Skip to main content

Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction

  • Conference paper
  • First Online:
  • 763 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13970))

Abstract

The analysis of animal trade movements plays a crucial role in understanding the spreading of zoonotic diseases in livestock. This article addresses the problem of predicting sending or receiving animal transports by farms and other premises. Two recurrent neural network models are used for this task: classical Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. Optimization of neural network weights is performed using the MOEA/D algorithm with the goal of obtaining good trade-offs between the false positive (FP) and true positive (TP) rates. The results show, that neural classifiers optimized on historical data (in this article taken from the years 2017–2019) can be used for making predictions on future data (in this article taken from the year 2020) without a serious degradation of the classification quality. In the experiments, the overall performance of the RNN model was better than that of the LSTM model, however, the LSTM performed slightly better than the RNN in the range of lower FP rates. The results of this study motivate further research on using predictive models for optimizing counter-epidemic measures, for example vaccination campaigns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLOS One 6(5), 1–19 (2011)

    Article  Google Scholar 

  2. Belhaj, S., Tagina, M.: Modeling and prediction of the internet end-to-end delay using recurrent neural networks. J. Netw. 4, 528–535 (2009)

    Google Scholar 

  3. Berhich, A., Belouadha, F.Z., Kabbaj, M.I.: A location-dependent earthquake prediction using recurrent neural network algorithms. Soil Dyn. Earthq. Eng. 161, 107389 (2022)

    Google Scholar 

  4. Bigras-Poulin, M., Barfod, K., Mortensen, S., Greiner, M.: Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread. Prev. Vet. Med. 80(2), 143–165 (2007)

    Article  Google Scholar 

  5. Büttner, K., Krieter, J., Traulsen, A., Traulsen, I.: Static network analysis of a pork supply chain in Northern Germany - characterisation of the potential spread of infectious diseases via animal movements. Prev. Vet. Med. 110(3), 418–428 (2013)

    Article  Google Scholar 

  6. Capanema, C.G., de Oliveira, G.S., Silva, F.A., Silva, T.R., Loureiro, A.A.: Combining recurrent and graph neural networks to predict the next place’s category. Ad Hoc Netw. 138, 103016 (2023)

    Google Scholar 

  7. De Mulder, W., Bethard, S., Moens, M.F.: A survey on the application of recurrent neural networks to statistical language modeling. Comput. Speech Lang. 30(1), 61–98 (2015)

    Article  Google Scholar 

  8. Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)

    Google Scholar 

  10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  11. Ezanno, P., Arnoux, S., Joly, A., Vermesse, R.: Rewiring cattle trade movements helps to control bovine paratuberculosis at a regional scale. Prev. Vet. Med. 198, 105529 (2022)

    Google Scholar 

  12. Hidano, A., Carpenter, T.E., Stevenson, M.A., Gates, M.C.: Evaluating the efficacy of regionalisation in limiting high-risk livestock trade movements. Prev. Vet. Med. 133, 31–41 (2016)

    Article  Google Scholar 

  13. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  14. Liu, C., Kroll, A.: Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. Springerplus 5(1), 1–29 (2016). https://doi.org/10.1186/s40064-016-3027-2

    Article  Google Scholar 

  15. Marhon, S.A., Cameron, C.J.F., Kremer, S.C.: Recurrent neural networks. In: Bianchini, M., Maggini, M., Jain, L.C. (eds.) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol. 49, pp. 29–65. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36657-4_2

    Chapter  Google Scholar 

  16. Marsot, M., Canini, L., Janicot, S., Lambert, J., Vergu, E., Durand, B.: Predicting veal-calf trading events in France. Prev. Vet. Med. 209, 105782 (2022)

    Google Scholar 

  17. Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16468-7_16

    Chapter  Google Scholar 

  18. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)

    Article  Google Scholar 

  19. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent advances in recurrent neural networks (2018)

    Google Scholar 

  20. Salem, F.M.: Recurrent Neural Networks. Springer, Heidelberg (2022)

    Book  Google Scholar 

  21. Sendra-Arranz, R., Gutiérrez, A.: A long short-term memory artificial neural network to predict daily HVAC consumption in buildings. Energy Build. 216, 109952 (2020)

    Google Scholar 

  22. Sharma, S.D., Sharma, S., Singh, R., Gehlot, A., Priyadarshi, N., Twala, B.: Deep recurrent neural network assisted stress detection system for working professionals. Appl. Sci. 12(17), 8678 (2022)

    Article  Google Scholar 

  23. Vidondo, B., Voelkl, B.: Dynamic network measures reveal the impact of cattle markets and alpine summering on the risk of epidemic outbreaks in the Swiss cattle population. BMC Vet. Res. 14, 88 (2018)

    Article  Google Scholar 

  24. Vlad, I.M., Beciu, S., Ladaru, G.R.: Seasonality and forecasting in the Romanian trade with live animals. Agric. Agric. Sci. Proc. 6, 712–719 (2015). Conference Agriculture for Life, Life for Agriculture

    Google Scholar 

  25. Wen, L., Zhou, K., Yang, S.: Load demand forecasting of residential buildings using a deep learning model. Electr. Power Syst. Res. 179, 106073 (2020)

    Google Scholar 

  26. Xu, K., Wu, L., Wang, Z., Feng, Y., Sheinin, V.: Graph2Seq: graph to sequence learning with attention-based neural networks. CoRR abs/1804.00823 (2018)

    Google Scholar 

  27. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM Cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish National Science Centre under grant no. 2015/19/D/HS4/02574. We acknowledge that the results of this research have been achieved using the DECI resource ARIS based in Greece at the National Infrastructures for Research and Technology S.A. (GRNET) with support from the PRACE aisbl under project ID DYNNETOPT. The authors would like to acknowledge Informatica Area Prevenzione of the ASL CN1 of Piedmont for the data and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Michalak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michalak, K., Giacobini, M. (2023). Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics