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Abstract. Head and Neck (H&N) organ-at-risk (OAR) and tumor seg-
mentations are an essential component of radiation therapy planning.
The varying anatomic locations and dimensions of H&N nodal Gross Tu-
mor Volumes (GTVn) and H&N primary gross tumor volume (GTVp)
are difficult to obtain due to lack of accurate and reliable delineation
methods. The downstream effect of incorrect segmentation can result in
unnecessary irradiation of normal organs. Towards a fully automated ra-
diation therapy planning algorithm, we explore the efficacy of multi-scale
fusion based deep learning architectures for accurately segmenting H&N
tumors from medical scans. Team Name: M&H lab NU.
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1 Introduction

Optimizations in radiation treatment plans for Head and Neck (H&N) tumors
have seen significant advancements in recent years. Quantitative imaging biomark-
ers obtained from medical scans have shown promise in modelling disease charac-
teristics and treatment outcomes [1,8]. A prerequisite to radiation therapy (RT)
is an accurate delineation of (H&N) tumors to obtain H&N nodal gross tumor
volumes (GTVn) and H&N primary gross tumor volume (GTVp) from volumet-
ric medical scans. Manual annotation of the region of interest requires significant
content expertise and is both laborious and time-consuming, although being the
gold standard. Instead, automated segmentation systems can swiftly provide seg-
mentation maps of the region of interest and, consequently, improve patient care
on a large scale. Since tumor size can vary, and the nature of the problem consti-
tutes itself at varying scales, conventional deep learning algorithms provide only
sub-optimal solutions for this problem. Recently, multi-scale fusion methodolo-
gies have shown great capacity in generating precise segmentation maps [4,11–14]
when the object of interest exists in various different scales. Such methodologies
have established their efficacy in the segmentation of 2-D medical images. The
repeated fusion of multi-scale features generates diverse and robust features and
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allows a more generalizable model [11], capable of modelling the varying size of
the region of interest. We study the performance of such multi-scale fusion-based
methodologies to obtain GTVn and GTVp from FluoroDeoxyGlucose (FDG)-
Positron Emission Tomography (PET) and Computed Tomography (CT) scans.
As participants in the HECKTOR 2022 challenge [2, 9], we used the PET/CT
images, GTVn masks, and GTVp masks released by the challenge organizers
to train our two algorithms, named OARFocalFuseNet and 3D-MSF. We per-
form additional experiments with SwinUNETR [5], to compare the efficiency of
self-attention mechanisms by Transformers [3, 6, 7] with multi-scale fusion tech-
niques. The organization of the rest of the paper is as follows. Section 2 provides
a brief description of all the methods used for our experiments. Section 3 pro-
vides the experiment and implementation details. Section 4 discusses the results
obtained by OARFocalFuseNet [13], 3D-MSF [13], and SwinUNETR [5]. Finally,
we conclude our paper in Section 6.

2 Method

In this section, we discuss the three different deep-learning methodologies used
in our experiments: OARFocalFuseNet [13], 3D-MSF [13], and SwinUNETR [5].

2.1 Submission 1: OARFocalFuseNet

Let C and P be the input CT and PET scan where C&P ∈ RW × H × Z . Here,
W , H, and Z denote width, height, and length (number of slices), respectively.
We concatenate C and P along the channel axis to form X before feeding it
into the encoder. The encoder blocks employ convolutional layers and pooling
layers to extract features for a particular resolution scale and then downscale
the resolution by a factor of 2. Let [X1, X2, X3, X4] be the sets of feature maps
extracted by encoder blocks, each with a distinct resolution scale. Hereafter, a
linear layer is used to transform the feature space Xa into Fa,0, where a denotes
the resolution scale.

Multi-scale feature fusion is then performed by fusing multi-scale resolution
features across all resolution streams (Figure 1(b)). A combination of strided
depth-wise convolution and pooling layers is used to downscale the spatial di-
mensions of features being transmitted from higher to lower-resolution streams.
Similarly, a combination of strided depth-wise deconvolution and bicubic in-
terpolation layers are used to upscale the spatial dimensions of features being
transmitted from lower to higher-resolution streams.

Fa,l = GeLU(DC3x3(Conv1x1(Fa,l−1, Fb,l−1, Fc,l−1,

Fd,l−1))){b, c, d} 6= a, {a, b, c, d} ∈ {1, 2, 3, 4}. (1)

Here, DC and Conv represents a depth-wise convolutional layer and a standard
convolutional layer, respectively. Additionally, l denotes the multi-scale focal
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Fig. 1. The OARFocalFuseNet components. a) The Focal Fuse block, which aggregates
multi-scale global-local context b) The Multi-Scale Context Aggregation block, which
gathers multi-scale features and performs depthwise convolutions to gather features
with diverse context ranges and performs spatial and channel-wise gating to prune
irrelevant features.

level, with the total number of focal levels being N . Moreover, a linear layer is
utilized for pruning extraneous features (see equation 2).

Ga,l = Linear(Fa,0). (2)

where Ga ∈ RW × H × Z × N+1. The multi-scale focal modulator is calculated by
adding the context information accumulated by each multi-scale focal layer (see
equation 3 and Figure 1(b)).

Fa =

N+1∑
l=1

Fa,l �Ga,l. (3)
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Fig. 2. The multi-scale fusion module used in 3D-MSF. The colored lines illustrate
feature fusion at multiple cross-scales. Here, each layer l receives features from all
preceding layers within the same resolution stream and the previous layer of all other
resolution streams.

Here, � is an element-wise multiplication operator. The resultant focally mod-
ulated features for each scale are calculated as shown in Equation 4 and Fig-
ure 1(a).

MODa =

4∑
a=1

Fa � Linear(Ia). (4)

2.2 Submission 2: 3D Multi-scale Fusion Network

The 3D Multi-scale Fusion Network (3D-MSF) uses densely connected blocks
to perform multi-scale feature fusion. Initially, an encoder identical to the one
used by OARFocalFuseNet is used for feature extraction. Each set of feature
maps with a distinct resolution has its own resolution stream, which comprises
a densely connected block. In this block, each layer receives inputs from all
preceding layers in the same resolution scale and the previous layer from all
other resolution scales (see Equation 5 and Figure 2).

Xa,l = DepthConv3×3(Xa,0 ⊕ · · ·Xa,l−1 ⊕Xb,l−1 ⊕Xc,l−1

⊕Xd,l−1), {b, c, d} 6= a, {a, b, c, d} ∈ {1, 2, 3, 4},
(5)

where l denotes the layer inside the dense blocks.
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2.3 Submission 3: SwinUNETR

SwinUNETR follows the same architectural design as a standard UNet [10].
SwinUNETR consists of an encoder, bottleneck, decoder, and skip connections.
The basic unit of SwinUNETR is the Swin Transformer block. The input is first
to split into non-overlapping patches before being projected to another feature
space using a linear layer. Subsequently, these patches pass through the patch
merging and Swin Transformer blocks to extract features. Then the decoder uses
Swin Transformer blocks and patch-expanding layers to upscale the features ob-
tained from the encoder. Additionally, the features obtained from the decoder
blocks are fused with the corresponding encoder features via skip-connections.
Lastly, the last patch expanding layer is used to perform 4× up-sampling to
restore the resolution of the feature maps to the input resolution (WxHxZ). The
Swin Transformer block combines the window-based multi-head self-attention
(W-MSA) [7] module and the shifted window-based multi-head self-attention
(SW-MSA) [7] module in succession before performing the self-attention opera-
tion.

3 Experiments

3.1 Data Pre-processing and Data Augmentation

We use the maximum of the CT/PET origin and the minimum of the CT/PET
size to crop the input CT and PET volumes. Hereafter, they both are re-sampled
and set to have the same origin, direction and size. Next, we perform the stan-
dard practice of clipping all CT values greater than 300 and less than -300
before performing min-max scaling. The PET volumes are also normalized using
min-max scaling before being concatenated with CT volumes along the channel
axis. Our data augmentation scheme involves random cropping, random Affine
transformation, random 3D elastic transformation, and random Gaussian noise
addition.

3.2 Training Details

We reserve 80% of the data for training and 20% of the data for validation.
Each model is trained for 10,000 iterations and after every 500 iterations, per-
formance on the validation set is evaluated. The best-performing model on the
validation set is used for generating the final prediction masks. Adam-optimizer
is used along with a cyclic learning rate scheduler with a base learning rate of
0.0005 and a maximum learning rate of 0.003. A batch size of 1 is used and the
base filters for OARFocalFuseNet, 3D-MSF, and SwinUNETR are 16,16, and 48
respectively. We use an equally weighted combination of binary cross-entropy
loss (see Equation 6) and dice loss (see Equation 7). Here, y is the ground truth
value and ŷ is the predicted value.

LBCE = (y − 1) log(1− ŷ)− y log ŷ, (6)

LDSC = 1− 2yŷ + 1

y + ŷ + 1
. (7)
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4 Results and Discussion

In this section, we present the comparisons of the selected baselines on our val-
idation set. We report the quantitative evaluation in Table 1. Here, aggregated
Dice Coefficient (DSC) is used as the metric for evaluating our results. From
Table 1, we can observe that 3D-MSF obtains the highest aggregated DSC,
highest class-wise DSC on GTVp and GTVn. Meanwhile, OARFocalFuseNet is
able to outperform SwinUNETR in terms of aggregated DSC and DSC obtained
on GTVn. Thus, multi-scale fusion methodologies are able to report significant
performance gains over other state-of-the-art (SOTA) methods and can be de-
veloped further for tumor segmentation in H&N CT/PET scans.

Table 1. Result comparison on Hecktor 2022 Head and Neck Tumor segmentation
challenge over our validation set. Aggregated DSC is reported along with class-wise
DSC for GTVp and GTVn.

Method DSC GTVp GTVn

SwinUNETR [5] 0.7828 0.7121 0.6364

OARFocalFuseNet [13] 0.7798 0.6898 0.6496

3D-MSF [13] 0.7951 0.7147 0.6706

5 Conclusion

In this paper, we compared the performance of three multi-scale fusion method-
ologies for H&N tumor segmentation to obtain accurate GTVn and GTVp. Our
very recently proposed two multi-scale algorithms, originally designed for or-
gan at-risk segmentation, were tuned for tumor segmentation from PET/CT
scans obtained from the HECKTOR 2022 Challenge. We observed that under
a supervised scenario, our proposed 3D-MSF and OARFocalFuseNet algorithms
perform well on the HECKTOR 2022 H&N segmentation challenge. We plan to
extend the multi-scale fusion strategy by introducing domain adaptation or gen-
eralization strategies within the framework to further advance the performance
on Hecktor 2022 H&N Segmentation Challenge.
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