Skip to main content

A U-Net Convolutional Neural Network with Multiclass Dice Loss for Automated Segmentation of Tumors and Lymph Nodes from Head and Neck Cancer PET/CT Images

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Abstract

We implemented a 2D U-Net model with an ImageNet-pretrained ResNet50 encoder for performing segmentation of primary tumors (GTVp) and metastatic lymph nodes (GTVn) from PET/CT images provided by the HEad and neCK TumOR segmentation challenge (HECKTOR) 2022. We utilized a multiclass Dice Loss for model training which was minimized using the AMSGrad variant of the Adam algorithm optimizer. We trained our 2D models on the axial slices of the images in a 5-fold cross-validation setting and stacked the 2D predictions axially to obtain the predicted 3D segmentation masks. We obtained mean aggregate Dice similarity coefficients (mean DSC\(_{\text {agg}}\)) of 0.6865, 0.6689, 0.6768, 0.6792, and 0.6726 on the 5 validation sets respectively. The model with the best performance on the validation set (validation split 1) was chosen for evaluating segmentation masks on the test set for submission to the challenge. Our model achieved a mean DSC\(_{\text {agg}}\) = 0.6345 on the test set, with DSC\(_{\text {agg}}\)(GTVp) = 0.6955 and DSC\(_{\text {agg}}\)(GTVn) = 0.5734. The implementation can be found under our Github repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ReduceLROnPlateau. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

  2. Ahamed, S., et al.: A cascaded deep network for automated tumor detection and segmentation in clinical PET imaging of diffuse large B-cell lymphoma. In: Colliot, O., Išgum, I. (eds.) Medical Imaging 2022: Image Processing, vol. 12032, p. 120323M. International Society for Optics and Photonics, SPIE (2022). https://doi.org/10.1117/12.2612684

  3. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images (2022). https://doi.org/10.48550/ARXIV.2201.04138, https://arxiv.org/abs/2201.04138

  4. Antonelli, M., et al.: The medical segmentation Decathlon (2021). https://doi.org/10.48550/ARXIV.2106.05735, https://arxiv.org/abs/2106.05735

  5. Ardila, D., Kiraly, A., Bharadwaj, S., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(4), 954–961 (2019). https://doi.org/10.1038/s41591-019-0447-x. Accessed 07 Sep 2022

  6. Bi, L., Kim, J., Feng, D., Fulham, M.: Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies. Med. Image Comput. Comput. Assist. Interv. 17(Pt 1), 569–576 (2014)

    Google Scholar 

  7. Blanc-Durand, P., Van Der Gucht, A., Schaefer, N., Itti, E., Prior, J.O.: Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS ONE 13(4), e0195798 (2018)

    Article  Google Scholar 

  8. Bogowicz, M., et al.: Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 56(11), 1531–1536 (2017)

    Article  Google Scholar 

  9. Castelli, J., et al.: A PET-based nomogram for oropharyngeal cancers. Eur. J. Cancer 75, 222–230 (2017)

    Article  Google Scholar 

  10. Cottereau, A.S., et al.: New approaches in characterization of lesions dissemination in DLBCL patients on baseline PET/CT. Cancers 13(16), 3998 (2021). https://doi.org/10.3390/cancers13163998, https://europepmc.org/articles/PMC8392801

  11. DiGiulio, S.: Oropharyngeal cancer now most common head & neck cancer. Oncol. Times 36(22) (2014). https://journals.lww.com/oncology-times/Fulltext/2014/11250/Oropharyngeal_Cancer_Now_Most_Common_Head___Neck. 26.aspx

  12. Driessen, J., et al.: Baseline metabolic tumor volume in 18FDG-PET-CT scans in classical Hodgkin lymphoma using semi-automatic segmentation. Blood 134, 4049 (2019). https://doi.org/10.1182/blood-2019-125495, https://www.sciencedirect.com/science/article/pii/S0006497118619779

  13. Ger, R.B., et al.: Radiomics features of the primary tumor fail to improve prediction of overall survival in large cohorts of CT- and PET-imaged head and neck cancer patients. PLoS ONE 14(9), e0222509 (2019)

    Article  Google Scholar 

  14. Guo, B., Tan, X., Ke, Q., Cen, H.: Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: a meta-analysis. PLoS ONE 14(1), e0210224 (2019)

    Article  Google Scholar 

  15. Haenssle, H.A., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  16. Hatt, M., et al.: The first MICCAI challenge on PET tumor segmentation. Med. Image Anal. 44, 177–195 (2018)

    Article  Google Scholar 

  17. Hatt, M., et al.: Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211. Med. Phys. 44(6), e1–e42 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385

  19. Iakubovskii, P.: Segmentation models PyTorch (2019). https://github.com/qubvel/

  20. Isensee, F., Jaeger, P., Kohl, S., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  21. Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E., Grandis, J.R.: Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers. 6(1), 92 (2020)

    Article  Google Scholar 

  22. Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med. Imaging 22(1), 69 (2022). https://doi.org/10.1186/s12880-022-00793-7

    Article  Google Scholar 

  23. Legot, F., et al.: Use of baseline 18F-FDG PET scan to identify initial sub-volumes with local failure after concomitant radio-chemotherapy in head and neck cancer. Oncotarget 9(31), 21811–21819 (2018)

    Article  Google Scholar 

  24. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  25. Nickel, P.J.: Trust in medical artificial intelligence: a discretionary account. Ethics Inf. Technol. 24(1), 1–10 (2022). https://doi.org/10.1007/s10676-022-09630-5

    Article  Google Scholar 

  26. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022). https://doi.org/10.1016/j.media.2021.102336, https://www.sciencedirect.com/science/article/pii/S1361841521003819

  27. Orlhac, F., Nioche, C., Klyuzhin, I., Rahmim, A., Buvat, I.: Radiomics in PET imaging: a practical guide for newcomers. PET Clin. 16(4), 597–612 (2021)

    Article  Google Scholar 

  28. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=ryQu7f-RZ

  29. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015). https://doi.org/10.48550/ARXIV.1505.04597, https://arxiv.org/abs/1505.04597

  30. Slattery, A.: Validating an image segmentation program devised for staging lymphoma. Australas. Phys. Eng. Sci. Med. 40(4), 799–809 (2017)

    Article  Google Scholar 

  31. Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 10117 (2017)

    Article  Google Scholar 

  32. Vercellino, L., et al.: High total metabolic tumor volume at baseline predicts survival independent of response to therapy. Blood 135(16), 1396–1405 (2020)

    Article  Google Scholar 

  33. Wu, N., et al.: Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans. Med. Imaging 39(4), 1184–1194 (2020). https://doi.org/10.1109/TMI.2019.2945514

    Article  Google Scholar 

  34. Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible Research. J. Digit. Imaging 31(3), 290–303 (2017). https://doi.org/10.1007/s10278-017-0037-8

    Article  Google Scholar 

  35. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? (2014)

    Google Scholar 

  36. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4, 100004 (2019). https://doi.org/10.1016/j.array.2019.100004

Download references

Acknowledgement

The authors would like to thank Isaac Shiri for insightful technical discussions throughout the course of working on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadab Ahamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahamed, S., Polson, L., Rahmim, A. (2023). A U-Net Convolutional Neural Network with Multiclass Dice Loss for Automated Segmentation of Tumors and Lymph Nodes from Head and Neck Cancer PET/CT Images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics