Skip to main content

Online Learning Hyper-Heuristics in Multi-Objective Evolutionary Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13970))

Abstract

Well-defined Hyper-Heuristics enhance the generalization of MOEAs and the blind usability on complex and even dynamic real-world application. Previous works already showed, that Hyper-Heuristics as selectors of crossover operators improve the performance of a single algorithm used on two opposing problem properties. In this paper, we present different selection mechanisms of Hyper-Heuristics, that are able to handle an expanded selection pool to cover more properties. We solve 20 benchmark problems with NSGA-II using those Hyper-Heuristics. By comparing the learning behaviour and the IGD trends of fixed crossover operator usages, we confirm that a combination of operators could outperform the best fixed operator. From the introduced Hyper-Heuristics in this paper, HHX-A made the best use of this advantage. It selects either all operators or a single operator alternately and learns fast which operators to prioritize to optimize the production. Due to periodic resets of the score, the Hyper-Heuristic is able to adapt fast to changes of the current state of the solving process. Although the pool is bigger and more diverse, we are able to show that HHX-A decides reasonably and fast. Therefore, it works well on a bigger set of problems with different properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beyer, H.G., Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans. Evol. Comput. 5(3), 250–270 (2001). https://doi.org/10.1109/4235.930314

    Article  Google Scholar 

  2. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013). https://doi.org/10.1057/jors.2013.71

    Article  Google Scholar 

  3. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  Google Scholar 

  4. Deb, K., Joshi, D., Anand, A.: Real-coded evolutionary algorithms with parent-centric recombination. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat. No.02TH8600), vol. 1, pp. 61–66 (2002). https://doi.org/10.1109/CEC.2002.1006210

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  6. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  8. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007). https://doi.org/10.1016/j.amc.2006.10.047, https://linkinghub.elsevier.com/retrieve/pii/S0096300306014287

  9. Drake, J., Kheiri, A., Özcan, E., Burke, E.: Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285, 405–428 (2020). https://doi.org/10.1016/j.ejor.2019.07.073

    Article  MathSciNet  MATH  Google Scholar 

  10. Fritsche, G., Pozo, A.: A hyper-heuristic collaborative multi-objective evolutionary algorithm. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 354–359 (2018). https://doi.org/10.1109/BRACIS.2018.00068

  11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  12. Hong, L., Drake, J.H., Woodward, J.R., Özcan, E.: Automatically designing more general mutation operators of evolutionary programming for groups of function classes using a hyper-heuristic. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 725–732. ACM, Denver Colorado (2016). https://doi.org/10.1145/2908812.2908958, https://dl.acm.org/doi/10.1145/2908812.2908958

  13. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  14. Ono, I., Kita, H., Kobayashi, S.: A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self-adaptation of crossover probabilities, p. 8

    Google Scholar 

  15. Pan, L., Xu, W., Li, L., He, C., Cheng, R.: Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evol. Comput. 60, 100759 (2021). https://doi.org/10.1016/j.swevo.2020.100759, https://www.sciencedirect.com/science/article/pii/S2210650220304120

  16. Pang, L.M., Ishibuchi, H., Shang, K.: Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of various test problems. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1486–1494 (2021). https://doi.org/10.1109/CEC45853.2021.9504748

  17. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Natural Computing Series, Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96514-7

  18. Qingfu Zhang, Aimin Zhou, Yaochu Jin: RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Compu. 12(1), 41–63 (2008). https://doi.org/10.1109/TEVC.2007.894202, http://ieeexplore.ieee.org/document/4358761/

  19. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 529–556. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_17

    Chapter  Google Scholar 

  20. Storn, R.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces, p. 16

    Google Scholar 

  21. Syswerda, G.: Uniform crossover in genetic algorithms (1989)

    Google Scholar 

  22. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  23. Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex crossover in real coded genetic algorithms, p. 9

    Google Scholar 

  24. Venske, S.M., Almeida, C.P., Delgado, M.R.: Comparing selection hyper-heuristics for many-objective numerical optimization. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1921–1928 (2021). https://doi.org/10.1109/CEC45853.2021.9504934

  25. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202, https://direct.mit.edu/evco/article/8/2/173-195/868

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Heise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heise, J., Mostaghim, S. (2023). Online Learning Hyper-Heuristics in Multi-Objective Evolutionary Algorithms. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics