Skip to main content

MACO: A Real-World Inspired Benchmark for Multi-objective Evolutionary Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13970))

Included in the following conference series:

  • 842 Accesses

Abstract

The multi-agent coordination (MACO) problem is a real-world inspired multi-objective optimization problem for evolutionary algorithms. It recreates the challenges that are present in optimizing the real-world multi-objective multi-agent pathfinding (MOMAPF) problem. The MACO problem is a scalable, real-valued problem with two objective functions and a known optimal solution. Besides the base version, three variants are proposed, which are based on different properties of the real world MOMAPF problem. Independent sub-problems can be introduced using interaction classes, the multi-modality of the problem can be modified through a set of weights, and the interaction rate between the variables can be altered using the p-norm to approximate the min operator present in the second objective. In our experiments, we assess the performance of three popular multi-objective evolutionary algorithms, both for the basic version and all proposed variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benecke, T., Mostaghim, S.: Tracking the heritage of genes in evolutionary algorithms. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1800–1807 (2021). https://doi.org/10.1109/CEC45853.2021.9504916

  2. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567. arXiv: 2002.04504

  3. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022)

    Article  Google Scholar 

  4. Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. Complex Syst. (1995). https://www.semanticscholar.org/paper/Simulated-Binary-Crossover-for-Continuous-Search-Deb-Agrawal/b8ee6b68520ae0291075cb1408046a7dff9dd9ad

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 825–830 (2002). https://doi.org/10.1109/CEC.2002.1007032

  6. Deb, K., Agrawal, S.: A niched-penalty approach for constraint handling in genetic algorithms. In: Dobnikar, A., Steele, N.C., Pearson, D.W., Albrecht, R.F. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 235–243. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-6384-9_40

    Chapter  Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  9. Honig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Persistent and robust execution of MAPF schedules in warehouses. IEEE Robot. Autom. Lett. 4(2), 1125–1131 (2019). https://doi.org/10.1109/LRA.2019.2894217

    Article  Google Scholar 

  10. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  11. Ishibuchi, H., He, L., Shang, K.: Regular pareto front shape is not realistic. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2034–2041 (2019). https://doi.org/10.1109/CEC.2019.8790342

  12. Javadi, M., Mostaghim, S.: Using neighborhood-based density measures for multimodal multi-objective optimization. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 335–345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_27

    Chapter  Google Scholar 

  13. Mai, S., Mostaghim, S.: Modeling pathfinding for swarm robotics. In: Dorigo, M., Stützle, T., Blesa, M.J., Blum, C., Hamann, H., Heinrich, M.K., Strobel, V. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_15

    Chapter  Google Scholar 

  14. Ochalek, M., Jenett, B., Formoso, O., Gregg, C., Trinh, G., Cheung, K.: Geometry systems for lattice-based reconfigurable space structures. In: 2019 IEEE Aerospace Conference, pp. 1–10 (2019). https://doi.org/10.1109/AERO.2019.8742178. ISSN 1095-323X

  15. Ren, Z., Zhan, R., Rathinam, S., Likhachev, M., Choset, H.: Enhanced multi-objective A * using balanced binary search trees. Technical report (2022)

    Google Scholar 

  16. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Meta-agent conflict-based search for optimal multi-agent path finding. In: Proceedings of the 5th Annual Symposium on Combinatorial Search, SoCS 2012, pp. 97–104 (2012). ISBN 9781577355847

    Google Scholar 

  17. Smedberg, H., Bandaru, S.: Finding influential variables in multi-objective optimization problems. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 173–180 (2020). https://doi.org/10.1109/SSCI47803.2020.9308383

  18. Steup, C., Parlow, S., Mai, S.: Generic component-based mission-centric energy model for micro-scale unmanned aerial vehicles. Drones 4(63), 1–17 (2020). https://doi.org/10.3390/drones4040063

    Article  Google Scholar 

  19. Surynek, P., Felner, A., Stern, R., Boyarski, E.: An empirical comparison of the hardness of multi-agent path finding under the makespan and the sum of costs objectives. In: Proceedings of the 9th Annual Symposium on Combinatorial Search, SoCS 2016, pp. 145–146 (2016). ISBN 9781577357698

    Google Scholar 

  20. Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 89, 106078 (2020)

    Article  Google Scholar 

  21. Weise, J., Mai, S., Zille, H., Mostaghim, S.: On the scalable multi-objective multi-agent pathfinding problem. In: 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings (2020). https://doi.org/10.1109/CEC48606.2020.9185585

  22. Weise, J., Mostaghim, S.: Scalable Many-Objective Pathfinding Benchmark Suite, pp. 1–10 (2020). https://arxiv.org/abs/2010.04501. arXiv: 2010.04501

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  24. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: Mutation operators based on variable grouping for multi-objective large-scale optimization. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 (2017). https://doi.org/10.1109/SSCI.2016.7850214. ISBN 9781509042401

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Benecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, S., Benecke, T., Mostaghim, S. (2023). MACO: A Real-World Inspired Benchmark for Multi-objective Evolutionary Algorithms. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics