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Abstract. Outcome prediction is crucial for head and neck cancer patients as it 
can provide prognostic information for early treatment planning. Radiomics 
methods have been widely used for outcome prediction from medical images. 
However, these methods are limited by their reliance on intractable manual seg-
mentation of tumor regions. Recently, deep learning methods have been proposed 
to perform end-to-end outcome prediction so as to remove the reliance on manual 
segmentation. Unfortunately, without segmentation masks, these methods will 
take the whole image as input, such that makes them difficult to focus on tumor 
regions and potentially unable to fully leverage the prognostic information within 
the tumor regions. In this study, we propose a radiomics-enhanced deep multi-
task framework for outcome prediction from PET/CT images, in the context of 
HEad and neCK TumOR segmentation and outcome prediction challenge 
(HECKTOR 2022). In our framework, our novelty is to incorporate radiomics as 
an enhancement to our recently proposed Deep Multi-task Survival model (Deep-
MTS). The DeepMTS jointly learns to predict the survival risk scores of patients 
and the segmentation masks of tumor regions. Radiomics features are extracted 
from the predicted tumor regions and combined with the predicted survival risk 
scores for final outcome prediction, through which the prognostic information in 
tumor regions can be further leveraged. Our method achieved a C-index of 0.681 
on the testing set, placing the 2nd on the leaderboard with only 0.00068 lower in 
C-index than the 1st place.  
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1 Introduction 

Head and Neck (H&N) cancers are among the most common cancers worldwide (5th by 

incidence) [1]. Outcome prediction is a crucial task for H&N cancer patients in clinical 

practice, as it provides prognostic information for clinicians to guide treatment planning 

at an early stage so as to improve the survival outcomes of patients. However, outcome 

prediction is a challenging task as survival outcomes are intrinsically driven by many 

influential factors, such as clinical demographics, treatment regimens, and disease 

physiology [9]. In addition, outcome prediction has to take into account incomplete 

survival data. Generally, survival data includes many right-censored samples, for which 
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the exact time of events occurring (e.g., disease progression or recurrence) is unclear. 

For example, patients may be lost to follow-up, or the events are not observed due to 

limited follow-up time. In these cases, it is only known that the events did not occur in 

a certain period of time and the events might occur later. Outcome prediction models, 

to make the maximum use of existing information, need to build from both complete 

(uncensored) and incomplete (censored) samples. 

The HEad and neCK TumOR segmentation and outcome prediction challenge 

(HECKTOR 2022) invites the research community to develop algorithms for tumor 

segmentation and outcome prediction in H&N cancers using pretreatment PET/CT [2, 

3]. There are two tasks in this challenge: Task 1 - segmentation of primary tumors and 

lymph nodes in PET/CT images, and Task 2 - prediction of patient outcomes from 

PET/CT images and available clinical data (e.g., gender, age, etc.). Participating algo-

rithms should perform fully automatic inference from entire PET/CT images without 

requiring bounding boxes. In this study, we focus on Task 2 and intend to improve 

outcome prediction. As our method also produces segmentation masks of tumor regions 

(primary tumors and lymph nodes) as an intermediate output, we also participated in 

Task 1 and report the related experimental results in this paper. 

Radiomics, referring to the extraction and analysis of handcrafted quantitative fea-

tures, is widely adopted in clinical practice for outcome prediction [4-6]. However, ra-

diomics methods require manual segmentation of tumor regions for every patient, 

which is intractable and error-prone. To address this limitation, deep learning methods 

based on deep neural networks have been proposed, which perform end-to-end outcome 

prediction without requiring manual segmentation [7-9]. However, without segmenta-

tion masks, these methods take the whole image as input, which makes them difficult 

to focus on tumor regions and potentially unable to fully leverage the prognostic infor-

mation in the tumor regions [12]. Recently, deep multi-task learning was introduced for 

joint outcome prediction and tumor segmentation [10-12]. Through jointly learning 

with tumor segmentation, deep multi-task models are implicitly guided to extract fea-

tures related to tumor regions, which relieves the above-mentioned limitation of focus-

ing on tumor regions. In addition, as mentioned above, bounding boxes are not given 

in this challenge. Under this circumstance, a deep multi-task model that performs both 

outcome prediction and tumor segmentation could be an optimal solution as it removes 

the requirement for additional tumor detection. 

In our previous study, we proposed a Deep Multi-task Survival model (DeepMTS) 

for joint outcome prediction and tumor segmentation, and it has shown promising per-

formance in H&N cancers [11] and Nasopharyngeal Carcinoma (NPC) [12]. However, 

although the DeepMTS has been shown to have the ability to focus on tumor regions 

by deep multi-task learning [12], we found it still cannot fully leverage the prognostic 

information in tumor regions. In this study, we extend the DeepMTS to a radiomics-

enhanced deep multi-task framework, where radiomics features extracted from Deep-

MTS-segmented tumor regions were incorporated as an enhancement. We demon-

strated that this extension improved DeepMTS by a large margin.  
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2 Materials and Methods 

2.1 Patients 

The organizers of HECKTOR challenge provided a training set of 524 patients acquired 

from 7 centers, including CHUM (n = 56), CHUP (n = 72), CHUS (n = 72), CHUV (n 

= 53), MDA (n = 198), HGJ (n = 55) and HMR (n = 18). A testing set of 359 patients 

was provided for evaluation, in which 200 patients are from a center present in the 

training set (MDA) while the other 159 patients are from two centers absent from the 

training set (USZ and CHB). Note that the ground-truth labels of the testing set were 

not released to the public and we did not use any external dataset in this challenge. All 

patients were histologically confirmed with oropharyngeal H&N cancer and received 

radiotherapy and/or chemotherapy. Each patient underwent FDG-PET/CT before treat-

ment and was recorded with clinical indicators including age, gender, weight, treatment 

regimens, Human Papilloma Virus (HPV) status, performance status, and tobacco/al-

cohol consumption. For Task 1 (tumor segmentation), primary Gross Tumor Volume 

(GTVt) and nodal Gross Tumor Volumes (GTVn) were annotated by experts and were 

regarded as ground-truth labels. For Task 2 (outcome prediction), Recurrence-Free Sur-

vival (RFS), including time-to-event in days and event status, was provided as ground-

truth labels. The provided event status is a binary indicator, where 1 indicates patients 

with observed disease recurrence and 0 indicates censored patients. Since some patients 

did not exhibit complete responses to the treatment, only 489 and 339 patients in the 

training and testing sets have RFS labels. Therefore, our method was trained and vali-

dated using 5-fold cross-validation with 489 patients in the training set, and then was 

tested with 359 and 339 patients in the testing set for Task 1 and Task 2. 

2.2 Radiomics-enhanced Deep Multi-task Framework 

We propose a radiomics-enhanced deep multi-task framework that performs outcome 

prediction with PET/CT images and available clinical indicators. As shown in Fig. 1, 

the proposed framework adopts our recently proposed DeepMTS [12] as the backbone 

and then incorporates an automatic radiomics module as an enhancement. Specifically, 

DeepMTS is a deep multi-task model that can jointly predict the survival risk scores of 

patients and the segmentation masks of tumor regions (detailed in Section 2.3). With 

the segmentation masks derived from the DeepMTS, a radiomics module is used to 

extract discriminative features from the predicted tumor regions of PET/CT images 

(detailed in Section 2.4). We refer to this radiomics module as automatic radiomics, 

which differentiates it from traditional radiomics that relies on manual segmentation. 

Finally, the predicted survival risk scores, the discriminative radiomics features, and 

the clinical indicators are combined to build a Cox Proportional Hazard (CoxPH) model 

[13] for final outcome prediction.  
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2.3 Deep Multi-task Survival Model (DeepMTS) 

Fig. 2 shows the overall architecture of the DeepMTS [12], which consists of a U-net 

[14] based segmentation backbone, followed by a DenseNet [15] based cascaded sur-

vival network (CSN). The segmentation backbone is hard-shared by tumor segmenta-

tion and outcome prediction tasks, which implicitly guides the model to extract features 

related to tumor regions. The outputs of the segmentation backbone are fed into the 

CSN as a supplementary input, which provides the CSN with global tumor information 

(e.g., tumor size, shape, and locations). Deep features are derived from both the seg-

mentation backbone and the CSN, and then are used to predict survival risk scores 

through several fully-connected layers. 

The DeepMTS is trained in an end-to-end manner to minimize a combined loss ! of 

a segmentation loss !!"# and a survival prediction loss !!$%&: 

! = !!"# + !!$%&                                                    (1) 

The !!"# is the Dice loss [16] between the predicted probability maps and the ground-

truth labels, while the Cox negative logarithm partial likelihood loss [17] is used as the 

!!$%& to handle right-censored survival data: 

!!$%& = − '
(!"#

∑ (ℎ) − log∑ +*$+∈ℋ(/%) )):2%3'                            (2) 

where ℎ is the predicted risk scores, - is the event status, . is the time of RFS (for - 

=1) or the time of patient censored (for - =0), /23' is the number of patients with dis-

ease recurrence, and ℋ(.)) is a set of patients whose . is no less than .). 
DeepMTS has two advantages when compared to employing two separate segmen-

tation and outcome prediction models: (i) The DeepMTS can produce more accurate 

survival risk scores than single-task survival models [12]; (ii) Through jointly learning 

with outcome prediction, the segmentation target might become closer to the regions 

providing prognostic information [21], which will potentially improve the performance 

of downstream automatic radiomics. Further discussion and related ablation analysis 

can be found in our previous work [12]. 

 
Fig. 1. The workflow of our radiomics-enhanced deep multi-task framework. 

Input:
PET/CT images

Segmentation masks
of GTVp and GTVn

DeepMTS Survival risk scores

Automatic
radiomics Radiomics features

Input:
Clinical indicators CoxPH

Output:
Outcome prediction



5 

 

2.4 Automatic Radiomics 

For automatic radiomics, handcrafted features are extracted from the predicted tumor 

regions of PET/CT images by Pyradiomics [18]. The predicted GTVp and GTVn masks 

are merged into a single mask (1 for GTVp and GTVn and otherwise 0) for feature 

extraction. The extracted handcrafted features include the features from First Order Sta-

tistics (FOS), Neighboring Grey Tone Difference Matrix (NGTDM), Grey-Level Run 

Length Matrix (GLRLM), Grey-Level Size Zone Matrix (GLSZM), Grey-Level 

Cooccurrence Matrix (GLCM), and 3D shape-based features. In addition to the original 

PET/CT, eight wavelet decompositions of PET/CT are also used, resulting in a total of 

1689 radiomics features. All radiomics features are standardized using Z-score normal-

ization and then are reduced to seven discriminative radiomics features through Least 

Absolute Shrinkage and Selection Operator (LASSO) regression.  

2.5 Image Preprocessing 

We resampled images into isotropic voxels of unit dimension to ensure comparability, 

where 1 voxel corresponds to 1 mm3. Trilinear and nearest neighbor interpolations were 

used for PET/CT images and segmentation masks, respectively. Based on the provided 

segmentation ground-truth labels, each image in the training set was cropped 

to 160×160×160 voxels with the tumor center aligning with the image center. However, 

as no bounding box was provided, each image in the testing set was cropped to 

240×240×240 voxels to ensure the entire head and neck region can be included. For 

intensity normalization, PET images were standardized using Z-score normalization, 

while CT images were clipped to [−1024, 1024] and then mapped to [−1, 1]. 

2.6 Training and Inference 

We first implemented the DeepMTS using Keras with a Tensorflow backend on two 

12GB GeForce GTX Titan X GPUs. Specifically, we used an Adam optimizer with a 

batch size of 8 to train the DeepMTS for a total of 10,000 iterations. The learning rate 

was set as 1e-4 initially and then was reset to 5e−5 and 1e−5 at the 2,500th and 5,000th 

 
Fig. 2. The overall architecture of DeepMTS. More details can be found in [12]. 
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training iteration. Data augmentation was applied to the PET/CT images in real-time 

during training to minimize overfitting. The used data augmentation techniques include 

random affine transformations and random cropping to 112×112×112 voxels. Moreo-

ver, we sampled an equal number of censored and uncensored samples during the data 

augmentation process to minimize the problem introduced by the imbalanced censoring 

rate (79% in the training set). After the DeepMTS was trained, automatic radiomics 

was performed based on the segmentation outputs of DeepMTS. Finally, a CoxPH 

model was built based on the outputs of DeepMTS and automatic radiomics. During 

inference, the DeepMTS was used to locate the tumor region through a slide-window 

segmentation process. Then, the image patch containing the whole tumor region was 

fed into the proposed framework for outcome prediction. 

2.7 Ensemble 

Our results on the testing set were obtained using an ensemble of five models built with 

5-fold cross-validation. For outcome prediction (Task 2), the testing results of the five 

models were first standardized by Z-score normalization and then averaged together to 

obtain the final testing results. For tumor segmentation (Task 1), we tried two ensemble 

approaches: (i) The testing results of the five models were first averaged together and 

then thresholded at 0.5 to obtain the final testing results, and (ii) The testing results of 

the five models were first thresholded at 0.5 and the final testing results were obtained 

through majority voting. 

2.8 Evaluation Metrics 

Tumor segmentation (Task 1) is evaluated using aggregated Dice Similarity Coefficient 

(DSC) [19]. The DSC metric measures the similarity between the predicted and ground-

truth segmentation masks, which is computed separately for GTVp and GTVn. Out-

come prediction (Task 2) is evaluated using concordance index (C-index) [20]. The C-

index metric measures the consistency between the predicted survival scores and the 

ground-truth survival outcomes.  

3 Results and Discussion 

3.1 Outcome Prediction 

Our experimental results of outcome prediction are reported in Table 1. For 5-fold 

cross-validation, the average results in five folds are reported along with the range in 

parentheses. We first evaluated the performance of using clinical indicators, automatic 

radiomics, and DeepMTS, separately. Then, we combined them in our radiomics-en-

hanced deep multi-task framework. The results of traditional radiomics (based on 

ground-truth manual segmentation) are also reported in Table 1 for comparison. We 

found that the DeepMTS achieved higher validation C-index than clinical indicators 

and radiomics methods, which is consistent with the results reported in our previous 
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study [12]. Nevertheless, the DeepMTS still can be further improved by embedding 

clinical indicators and automatic radiomics. This demonstrates that, although the Deep-

MTS has been shown to have the ability to focus on tumor regions through deep multi-

task learning [12], it still cannot fully leverage the prognostic information in the tumor 

regions and the automatic radiomics could be an effective enhancement. In addition, 

we found that automatic radiomics achieved higher validation C-index than traditional 

radiomics, which suggests that the provided ground-truth tumor regions might not be 

the optimal regions for prognosis. As we mentioned in Section 2.3, the regions pre-

dicted by DeepMTS may provide more prognostic information due to joint learning 

with outcome prediction. 

During the challenge, only a maximum of 3 testing submissions were allowed. We, 

therefore, submitted the methods with the top-3 validation C-index. The highest testing 

C-index was achieved by combining DeepMTS, clinical indicators, and automatic ra-

diomics, which made us place the 2nd on the leaderboard with a negligible difference 

from the 1st place (0.00068 lower in C-index: 0.68084 vs 0.68152). 

 

3.2 Tumor Segmentation 

We also submitted the segmentation masks predicted by DeepMTS for Task 1. The 

testing results of using two different ensemble approaches (averaging and majority vot-

ing) are shown in Table 2. We found that averaging the outputs of five models (built 

with 5-fold cross-validation) achieved higher testing DSC than majority voting. We 

also found that the DeepMTS achieved higher testing DSC on GTVp than GTVn. This 

is because the DeepMTS was developed for primary tumor segmentation and we did 

not specially optimize it for lymph node segmentation. It should be noted that we focus 

on outcome prediction and the segmentation performance did not degrade our frame-

work’s performance in the outcome prediction. Instead, the predicted segmentation 

masks potentially improved the performance of radiomics (Table 1). 

 

Table 1. The C-index results on the 5-fold cross-validation and testing set. 

Method 5-fold cross-validation Testing set 
Clinical indicators 0.662 (0.613-0.689) / 

Traditional radiomics 0.681 (0.625-0.732) / 
Automatic radiomics 0.688 (0.644-0.735) / 

DeepMTS 0.705 (0.663-0.740) 0.644 
DeepMTS + Clinical indicators 0.731 (0.702-0.773) 0.649 
DeepMTS + Clinical indicators 

+ Automatic radiomics 0.768 (0.723-0.786) 0.681 

 

Table 2. The DSC results on the testing set. 

Ensemble approach GTVp GTVn Mean 
Averaging 0.761 0.659 0.710 

Majority voting 0.760 0.658 0.709 
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4 Conclusion and Limitations 

In this study, we have outlined a radiomics-enhanced deep multi-task framework for 

outcome prediction in the context of HECKTOR 2022. With our recently proposed 

DeepMTS as the backbone, we incorporate automatic radiomics as an enhancement to 

further leverage the prognostic information available in the tumor regions. Our deep 

multi-task framework achieved a competitive result in the testing set of HECKTOR 

2022, which made us place the 2nd in the leaderboard and only have a negligible differ-

ence (0.00068 lower in C-index) from the 1st place. Nevertheless, this study still has 

some limitations, and we suggest better performance potentially could be obtained by 

addressing the following: 

Firstly, the balance between the losses of segmentation task and outcome prediction 

task was not fully explored. For simplicity, the segmentation loss !!"# and the survival 

prediction loss !!$%& were directly summed without using any weighting parameters 

(equal weight was assigned to !!$%& and !!"#), which might lead to sub-optimal perfor-

mance. Secondly, the DeepMTS relies on an early fusion strategy where CT and PET 

images are concatenated as a 2-channel input. Other fusion strategies, such as interme-

diate or late fusion, could be further explored and this might enable better performance. 

Finally, due to limited time and computing resources, we performed 5-fold cross-vali-

dation to build the final model ensemble. However, leave-one-center-out validation 

might be a better alternative as this enforces models to learn prognostic information 

across different centers, which is helpful to build a robust ensemble. 
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