes and out-
puts a probabilistic prediction for each node via a simple multi-layer perceptron
(MLP) classifier. Meanwhile, GCNedge learns high-dimensional edge representa-
tions and predicts the probability of each edge appearing in the Pareto optimal
solutions in the form of an adjacency matrix. The entire model is trained in
an end-to-end manner by minimizing the loss between predictions and ground-
truth labels. During the test, the output probabilistic model is sampled and
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converted into a set of non-dominated solutions in a non-autoregressive manner,
eliminating the requirement of further search when solving new instances.

4.1 Bipartite Optimization on MO-FLP

An instance of the MO-FLP is transformed into a bipartite graph G = (U, V,E),
whose vertices are divided into two independent sets U (including all candidate
facilities) and V (including all customers), and these two parts are connected by
a set of edges E. Within the graph, each facility in U contains the information
of its fixed cost, while each customer in V contains its demand and delivery
timescale information. The features of each edge in E contain the Euclidean
distance, the transportation cost and the reliability between the facility and the
customer it connects. The aim of converting the MO-FLP into a bipartite opti-
mization is to derive high-dimensional embeddings in the latent space through
graph representation learning, in order to predict optimal solutions by means of
machine learning.

4.2 The Dual GCN-based model

Overall framework. Note that a solution to an MO-FLP problem consists of
two parts: X = {Xi | i ∈ M} and Y = {Yij | i ∈ M, j ∈ N}. The decision
variable X first determines a subset of facilities to be constructed from all can-
didate locations, then the decision variable Y identifies the allocation scheme
between customers and the selected locations in X. According to the mathemat-
ical formulation in Section 3, the calculation of objective Ctotal in Equation 1
requires both X and Y as the decision variables, while the second objective Rsys

in Equation 2 is only determined by X. Leveraging the structural properties of
the MO-FLP problem discussed above, we propose to predict the two compo-
nents X and Y by designing two GCN models, one for node prediction and the
other for edge prediction.

As shown in Fig. 1, the proposed model consists of GCNnode and GCNedge,
which take the same bipartite graph as their input. More specifically, GCNnode

loads node and edge information and computes H-dimensional representations
for each node via iterative graph convolution operators. The last graph convo-
lution layer is followed by a multi-layer perceptron (MLP) classifier, where the
updated node embeddings are taken as its inputs to compute the probability of
each node being selected in decision variable X. The output of the classifier is
represented as a probabilistic model P (X) ∈ RM , where M is the number of
all candidate facilities. Simultaneously, GCNedge takes the same node and edge
information as input attributes and derives H-dimensional representations for
each edge. A following edge classifier is used to predict the probability of each
edge occurring in the Pareto optimal solutions in the form of a heat-map over the
adjacency matrix P (Y ) ∈ RM×N , where N is the number of all customers. The
outputs of the two GCN models indicate the information of X and Y , respec-
tively, which together constitute a prediction of the Pareto optimal solutions.
The GCN architectures adopted in the proposed model consist of three building
blocks: an embedding block, a graph convolution block and an MLP classifier.

Embedding block. The inputs to the embedding block are a set of orig-
inal node features hn = {~u1, ~u2, . . . , ~uM , ~v1, ~v2, . . . , ~vN} , ~ui ∈ RFu , ~vj ∈ RFv
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and edge features he = {~w11, ~w12, . . . , ~wMN} , ~wij ∈ RFe . M and N are the
numbers of facilities and customers, and Fu, Fv and Fe are the numbers of
features for different nodes and edges. The outputs of the embedding block
are node embeddings n = {~n1, ~n2, . . . , ~nM+N} , ~ni ∈ RH and edge embeddings
e = {~e11, ~e12, . . . , ~eMN} , ~eij ∈ RH , where H is the dimension of the hidden
space.

For node embeddings, each feature a ∈ R is first embedded in a d-dimensional
vector ~α ∈ Rd by a learnable linear transformation to get adequate expressive
power. Then all the feature vectors are concatenated together to get an embed-
ding ~ni for node i:

~ni = concatFn

k=1

(
~αk
i

)
(7)

Similarly, the edge embedding ~eij for the edge between node i and node j is
the concatenation of all the edge feature vectors:

~eij = concatFe

k=1

(
~βk
ij

)
(8)

The selection of node and edge features as the input to the embedding layers
depends on the problem’s characteristics, which should have a significant impact
on the objective function values. For the MO-FLP problem investigated in this
work, there are several candidate node features of the bipartite graph served as
input: the node category of the binary classification (i.e., whether a node belongs
to the facility set or the customer set), the demand volume of a customer, the
fixed cost of constructing a facility, the transportation costs and the reliability of
all edges connected to a node. And the input edge features include the adjacency
matrix of the bipartite graph, the transportation cost, and the reliability of an
edge.

Graph convolution block. The message passing process mainly occurs in
the graph convolution block by stacking several graph convolution layers sequen-
tially. It leverages the structure and properties of the input graph in order to
exchange information between neighbors and update node and edge embeddings
without changing the connectivity. The graph convolution adopted in our model
follows the framework of residual gated graph convolutional neural network [2],
where additional edge features and residual gated operators are integrated to
introduce heterogeneity in the message passing process.

In the graph convolution block, the inputs to the k-th layer are a set of
node embeddings nk =

{
~nk1 , ~n

k
2 , . . . , ~n

k
M+N

}
and a set of edge embeddings ek ={

~ek11, ~e
k
12, . . . , ~e

k
MN

}
where ~ni, ~eij ∈ RH . The k-th layer outputs an update set of

both node and edge embeddings with the same dimension H.
Let ~ekij denote the edge embedding between node i and node j at the k-

th GCN layer. In the message passing of ~eij (the superscript k is omitted for
simplicity), we first gather the associated node embeddings ~ni and ~nj as neigh-
borhood information, and aggregate all the messages as ~e ′ij . Then ~e ′ij is passed
through a batch normalization layer BN and the rectified linear unit ReLU, to
form the updated edge embedding ~ek+1

ij together with the original input ~ekij : :

~ek+1
ij = ~ekij + ReLU

(
BN

(
U~ekij + V

(
~nki + ~nkj

)))
, (9)
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where U,V ∈ RH×H are linear transformations. Suppose ~nki denotes the node
embedding of node i at the k-th layer. For updating ~ni, we first calculate the
weight vector ωij of each neighbor node j as:

ωij =
σ (~eij)∑

j∈Ni
σ (~eij) + δ

, (10)

where Ni denotes all the first-order neighbors of node i. σ represents the sigmoid
function, and δ > 0 is a small value. Then we gather the neighbor embeddings
~nj (j ∈ Ni) and define the output of the k-th convolution layer as:

~nk+1
i = ~nki + ReLU

(
BN

(
P~ni + Q

∑
j∈Ni

ωij~nj
))
, (11)

where P,Q ∈ RH×H are linear transformations. The stack of graph convolution
layers enables neighborhood messages to be progressively transferred within the
graph. The dimensionality of the embeddings remains the same, however, the
representation of each node and edge contains more local information in addition
to its original features.

MLP classifier. The updated representations are taken as inputs to an MLP
for classification tasks. For node prediction in GCNnode, we consider ~ni (i ∈M)
as the high-dimensional embedding of node i from the facility set M . For edge
prediction in GCNedge, we consider ~eij (i ∈M, j ∈ N) as the embedding of edge
between facility i and customer j. The probability p̂i ∈ [0, 1] of node i being
selected as a constructed facility and the probability p̂ij ∈ [0, 1] of facility i
serving customer j are predicted by:

p̂i = MLP(~ni), p̂ij = MLP(~eij) (12)

The weight parameters is trained in an end-to-end manner by minimizing
the mean square error between the prediction P̂ (X) = {p̂i | i ∈M} and the
ground-truth label P (X) = {pi | i ∈M} via gradient descent methods.

Since each customer must be served by only one facility, we consider the edge
prediction for each customer as a multi-class classification task and train the net-
work parameters by minimizing the cross entropy loss between the prediction
P̂ (Y ) = {p̂ij | i ∈M, j ∈ N} and the ground-truth label P (Y ) = {pij | i ∈M, j ∈ N},
where P (X) and P (Y ) are both derived from the Pareto optimal solutions.

End-to-end training. The dataset for training and testing the proposed
model is generated by a multi-objective evolutionary algorithm. We generate
MO-FLP instances of different scales (i.e., various numbers of facility and cus-
tomer nodes) and approximate their Pareto Fronts via the fast elitist non-
dominated sorting genetic algorithm (NSGA-II) [7]. Then the probabilistic dis-
tributions P (X) and P (Y ) for each instance are derived from a set of Pareto
optimal solutions, which serve as ground-truth labels for training and evaluating
the proposed model.
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5 Experiments

5.1 Dataset Generation and Hyperparameter Configurations

We consider MO-FLP problems with the following four different configurations:
M×N are set to 20×50, 20×100, 50×100, and 50×200. We randomly generate
1000 instances for each problem scale and optimize them using NSGA-II until
convergence to approximate the true Pareto fronts. Then the 1000 instances
for each scale are divided into a training dataset, a validation dataset and a
test dataset with 700, 200 and 100 pairs of instances and ground-truth labels,
respectively. During each training epoch, the training data is split into mini-
batches with a batch size B = 20 instances. The Adam optimizer is used to
train the weights of the proposed model with an initial learning rate of γ = 0.001
and a maximum number of 300 epochs. Both GCNnode and GCNedge consist of
lGCN = 3 graph convolutional layers and lMLP = 3 classification layers. The
dimension of the hidden space is set to H = 128 for node and edge embeddings.
During the test, we sample 200 solutions from the output prediction for each
instance and calculate the hypervolume (HV) and IGD value of the obtained
non-dominated solution sets as the performance indicators.

5.2 Experimental Results

There are two variants of our proposed model adopted in the experiments, named
Dual A and Dual B with different input features. Dual A takes the node cate-
gory, the customer demand and the fixed cost of each facility as the original node
features, while Dual B also considers the transportation costs and the service
reliability of all the edges associated with the node. Both architectures share the
same edge features as inputs. To investigate the model performance on MO-FLP
with various scales, we compare it to NSGA-II with different numbers of func-
tion evaluations (MFEs). We set the number of independent runs to 20 for the
compared algorithm, and calculate the mean and standard deviation of HV and
IGD values as the performance indicators. The population size is set to 100 for
all experiments.

Table 1 shows the performance of the proposed model compared to NSGA-II
in different problem scales. We train the dual GCN-based models with different
scales of the problem instances and evaluate them on test datasets. For each test
case, 200 solutions are first sampled from the predicted probability distribution
and evaluated by the objective functions to get a set of non-dominated solutions.
Then we calculate the mean HV and IGD values. Finally, for HV and IGD values
associated with each MFE configuration of NSGA-II, we count the percentage
of the cases in which the proposed model performs better than NSGA-II out of
the 100 test cases. The statistical results in Table 1 indicate that for an unseen
instance, by only sampling 200 solutions from the model, the performance of
the sampled solution set is already better than NSGA-II with more than 10000
function evaluations.

Figure 2 depicts the differences between the HV values of the solution sets
obtained by NSGA-II and the proposed model for different problem scales with
different MFEs. A positive difference means that the proposed model performs
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Table 1: The percentages of test instances where two variants of the proposed
model perform better than NSGA-II with different MFEs in terms of the two
indicators.

MFEs 10000 20000 30000 40000 50000

20 × 50
Dual A

HV 100% 98% 96% 75% 41%
IGD 100% 90% 63% 31% 20%

Dual B
HV 100% 98% 88% 69% 29%
IGD 100% 86% 55% 27% 8%

20 × 100
Dual A

HV 100% 100% 94% 76% 51%
IGD 100% 100% 86% 57% 45%

Dual B
HV 100% 100% 100% 100% 96%
IGD 100% 100% 100% 98% 90%

50 × 100
Dual A

HV 100% 100% 100% 73% 33%
IGD 100% 94% 63% 29% 2%

Dual B
HV 100% 100% 96% 61% 27%
IGD 100% 96% 53% 12% 0%

50 × 200
Dual A

HV 100% 100% 100% 76% 14%
IGD 100% 88% 43% 8% 0%

Dual B
HV 100% 100% 100% 100% 90%
IGD 100% 100% 98% 86% 69%

better than NSGA-II. These results reveal that the proposed model outperforms
NSGA-II when the MFEs is less than 40000 in most test cases for all scales. In
some cases the model performance is even comparable to that of NSGA-II with
50000 MFEs.

Case ID Case ID Case IDCase ID

Fig. 2: The difference in HV values between the proposed model and NSGA-II
with different MFEs.

5.3 Hyperparameter Sensitive Analysis

We investigate the influence of different graph convolution layers and hidden
dimensions on the two performance indicators, HV and IGD. We train the pro-
posed model with different numbers of GCN layers on the 20×20 training dataset,
and evaluate them on the test dataset with 100 unseen instances. The statistics
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of HV and IGD values are presented in the form of boxplots in Fig. 3(a). The
results demonstrate that the increase in the number of GCN layers has a little
impact on the model performance, and lGCN = 3 achieves a slightly better per-
formance. Similarly, we train the proposed model for different dimensions of the
hidden space and plot the statistical results of the two indicators in Fig. 3(b).
The model performance improves as the hidden dimension increases from 32 to
128. Note that a larger number of hidden layers and more GCN layers also lead
to higher computational costs in the training process.

(a) The impact of GCN layers. (b) The impact of hidden dimensions.

Fig. 3: Sensitivity analysis. (a) The effect of different GCN layers. (b) The effect
of different hidden dimensions.

6 Conclusion and Future Work

This paper proposes a learning-based approach to directly predicting a set of
non-dominated solutions for multi-objective facility location. We convert the
original combinatorial optimization problem into a bipartite graph, and train
two GCN models for predicting Pareto optimal solutions for unseen instances by
learning the distribution of Pareto optimal solutions in previously solved exam-
ples. Experimental results on different scales of MO-FLP instances demonstrate
that by only sampling hundreds of solutions, the proposed dual GCN-based
approach can achieve a performance comparable to NSGA-II using up to tens
of thousands of function evaluations. Future work will focus on improving the
model scalability and exploring the heterogeneity of the input graphs in order to
generalize the proposed approach to more complex and realistic problems with
conflicting objectives and multiple constraints.
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