Skip to main content

Minimisation of Spatial Models Using Branching Bisimilarity

  • Conference paper
  • First Online:
Book cover Formal Methods (FM 2023)

Abstract

Spatial logic and spatial model checking have great potential for traditional computer science domains and beyond. Reasoning about space involves two different conditional reachability modalities: a forward reachability, similar to that used in temporal logic, and a backward modality representing that a point can be reached from another point, under certain conditions. Since spatial models can be huge, suitable model minimisation techniques are crucial for efficient model checking. An effective minimisation method for the recent notion of spatial Compatible Path (CoPa)-bisimilarity is proposed, and shown to be correct. The core of our method is the encoding of Closure Models as Labelled Transition Systems, enabling minimisation algorithms for branching bisimulation to compute CoPa equivalence classes. Initial validation via benchmark examples demonstrates a promising speed-up in model checking of spatial properties for models of realistic size.

Research partially funded by the Italian MUR Projects PRIN 2017FTXR7S, “IT- MaTTerS”, PRIN 2020TL3X8X “T-LADIES”, and Next Generation EU - MUR Project PNRR PRI ECS00000017 “THE - Tuscany Health Ecosystem”. The authors are listed in alphabetical order; they contributed to this work equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intel Core I9 9900K processor (with 8 cores) and 32 GB of RAM.

  2. 2.

    Note that, different from the context of classical temporal logics, in the context of space, and in particular when dealing with notions of directionality (e.g. one way roads, public area gates), it is important to be able to distinguish between the concept of “reaching” and that of “being reached”. The interested reader is referred to [13] for a discussion on the issue.

  3. 3.

    Or its dual operator called ‘interior’.

  4. 4.

    Note that VoxLogicA is inherently much faster than GraphLogicA as it is specialised for images, exploiting state-of-the-art imaging libraries and automatic parallelisation. This poses a further challenge to the speed-up via minimisation and is the reason why we use VoxLogicA instead of GraphLogicA for the full model.

References

  1. Aiello, M.: Spatial Reasoning: Theory and Practice. Ph.D. thesis, Institute of Logic, Language and Computation, University of Amsterdam (2002)

    Google Scholar 

  2. Aiello, M.: The topo-approach to spatial representation and reasoning. AIIA NOTIZIE (4) (2003)

    Google Scholar 

  3. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5587-4

  4. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25(11), 1410–1416 (2006). https://doi.org/10.1109/TMI.2006.883453

    Article  Google Scholar 

  5. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf. 22(2), 195–217 (2020). https://doi.org/10.1007/s10009-019-00511-9

    Article  Google Scholar 

  6. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) 9th IEEE/ACM International Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, 17–21 May 2021, pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

  7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865, pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5_7

    Chapter  Google Scholar 

  8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_16

    Chapter  Google Scholar 

  9. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.: Geometric model checking of continuous space. Log. Methods Comput. Sci. 18(4) (2022). (4:7)2022. https://doi.org/10.46298/lmcs-18, https://lmcs.episciences.org/10348

  10. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  11. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part I). Inf. Comput. 186(2), 194–235 (2003). https://doi.org/10.1016/S0890-5401(03)00137-8

  12. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Wegman, M.N., Reps, T.W. (eds.) POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts, USA, 19–21 January 2000, pp. 365–377. ACM (2000). https://doi.org/10.1145/325694.325742

  13. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: on logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 98–115. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_6

  14. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model checking of vehicular movement in public transport systems. Int. J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

    Article  Google Scholar 

  15. Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P.: Minimisation of spatial models using branching bisimilarity (Extended Version) (2022). https://doi.org/10.32079/ISTI-TR-2022/027, CNR-ISTI Technical report TR-2022-027

  16. Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P.: Minimisation of Spatial Models using Branching Bisimilarity - Validation code and data (2022)

    Google Scholar 

  17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18

    Chapter  Google Scholar 

  18. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. Log. Methods Comput. Sci. 12(4) (2016). https://doi.org/10.2168/LMCS-12(4:2)2016

  19. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the collective spatial logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 260–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_15

    Chapter  Google Scholar 

  20. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for statistical spatio-temporal model checking of bike sharing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46

    Chapter  Google Scholar 

  21. Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 551–596. Elsevier (2008). https://doi.org/10.1016/S1574-6526(07)03013-1

  22. Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1–3), 111–134 (2003). Elsevier. https://doi.org/10.1016/S0304-3975(02)00701-6

  23. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556

  24. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for computing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log. 18(2), 13:1–13:34 (2017). https://doi.org/10.1145/3060140

  25. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel spatial-temporal logic and its applications to networked systems. In: Girard, A., Sankaranarayanan, S. (eds.) Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 189–198. ACM (2015). https://doi.org/10.1145/2728606.2728633

  26. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS, vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_1

    Chapter  MATH  Google Scholar 

  27. Linker, S., Papacchini, F., Sevegnani, M.: Analysing spatial properties on neighbourhood spaces. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, 24–28 August 2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 66:1–66:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.66

  28. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR abs/2105.08708 (2021). https://arxiv.org/abs/2105.08708

  29. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  30. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods Comput. Sci. 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:2)2018

  31. Smyth, M.B., Webster, J.: Discrete Spatial Models. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_12

  32. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne: topology aware adaptive security for cyber-physical systems. In: Bertolino, A., Canfora, G., Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 2, pp. 729–732. IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.234

  33. Čech, E.: Topological Spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp. 233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966)

    Google Scholar 

  34. Zeven, F.: Spatial Model Checking with mCRL2. Master’s thesis, Eindhoven University of Technology (2022)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable suggestions for improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Massink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P. (2023). Minimisation of Spatial Models Using Branching Bisimilarity. In: Chechik, M., Katoen, JP., Leucker, M. (eds) Formal Methods. FM 2023. Lecture Notes in Computer Science, vol 14000. Springer, Cham. https://doi.org/10.1007/978-3-031-27481-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27481-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27480-0

  • Online ISBN: 978-3-031-27481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics