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Abstract. Modern processors such as ARMv8 and RISC-V allow exe-
cutions in which independent instructions within a process may be re-
ordered. To cope with such phenomena, so called promising semantics
have been developed, which permit threads to read values that have
not yet been written. Each promise is a speculative update that is later
validated (fulfilled) by an actual write. Promising semantics are opera-
tional, providing a pathway for developing proof calculi. In this paper,
we develop an incorrectness-style logic, resulting in a framework for rea-
soning about state reachability. Like incorrectness logic, our assertions
are underapproximating, since the set of all valid promises are not known
at the start of execution. Our logic uses event structures as assertions
to compactly represent the ordering among events such as promised and
fulfilled writes. We prove soundness and completeness of our proof calcu-
lus and demonstrate its applicability by proving reachability properties
of standard weak memory litmus tests.

Keywords: Weak memory models, promises, event structures, incorrectness
logic

1 Introduction

In recent years, numerous works have looked into semantics for weak memory
models for various hardware architectures or languages, e.g. for x86-TSO [34],
C11 [2, 25], Power [33] or ARM [15]. Such semantics typically can be classified
as either being declarative (aka axiomatic) or operational. Operational seman-
tics furthermore can be divided into those following a microarchitectural style
(providing formalizations of the actual hardware architecture) and those trying
to abstract from architectures. Most notably, view-based semantics [13, 20, 29]
avoid modelling specific hardware components and instead define the semantics
in terms of views of thread on the shared state. Promises [21, 23] are employed
in operational semantics as a way of capturing out-of-order writes while still
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executing operations in thread order. A promise (w.r.t. a value κ and a shared
location x) of a thread τ states that τ will eventually write value κ onto location
x. All promised writes then need to be fulfilled (i.e., justified) in the future of a
program run, but other threads can read from promises before they are fulfilled.

Our interest here is the development and use of Hoare-style [17] structural
proof calculi (and their extensions to concurrency by Owicki and Gries [27]) for
weak memory models. Owicki-Gries-like proof calculi have been proposed by a
number of researchers [10,11,22,40], and have also recently been given for non-
volatile memory [3, 31]. Svendsen et al. [35] have developed a separation logic
for promises for the C11 memory model. Wright et al. [40] have developed an
Owicki-Gries proof system for out-of-order writes (as allowed by promises), but
rely on pre-processing via the denotational MRD framework [28].

All of these proposals follow Hoare’s principle of providing safety proofs. In
particular, a Hoare triple

{
p
}
S
{
q
}
describes the fact that an execution of pro-

gram S starting in a state satisfying p is either non-terminating, or terminates
in a state satisfying q (over-approximating the final states). However, for weak
memory models, we often want to prove reachability, i.e. under-approximate the
set of final states, like in the recent proposal of O’Hearn’s incorrectness logic [26].
Here, a triple

[
p
]
S
[
q
]
describes the possibility of program S reaching all states

satisfying q when started in a state satisfying p. A verification technique support-
ing these reachability triples enables one to reason about executions that deviate
from the expected sequentially consistent behaviour of concurrent programs.

Contributions. In this paper, we present a reachability proof calculus for con-
current programs where the semantics of the weak memory model is based on
promises. The specific challenges therein lay in (i) capturing the meaning of
promises as writes which will only happen in the future but can nevertheless al-
ready be read from, and (ii) appropriately describing the required ordering (and
concurrency) between promises and fulfills as fixed by the concurrent program
under consideration. We address these challenges via the following contribu-
tions. (1) We develop a program logic based on assertions which are (flow) event
structures [5,16,39], employing parallel composition of event structure and syn-
chronization as a means of determining whether all promises read from have
eventually been fulfilled. (2) We extend the theory of flow event structures with
the notion of a flow label to capture the behaviours observed in weak mem-
ory models. (3) We develop the first compositional proof rule for a concurrent
reachability (incorrectness) logic. (4) We prove soundness and completeness of
this novel event-structure based proof calculus. (5) Finally, we demonstrate its
applicability on a number of litmus tests.

Overview. In Section 2, we provide a concrete overview via a motivating exam-
ple and in Section 3, we present the memory model that we use. Our model is a
simplified (strengthened) version of the ARMv8/RISC-V semantics of Pulte et
al [29]. In Section 4, we present an extended theory for event structures (specif-
ically an extension of flow event structures) that has been designed to enable
reasoning about relaxed memory models. We describe our reasoning methodol-
ogy and provide examples verifying common litmus tests in Section 5.
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Thread 1[
ini

]
1 : a := load y;[
ini ↠ rd2(y, 1) ↠ bar(a, y)

]
2 : store x 1;

ini rd2(y, 1) ↠ bar(a, y)

ff1(x, 1)



Thread 2[
. . .

]
3 : b := loadx;[
. . .

]
4 : store y 1[
. . .

]

 ini ff1(x, 1) ↠ bar(b, x)

ff2(y, 1) ↠ bar(a, y)


(
a = 1 ∧ b = 1

)
✓

Fig. 1. Reachability for load buffering

Thread 1[
ini

]
1 : a := load y;
[ ini ↠ rd2(y, 1) ↠ bar(a, y) ]
2 : dmb; ini ↠ rd2(y, 1) bar(a, y)

fnc1


3 : store x 1;ini ↠ rd2(y, 1) bar(a, y)

fnc1 ff1(x, 1)



Thread 2[
. . .

]
4 : b := loadx;[
. . .

]
5 : dmb;[
. . .

]
6 : store y 1[
. . .

]

[
E
](

a = 1 ∧ b = 1
)

✗

Fig. 2. Load buffering with barriers

2 Motivating Examples

Consider the program in Fig. 1, which describes the load buffering litmus test.
Thread 1 (similarly thread 2) loads the value of y (sim. x) into register a (sim.
b), then updates x (sim. y) to 1. Since there are no dependencies between lines
1 and 2, and similarly between lines 3 and 4, architectures such as ARMv8 and
RISC-V allow the stores in both threads to be reordered with the loads. Thus
the program allows the final outcome a = 1 ∧ b = 1.

This phenomenon is captured by promising semantics by allowing each thread
to “promise” their respective stores, then later fulfilling them. In the meantime,
other threads may read from promised writes. Our assertions within a thread
reflect this semantics via assertions E which are flow event structures [39]. The
events and their partial order reflect program executions, and in particular de-
scribe the various views which threads have on shared state.

The proof outlines (i.e., program texts with assertions) of individual threads
may first of all contain read events for arbitrary promises, i.e. describe the read-
ing of arbitrary values. In Thread 1 of Fig. 1, the pre-assertion of the load only
contains an event for initial writes (labelled ini), yet the load may read the
value 1 for y from a promised write, described by the event labelled rd2(y, 1) in
the post assertion. The semantics generates dependencies if the same register is
used (perhaps indirectly) by a read and a later write. This is captured in our as-
sertions using the event labelled bar(a, y), causally ordered after rd2(y, 1), which
states that the view of register a is at least that of the read of y. Execution of
line 2 then adds a fulfill event with label ff1(x, 1) to the assertion, which is not
ordered with any other event except ini. Symmetric assertions can be generated
for Thread 2. To obtain an assertion describing the combined execution, we com-
pose the final event structures of both threads to obtain a “postcondition” of the
program. For this, we use parallel composition of event structures, synchronising
read with their corresponding fulfill events. In Fig. 1, both reads are valid since
the promises that these reads rely on can be fulfilled in the composition without
creating cyclic dependencies.
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Fig. 2 presents a variation of the program in Fig. 1, which includes additional
barriers dmb (fences) between the load and store in each thread, preventing their
reordering. Again we build a proof outline for an execution in which Thread 1
loads 1 into a, obtaining the assertions shown. Note that here the event structure
contains an additional fence event, fnc, that is ordered after bar(a, y) and before
ff1(x, 1). Similarly, for Thread 2 loading 1 into b, we would obtain a symmetric
set of assertions. Here, the parallel composition of local assertions is however
not interference free (see below): the promises that threads 1 and 2 have read
from cannot be fulfilled in this concurrent program. More detailedly, let E1 and
E2 below be the (final) event structures of threads 1 and 2, respectively, where
↠ arrow denotes ordering and we now give event names together with labels.

E1: eini : ini ↠ e1 : rd2(y, 1) ↠ e2 : bar(a, y) ↠ e3 : fnc1 ↠ e4 : ff1(x, 1)

E2: fini : ini ↠ f1 : rd1(x, 1) ↠ f2 : bar(b, x) ↠ f3 : fnc2 ↠ f4 : ff2(y, 1)

To reason about the set of reachable final states of the concurrent program, we
again construct the parallel composition of E1 and E2 (denoted E1∥E2):

(eini, fini) : ini

(e1, f4) : ff2(y, 1)

(e4, f1) : ff1(x, 1)

(e1, ∗) : rd2(y, 1) (e2, ∗) : bar(a, y) (e3, ∗) : fnc1 (e4, ∗) : ff1(x, 1)

(∗, f1) : rd1(x, 1) (∗, f2) : bar(b, x) (∗, f3) : fnc2 (∗, f4) : ff2(y, 1)

This composition of event structure is built similar to [16], allowing events
of the parallel composition to be lifted from the sub-components. These are
events of the form (ei, ∗) and (∗, fi). The parallel composition also contains
synchronised read/fulfill events, e.g., (e1, f4) depicts a read synchronised with the
fulfill (write) ff1(y, 1). We inherit order in the composition from the constituent
event structures. Moreover, to prevent the same event occurring more than once
in an “execution” of E1∥E2, we use the conflict relation (zigzagged line). Thus,
the synchronised event (e1, f4) conflicts with both (e1, ∗) and (∗, f4).

The final step in proving is the generation of a valid interference free con-
figuration of the parallel composition, which is a subset of the event structure
satisfying certain conditions, including acyclicity of ↠, absence of conflicts and
absence of unsynchronised reads (ensuring the fulfillment of all promises read
from). It turns out that for the event structure above, it is impossible to gen-
erate such a configuration. The event (e1, ∗) cannot be included since it is an
unsynchronised read. Therefore, (e1, f4) must be included. However, by the def-
inition of a configuration, this also means that the downclosure of (e1, f4) must
be included, which results in a cycle: (e1, f4) ↠ (e2, ∗) ↠ (e3, ∗) ↠ (e4, f1) ↠
(∗, f2) ↠ (∗, f3) ↠ (e1, f4). Since E1∥E2 has no interference free configurations,
the proof outline is not valid and in fact, a final state with a = 1 ∧ b = 1 is
unreachable here.
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3 A Weak Memory Semantics with Promises

We develop a promising semantics inspired by the recent view-based operational
semantics by Pulte et al. [29]. We have reduced architecture-specific details,
allowing us to focus on the interaction between promises and thread views. Our
notion of a promise coincides with earlier works [21,23,29]. Threads can promise
to write certain values on shared locations and other threads can read from this
promise even before the actual write has occurred. All promises however need
to be fulfilled at the end of the program execution.

Syntax. Let x, y ∈ Loc be the set of shared locations, κ ∈ Val the set of values,
τ ∈ Tid the set of thread identifiers and a, b ∈ Reg local registers. Our sequential
language encompasses the following constructs:

rv ::= κ | a st ::= skip | a := loadx | store x rv | a := η | dmb

S ::= st | S;S | asmβ | S + S | S∗

where η ∈ Exp is an arithmetic and β ∈ BExp is a boolean expressions, both
over (local) registers only. We assume S∗ = ∃n ∈ N. Sn, where S0 =̂ skip and
Sn =̂ S;Sn−1. We use abbreviations: whileβ doS = (asmβ;S)∗;asm¬β and
if β thenS1 elseS2 = (asmβ;S1) + (asm¬β;S2), where asmβ is a command
that tests whether β holds.

Timestamped state. We let TState be the set of all timestamped states and
Memory the set of all memory states, both of which we make more precise
below. A thread T ∈ Thread is an element of S × TState, a concurrent program
is a mapping T ∈ TPool =̂ Tid → Thread and a concurrent program state is a
pair ⟨T ,M⟩ ∈ TPool ×Memory . We let R(τ), τ ∈ Tid, be the set of registers
occurring in the program of T (τ). We assume R(τ)∩R(τ ′) = ∅ whenever τ ̸= τ ′.

Threads will make promises for writes at particular timestamps. Timestamps
t ∈ T are natural numbers. We define t ⊔ t′ =̂ max(t, t′) and generalise this to
sets of timestamps using

⊔
t∈T t, where

⊔
t∈∅ t = 0. A memory is a sequence of

write messages of type Wr =̂ (Loc×Val×Tid) ∪ {ini}, where ini is a special
write message denoting initialisation. The position of a write in the sequence
fixes its timestamp. We assume all variables are initialised with value 0.

We denote a write w =̂ (x, κ, τ) using ⟨x := κ⟩τ and let w.loc = x,w.val = κ
and w.tid = τ . For a memory M and thread τ ∈ Tid, we let Mτ ⊆ T be the
set of timestamps of entries of τ in M , i.e. {t ∈ T | M(t).tid = τ}. Mτ is used
to determine the promise set of each τ . We write tids(M) to denote the set of
threads with entries in M . New messages w are appended at the end of the
memory, which we write as M ++ w.

A thread state ts ∈ TState consists of the following components: a set of (non-
fulfilled) promises prom ∈ 2T, a coherence view of each location, coh : Loc → T,
the value and view of each register, regs : Reg → Val×T, a read view vread : T,
two write views vwOld , vwNew : T and a condition view vC : T. We write regs(a)
as κ@v and also let va be this view v of register a. Finally, the evaluation of an
expression η with respect to a register assignment regs, JηKregs ∈ Val × T, is
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defined as follows:

JκKregs =̂ κ@0 for κ ∈ Val, JaKregs =̂ regs(a) for a ∈ Reg,

Jη1 op η2Kregs =̂ (κ1JopKκ2)@(v1 ⊔ v2) with Jη1Kregs = κ1@v1, Jη2Kregs = κ2@v2

Note that this evaluation is with respect to the register function regs and this
calculates both the value of the expression and the maximal view of the registers
within the expression.

To define the initial state of a program, we let

Mini =̂ ⟨ini⟩ tsini =̂

[
prom = {}, vread = vwNew = vwOld = vC = 0,
coh = (λx. 0), regs = (λa. 0@0)

]
where tsini is a record initialising the promises to the empty set, each view to
0, the coherence function to a map from locations to timestamp 0, and the
register function to a map from registers to value 0 with timestamp 0. We say
that a program T is locally in its initial state iff for each thread τ , we have
π2(T (τ)) = tsini, where πi projects the ith component of a tuple. Given that T
is in its initial state, the initial concurrent program state is given by ⟨T ,Mini⟩.

The rules of the operational semantics (except for standard rules for program
constructs) are given in Fig. 3. The two key rules are theRead and Fulfill rule.
Read identifies a timestamp t to read a value for x from such that in between t
and the maximum of read view and coherence of x, there are no further promises
to x in memory M . It updates read view, coherence of x and the view of the
register involved in the load as to ensure preservation of dependencies. Fulfill
fulfills an already made promise (to write κ to x) of a thread at timestamp t,
and to this end has to ensure that views vwNew , vC , coh(x) as well as that of
the value/register are less than t. It removes t from the thread’s promise set
and updates coh(x) and vwOld (as to ensure dependencies with fences). Rule
Promise simply adds an arbitrary new promise at the end of memory. Fence
ensures views vread and vwNew are updated. This rule for instance guarantees
that store operations separated by barriers dmb can only be fulfilled in that
order, i.e. the write of the first store cannot be promised to happen later than
the write of the second store (more precisely, such promises cannot be fulfilled).

Finally, we say that ⟨T,M⟩ is certifiable (used in Program Step) if there
is some T ′,M ′ such that ⟨T,M⟩ −→∗

τ ⟨T ′,M ′⟩ and T ′.prom = ∅. Certifiability
ensures that a concurrent program can only make steps when all promises can
eventually be fulfilled. Like [29], in our semantics, all promise steps can be done
at the beginning without losing any of the reachable states.

4 Event Structures

Event structures [4,5,16,39] are models of concurrent systems which compactly
represent (concurrent) executions. Here, we use flow event structures because of
their ease in defining a compositional parallel composition [16].



Reasoning about Promises in Weak Memory Models with Event Structures 7

Promise
w.tid = τ w.loc = x w.val = κ

t = |M |+ 1
ts′ = ts[prom 7→ ts.prom ∪ {t}]〈

⟨S, ts⟩,M
〉
−prm(x,κ)−−−−−→τ

〈
⟨S, ts′⟩,M ++ w

〉
Fence

v = ts.vread ⊔ ts.vwOld

ts′ = ts

[
vread 7→ v
vwNew 7→ v

]
〈
⟨dmb, ts⟩,M

〉
−fnc−→τ

〈
⟨skip, ts′⟩,M

〉
Read

M(t).loc = x M(t).val = κ
∀t′. t < t′ ≤ (ts.vread ⊔ ts.coh(x)) ⇒

M(t′).loc ̸= x
vpost = ts.vread ⊔ t

ts′ = ts

regs(a) 7→ κ@vpost,
coh(x) 7→ ts.coh(x) ⊔ vpost,
vread 7→ vpost


〈
⟨a := loadx, ts⟩,M

〉
−rd(x,κ)−−−−→τ〈
⟨skip, ts′⟩,M

〉

Fulfill
t ∈ ts.prom JrvKts.regs = κ@vrv

M(t) = ⟨x := κ⟩τ
ts.vwNew ⊔ ts.vC ⊔ ts.coh(x) ⊔ vrv < t

ts′ = ts

prom 7→ ts.prom \ {t},
coh(x) 7→ t,
vwOld 7→ vwOld ⊔ t


〈
⟨store x rv , ts⟩,M

〉
−ff (x,κ)−−−−→τ〈

⟨skip, ts′⟩,M
〉

Register
regs(a) = κa@u JηKts.regs = κ@v ts′ = ts

[
regs(a) 7→ κ@(u ⊔ v)

]〈
⟨a := η, ts⟩,M

〉
−lst(a,η)−−−−→τ

〈
⟨skip, ts′⟩,M

〉
Assume

JβKts.regs = true@v
ts′ = ts[vC 7→ ts.vC ⊔ v]〈

⟨asmβ, ts⟩,M
〉
−asm(β)−−−−→τ

〈
⟨skip, ts′⟩,M

〉
Program Step

⟨T (τ),M⟩ −op−→τ ⟨T ′,M⟩
⟨T ′,M⟩ certifiable

⟨T ,M⟩ −op−→τ ⟨T [τ 7→ T ′],M ′⟩

Fig. 3. Operational semantics (Atomic statement rules)

Notation. Event structures consist of sets of events d, e, f ∈ E. Events will be
labelled with actions which are here specific to our usage and give us information
about program executions:

Actx =̂
⋃

τ∈Tid,κ∈Val

{rdτ (x, κ),ffτ (x, κ)} ∪ {ini} Act fnc =̂
⋃

τ∈Tid

{fncτ}

Acta =̂
⋃

x∈Loc,η∈Exp

{bar(a, x), bar(a, η)} Act tst =̂
⋃

τ∈Tid,β∈BExp

{tstτ (β)}

Actions on a location x can be read actions rdτ (·, ·), fulfill actions ffτ (·, ·) or the
initialization ini. Note that the thread identifier τ in read actions is the id of the
thread having made the promise and in fulfill actions it is the thread executing
the fulfill (and having made the corresponding promise). We let Act rd denote
all read and Actff all fulfill actions. To record loading into register a, we use
so called bar actions bar(a, ·). The action fnc occurs when a dmb statement is
executed and tst·(·) describes the execution of some asm statement.

We often lift notations to sets of locations L ⊆ Loc or sets of registers
R ⊆ Reg. For example, ActL =

⋃
x∈L Actx. The overall set of actions is Act =

ActLoc ∪ActReg ∪Act fnc ∪Act tst.
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Definition 1. A location-coloured flow event structure (short: event structure)
E = (E,↠,#, Λ, ℓ) labelled over a set of actions Act consists of a finite set
of events E, an irreflexive flow relation ↠ ⊆ E × E, a location restriction
function Λ : E × E → 2Loc, a symmetric conflict relation # ⊆ E × E, and a
labelling function ℓ : E → Act.

For L ⊆ Loc, we write e
L
↠ f to denote e ↠ f and Λ(e, f) = L. The location

restrictions are employed to reflect the application condition of rule Read within
the event structure: it tells us that there is no write to x ∈ L in between e and
f , where e and f will eventually be mapped to timestamps in memory.

We let Ini be the event structure ({eini}, ∅, ∅, ∅, ℓ) with ℓ(eini) = ini. Given
an event structure E = (E,↠,#, Λ, ℓ), we – similarly to actions – define its set
of events labelled with specific actions as Rd(E), Rdτ (E), Rdxτ (E), Ff(E), Ffτ (E)
and Ffxτ (E) via the labelling function ℓ. For an event e labelled with an action
in Actx\{ini}, we let e.loc = x. We slightly abuse notation so that eini.loc = x
for all x. We furthermore define lastα(E), α ∈ Act, to be the last event in flow
order labelled α, i.e., lastα(E) = e if ℓ(e) = α and for all e′ such that e′ ̸= e
and ℓ(e′) = α, we have e′ ↠+ e. Moreover, lastα(E) = ⊥ if no event labelled α
exists. We lift last to sets of actions by lastA(E) = {lastα(E) | α ∈ Act}. An
event structure E is sequential if all events are flow-ordered: ∀e, e′ ∈ E, e ̸= e′ :
e↠+ e′ ∨ e′ ↠+ e. We let S be the set of sequential event structures.

An event structure describes (several) concurrent executions in compact
form. One execution is therein given as a configuration.

Definition 2. A configuration C ⊆ E of an event structure E = (E,↠,#, Λ, ℓ)
satisfies the following properties: (1) C is cycle-free: (↠ ∩(C×C))+ is irreflex-
ive, (2) C is conflict-free: #∩ (C ×C) = ∅, (3) C is left-closed up to conflicts:
∀d, e ∈ E, if e ∈ C, d ↠ e and d /∈ C, then there exists f ∈ C such that d#f
and f ↠ e.

We let Conf (E) be the set of configurations of E . We identify a configuration
with the (conflict-free) event structure EC which is E restricted to events of C.

Our intention is to use event structures to record information about the
local history of each thread, in particular the promises of other threads which
they have read from. Eventually (i.e., when combining local event structures)
all promises read from need to be fulfilled. This is captured by our notion of
parallel composition which requires fulfills (of a thread τ) to synchronize with
reads from promises of τ . Similary to CCS [24], we model this synchronisation
via complementary actions where rdτ (x, κ) = ffτ (x, κ) and vice versa, and a = a.
Contrary to CCS, the synchronisation does not create internal actions, but keeps
the fulfill labels (as to still see what promise a fulfill belonged to).

We first define the synchronising events of n event structures E1, . . . , En, as
follows, where Ei∗ denotes Ei ∪ {∗}.

sync(E1, . . . , En) =̂


(e1, e2, . . . , en) ∈ E1∗ × E2∗ × · · · × En∗ |
∃i. ℓi(ei) ∈ Actff ∧ (∀j ̸= i. ej ̸= ∗ ⇒ ℓi(ei) = ℓj(ej)) ∧

(∃j ̸= i. ej ̸= ∗)


∪ {(e1ini, e2ini, . . . , enini)}
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An event e might also occur unsynchronized in a parallel composition (which
is then written as (∗, . . . , ∗, e, ∗, . . . , ∗).

Note that since we aim to reason about reachability of states (underapprox-
imation), we just need parallel composition for conflict-free event structures,
i.e. for event structures describing a single execution. Thus the ∆-axiom of
Castellani and Zhang [6] which they impose in order to get compositionality
is trivially fulfilled for our application. Next, we still first of all define parallel
composition of arbitrary event structures.

We let ×iS denote the product S × S × . . . S generating a tuple of length i.
If i ≤ 0, we let ×iS = ⊥. Finally, we let ⊥× S = S ×⊥ = S.

Definition 3 (Parallel composition). Let E1, E2, . . . , En be event structures
for threads τ1, τ2, . . . , τn, respectively. The parallel composition E = E1||E2|| . . . ||En
is the event structure (E,↠,#, Λ, ℓ) with

– E = sync(E1, E2, . . . En) ∪
(⋃

i(×i−1{∗})× (Ei \ {eiini})× (×n−i{∗})
)

– (e1, e2, . . . , en) ↠ (d1, d2, . . . , dn) iff ∃i. ei ↠i di,
– Λ((e1, e2, . . . , en), (d1, d2, . . . , dn)) =

⋃
i Λ(ei, di),

– (e1, e2, . . . , en)#(d1, d2, . . . , dn) iff

• ∃i. ei#idi, or (inherit conflicts)
• ∃i, j. ei = di ∧ ei ̸= ∗ ∧ ej ̸= dj (conflicts on differently paired events),

– Labels:

ℓ(e1, e2, . . . en) =


ini if (e1, e2, . . . en) = (e1ini, e

2
ini, . . . e

n
ini)

ℓ(ei) if (e1, e2, . . . en) ∈ sync(E1, E2, . . . En) ∧ ℓ(ei) = ff·(·, ·)
ℓ(ei) if (e1, e2, . . . en) /∈ sync(E1, E2, . . . En) ∧ ei ̸= ∗

Parallel composition of event structures is used to combine local proof outlines
of threads. This combination is only possible if enough synchronization partners
are available. Event structures E1 to En are synchronizable if πi(sync(E1, . . . , En))
⊇ Rd(Ei), i ∈ {1, . . . , n} (all the reads have a synchronization with a fulfill). The
configuration (describing an execution of the parallel composition of threads)
which we extract from Conf (E1|| . . . ||En) furthermore has to guarantee that no
events from the local proof outlines are lost and that the local assertions make
no contradictory assumptions about the contents of memory.

Definition 4. The event structure EC = (EC ,↠C , ∅, ΛC , ℓC) corresponding to
a configuration C ∈ Conf (E1|| . . . ||En) is interference free if

1. C is thread-covering: ∀i ∈ {1, . . . , n} : πi(EC) = Ei,
2. C is memory-consistent linearizable: there exists a total order ≺ ⊆ Actx(EC)×

Actx(EC) among reads, fulfills and the ini event such that

– ↠C
+ ∩ (Actx(EC)×Actx(EC)) ⊆ ≺ and

– ∀d, e, f ∈ EC : d
L
↠ f ∧ d ≺ e ≺ f =⇒ e.loc /∈ L,

3. C contains no unsynchronised reads: there is no event in EC of the form
(∗, ∗, . . . , ∗, ei, ∗ . . . , ∗), where ei ∈ Rd(Ei).
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Example 1. Consider the two event structures given next (which belong to a
message passing program with barriers, see Section 5).

eini : ini e1 : ff1(x, 5)

e2 : fnc1 e3 : ff1(y, 1)
fini : ini

f1 : rd1(f, 1) f2 : bar(a, y)

f3 : bar(b, x)

{x}

Their parallel composition gives the following event structure:

(eini, fini) : ini

(e1, ∗) : ff1(x, 5) (e2, ∗) : fnc1 (e3, ∗) : ff1(y, 1)

(e3, f1) : ff1(y, 1)

(∗, f1) : rd1(y, 1) (∗, f2) : bar(a, y)

(∗, f3) : bar(b, x)

{x}

{x}

This event structure has no interference-free configuration. To satisfy the condi-
tions “thread-covering” and “no unsynchronised reads”, we must include event
(e3, f1). This means the only possible configuration must also include the down-
closure (e1, ∗) and (e2, ∗). However, together with the location restriction {x}
on the edge ((eini, fini), (e3, f1)), the resulting event structure is not memory-
consistent linearizable, since it contains a sequence (eini, fini) ↠ (e1, ∗) ↠ (e2, ∗) ↠
(e3, f1), where (e1, ∗) corresponds to a fulfilled write on x that is forbidden by

the edge ((eini, fini)
{x}
↠ (e3, f1)). Conceptually, this means that we cannot find

a memory M which matches the constraints on its contents given in the event
structure.

5 Reasoning

Our overall objective is the design of a proof calculus for reasoning about the
reachability of certain final states of concurrent programs. A concurrent program
state describes the values of registers and shared variables, the contents of mem-
ory and the views of threads. During reasoning, we employ event structures as
assertions in proof outlines. They abstract from the concrete state in neither
giving the exact contents of memory nor the timestamps of thread views.

5.1 Semantics of Assertions

Local assertions in the proof outlines of single threads take the form E , where
E is a conflict-free event structure (i.e., # = ∅). The event structure is conflict-
free because it describes a single execution of the thread (reachability logic). An
assertion for a thread τ can have fence and fulfill events of τ , read events reading
from (promises of) threads τ ′ ̸= τ as well as bar and test events over registers of
R(τ). The events in E – together with some memoryM – allow us to compute the
current views of threads. Figure 4 gives some definitions for calculating views.
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prFncτ (E) = {e ∈ Rd(E) ∪ Ff(E) ∪ {eini} | ∃e′ ∈ lastfncτ (E) : e↠
+ e′}

prBara(E) = {e ∈ Rd(E) ∪ Ff(E) ∪ {eini} | ∃e′ ∈ lastbar(a,·)(E) : e↠+ e′}

prBarτ (E) =
⋃

a∈R(τ)

prBara(E)

prBarxτ (E) = prBarτ (E) ∩Actx(E)
prTstτ (E) = {e ∈ Rd(E) ∪ Ff(E) ∪ {eini} | ∃e′ ∈ lasttstτ (·)(E) : e↠+ e′}

Fig. 4. Determining the decisive reads and writes prior to an event (E = (E,↠,#, Λ, ℓ)
event structure, τ ∈ Tid, a ∈ Reg, x ∈ Loc)

A local assertion of a thread τ defines constraints on the global memory M
(the ordering of writes and their values) as well as the views of τ : An assertion
E describes a set of states JEK = {⟨ts,M⟩ ∈ (Tid → TState) × Memory |
⟨ts,M⟩ matches E} where “matches” is defined by conditions (1)-(4) below.
(1) M is consistent with the fulfill and read events of E .
There exists a total mapping ψ : Ff(E) ∪ Rd(E) ∪ {eini} → dom(M) which

1. initializes at zero: the one event eini labelled ini is mapped to 0,
2. is consecutive for every thread τ :

for all e ∈ Ffτ (E), t ∈ T s.t. M(t) = ⟨x := κ⟩τ , t < ψ(e) and e.loc = x, there
exists d ∈ Ffτ (E) such that ψ(d) = t,

3. preserves content: if ψ(e) = t ̸= 0 and M(t) = ⟨x := κ⟩τ , then ℓ(e) ∈
{ffτ (x, κ), rdτ (x, κ)},

4. preserves flows: ∀e, e′ ∈ dom(M) : e↠+
E e′ ⇒ ψ(e) < ψ(e′),

5. and preserves memory constraints:

∀d, e ∈ dom(M), L ⊆ Loc s.t. d
L
↠e, ∀t ∈ T s.t. ψ(d) < t < ψ(e):M(t).loc ̸=

d.loc.

The mapping ψ is used to assign timestamps to read and fulfill events. We
therefore will later also talk about the timestamp of an event (depending on such
a mapping). Note that the event structure Ini is consistent with all memories M
(using mapping ψ(eini) = 0).
(2) The open (non-fulfilled) promises of a thread τ are the entries of τ in M
which are not fulfilled, i.e., ts(τ).prom =Mτ \ ψ(Ffτ (E)).
(3) The views of a thread τ are consistent with mapping ψ and M .
Letting ts = ts(τ), a ∈ R(τ) and x ∈ Loc, we have

ts.vC =
⊔

e∈prTstτ (E)

ψ(e) ts.coh(x) =
⊔

e∈Ffxτ (E)∪prBarx
τ (E)

ψ(e)

ts.vwOld =
⊔

e∈Ffτ (E)

ψ(e) ts.vwNew =
⊔

e∈prFncτ (E)∩
(
Ffτ (E)∪prBarτ (E)

)ψ(e)
zts.va =

⊔
e∈prBara(E)

ψ(e) ts.vread =
⊔

e∈
(
prFncτ (E)∩Ffτ (E)

)
∪prBarτ (E)

ψ(e)



12 Heike Wehrheim, Lara Bargmann, and Brijesh Dongol

. . .

0 6 9

⟨x, 0⟩
⟨y, 0⟩

. . . ⟨y, 1⟩1 . . . ⟨z, 3⟩1

no write to x
in M(1) to M(5)

ini

ff1(y, 1) bar(a, y)

bar(b, x)

{x}
Thread 1
1 : store y 1;
2 : a := load y;
3 : b := loadx;
4 : store z 3;

Fig. 5. Example memory M (left) for event structure E (middle) describing an execu-
tion of statements 1, 2 and 3 in thread 1 (right).
State ts of thread 1: prom = {9}, vC = vwNew = coh(z) = 0, va = vb = coh(y) =
coh(x) = vwOld = vread = 6, using mapping ψ : ini 7→ 0,ff1(y, 1) 7→ 6.

(4) The values of registers R(τ) of thread τ agree with values in E .
For a ∈ Reg, ts.regs(a) = κ@va with κ = JaKE (where the semantics of a register
a in E is (1) 0 if no bar event for a is in E or (2) the value of a read or fulfill to
x prior to the last bar(a, ·) (on x) or (3) the value of the expression η in a last
bar(a, η)) and va as defined above.

Figure 5 gives an example for the definition of “matches”. On the right hand
side we see the program of thread 1. It first stores 1 to y, then loads the values
of y and x into registers a and b, respectively, and finally stores 3 to z. The event
structure in the middle gives the assertion reached after statement 3, i.e. before
the final store operation. The memory M on the left hand side matches this
event structure: There are promises for the event ini at M(0) as well as for event
ff1(y, 1), so ψ maps ini to 0 and ff1(y, 1) to 6. The colored location restriction
in the event structure furthermore requires not to have any promises to x in
between 0 and 6. As there is one more promise of thread 1 inM , not yet covered
by the event structure, we can derive 1.prom = {9}.

5.2 Proof Rules

Essentially, assertions describe the events which have already happened together
with their orderings plus further constraints. The initial assertion in proof out-
lines is always the event structure Ini. Then, the proof rules successively add
new events to the event structure when e.g. reading from or writing to shared
variables. We however never add events for promises; rather, threads can first
of all assume arbitrary promises of other threads having been made which they
can read from. The overall interference freedom constraint guarantees that these
local assumptions about promises are met at the end.

For adding new events, we use a number of ⊕-operators, detailed in Fig. 6.
The event structures in there are local to threads and describe a single execution
of the thread, hence are conflict-free. The definition of these operators has to
ensure that they capture the dependencies between views as defined by the
operational semantics. For example, rule Fulfill requires (among others) the
timestamp t to be larger than control view vC , hence E⊕ffτ (x, κ) has to introduce
a flow from the last test event to the newly added fulfill event.
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E ⊕ ffτ (x, κ) = (Ee,↠ ∪ {(e′, e) | e′ ∈ lastActx∪{fncτ ,tstτ (·)}(E)}, Λ, ℓ[e 7→ ffτ (x, κ))])

E ⊕a ffτ (x, κ) = (Ee,↠ ∪ {(e′, e) | e′ ∈ lastActx∪{fncτ ,tstτ (·),bar(a,·)}(E)},
Λ, ℓ[e 7→ ffτ (x, κ)])

E ⊕ bar(a, x) = (Ee,↠ ∪ {(e′, e) | e′ ∈ lastActx∪{fncτ ,bar(·,·)}(E)}, Λ, ℓ[e 7→ bar(a, x)])

E ⊕ bar(a, η) = (Ee,↠ ∪
{
(e′, e) |
∃b ∈ R(η) ∪ {a} : e′ = lastbar(b,·)(E)

}
, Λ, ℓ[e 7→ bar(a, η)])

E ⊕ fncτ = (Ee,↠ ∪ {(e′, e) | e′ ∈ lastAct\{tstτ (·)}(E)}, Λ, ℓ[e 7→ fncτ ])

E ⊕ tstτ (β) = (Ee,↠ ∪ {(e′, e) | ∃a ∈ R(β). e′ ∈ lastbar(a,·)(E)}, Λ, ℓ[e 7→ tstτ (β)])

E ⊕ E ′ =


E ∪ E′,

↠ ∪ ↠′ ∪
{
(e, e′) ∈ E × E′ | ∃x ∈ Loc.
e = last{fnc,bar(·,·),ff·(x,·)}(E) ∧ ℓ(e

′) ∈ Actx

}
,

Λ ∪ Λ′, ℓ ∪ ℓ′


Fig. 6. Operations for adding events to a conflict-free event structure E = (E,↠, Λ, ℓ),
where e /∈ E is a fresh event and Ee = E ∪ {e}, E ′ = (E′,↠′, Λ′, ℓ′), E ∩ E′ = ∅)

Figure 7 gives the proof rules for building local proof outlines of threads.
Most of the rules (i.e., PR-Write, PR-WriteR, PR-Fence, PR-Registers
and PR-Assume) just add one new event to the event structure recording the
occurrence of a particular program statement. More complex are the two read
rules: PR-ReadEx is applied for load statements reading from x when the event
structure already contains an event e describing (in the sense of JEK) the entry
in memory to read from; this can be a read, fulfill or the ini event. In this case,
the event structure after the load has to reflect the applicability condition of rule
Read: no entries in memory to x in between t (the timestamp of e in JEK) and
vread ⊔ coh(x). This is achieved by inserting an additional location restriction x
via the operator rstrxe (E) to the following (potentially already L-labelled) flows
(thus getting the restriction L ∪ {x}):

{e
L
↠ e′ | e′ ∈ (prFncτ (E) ∩ Ffτ (E)) ∪ prBarτ (E) ∪ Ffxτ (E)} .

Rule PR-ReadNew on the other hand introduces new read events into an
event structure upon a load statement. The rule can directly introduce an entire
sequence of read events (i.e., add a sequential event structure E ′) as to enable
later reads from memory entries which are prior to the entry of the current read
(described by event e in the rule). This is required for message passing idioms
like in the following program.

Thread 1
1 : store x 5;
2 : dmb;
3 : store y 1;

Thread 2
4 : a := load y;
5 : b := loadx;

Here, due to the fence in Thread 1, Thread 2 – after having read y to be 1 –
can only read x to be 5. When constructing the proof outline for Thread 2, we
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PR-Write

[E ] store x κ [E ⊕ ffτ (x, κ)]

PR-WriteR
JaKE = κ

[E ] store x a [E ⊕a ffτ (x, κ)]

PR-Fence

[E ] dmbτ [E ⊕ fncτ ]

PR-ReadEx
e = lastActx(E)

ℓ(e) ∈ {rdτ ′(x, κ),ffτ (x, κ), ini}
[E ] a := loadx [rstrxe (E ⊕ bar(a, x))]

PR-ReadNew
E ′ = (E′,↠′, Λ′, ℓ′) ∈ S
ℓ′(E′) ⊆ ActRd \Actτ

lastAct(E ′) = e, ℓ′(e) = rdτ ′(x, κ)

[E ] a := loadx [(E ⊕ E ′)⊕ bar(a, x)]

PR-Registers

[E ] a := η [E ⊕ bar(a, η)]

PR-Assume
JβKE = true

[E ] asm β [E ⊕ tstτ (β)]

PR-Choice
[E1] Si [E2]

[E1] S1 + S2 [E2]

PR-Sequencing
[E1] S1 [E2] [E2] S1 [E3]

[E1] S1;S2 [E3]

PR-IterateZero

[E ] S0 [E ]

PR-IterateNonZero
n > 0 [E1] S;S

n−1 [E2]

[E1] S
n [E2]

Fig. 7. Local proof rules for a thread τ

need to apply rule PR-ReadNew for the first load giving us

ini ↠ rd1(x, 5) ↠ rd1(y, 1) ↠ bar(a, y)

as assertion after statement 4. For the subsequent load we can then apply proof
rule PR-ReadEx. Note that we could also construct a local proof outline having
the load in line 4 read from ini. This would then give us the two event structures of
Example 1 which we, however, have already seen to not allow for an interference
free configuration of their parallel composition.

Finally, we have a proof rule for parallel composition which combines local
event structures when they are synchronisable and the resulting configuration is
interference free.

Parallel

∀i ∈ {1, . . . , n}. [Ini] Si [Ei] E1, . . . , En synchronisable
interference free C ∈ Conf (E1|| . . . ||En)

[Ini] S1|| . . . ||Sn [EC ]

This rule ensures that (1) all synchronization constraints are met (i.e., the
promises that threads want to read from have been made) and (2) there is a
configuration C of the combined event structure which is interference free.

Example 2. Next, we give a complete proof outline for the message passing litmus
test without a barrier in the writing thread. We see that here message passing is
not guaranteed (i.e., reading y to be 1 does not “pass the message” that x is 5
from Thread 1 to 2) and we can actually reach a final state with

(
a = 1 ∧ b = 0

)
(as calculated by JaKE and JbKE taking the value of the last fulfill or ini event
prior to the last bar event on a and b, respectively).
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Thread 1[
ini
]

1 : store x 5;[
ini ↠ ff1(x, 5)

]
2 : store y 1; ini

ff1(x, 5)

ff1(y, 1)



Thread 2[
ini
]

4 : a := load y;[
ini ↠ rd1(y, 1) ↠ bar(a, y)

]
5 : b := loadx; ini

rd1(y, 1) bar(a, y)

bar(b, x)

{x}


 E : ini

ff1(y, 1) bar(a, y)

bar(b, x)

ff1(x, 5)

{x}


5.3 Soundness and Completeness

Due to lack of space, we can neither discuss soundness nor completeness of our
proof calculus in some more detail here. Proofs can be found in the extended
version [38].

Soundness requires proving all local proof rules correct plus showing the cor-
rectness of rule Parallel as of Theorem 1 below. It states that whenever we find
an interference free configuration in the parallel composition of synchronizable
event structures in a locally sound proof outline, all thread states and memory
contents matching this configuration are actually reachable by the concurrent
program.

Theorem 1. Let [Ini] Si [Ei], i ∈ {1, . . . , n}, be proof outlines of threads τ1 to
τn such that E1 to En are synchronizable and let T0 be an initial thread pool with
T0(τi) = (Si, tsini) and M0 =Mini.

Then, for every thread pool T with T (τi) = (skip, tsi), interference free
configuration C ∈ Conf (E1|| . . . ||En) and memory M such that ⟨tsi,M⟩ ∈ JECK,
tids(M) = {τ1, . . . , τn} and tsi.prom = ∅, i ∈ {1, . . . , n}, we have ⟨T0,M0⟩ −→∗

⟨T ,M⟩.

Our second main result is the completeness of the proof calculus: whenever
there is an execution of a concurrent program, our proof calculus allows to show
the reachability of its final state. More specifically, for every trace of a concurrent
program we find local proof outlines with synchronizable event structures and
an interference free configuration describing the final state of the trace.

Theorem 2. Let ⟨T0,M0⟩ −→∗ ⟨T ,M⟩ be a trace of a concurrent program over
threads τ1, . . . , τn such that T0 is the initial thread pool with T0(τk) = (Sk, tsini),
M0 =Mini and T the final thread pool with T (τk) = (skip, tsk) and tsk.prom =
∅, k ∈ {1, . . . , n}.

Then there are local proof outlines [Ini] Sk [Ek] of threads τk, k ∈ {1, . . . , n},
such that E1 to En are synchronizable and there exists an interference free con-
figuration C ∈ Conf (E1|| . . . ||En) with ⟨T ,M⟩ ∈ JECK.
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6 Related Work

The first semantics of weak memory models employing promises has been pro-
posed by Kang et al. in 2017 [21] for building an operational semantics which
allows modelling of read-write reordering while at the same time disallows out-
of-thin-air behaviours. Our semantics here is a slightly simplified version of the
promising semantics of ARMv8 given by Pulte et al. [29]. In particular, like [29]
all program traces can be reordered so that the promise steps are all at the be-
ginning which is a key property required for the soundness of our proof calculus.

There are already several proposals for program logics for weak memory
e.g. [1, 9, 10, 12–14, 22, 32, 36]. The only one explicitly dealing with promises in
the semantics is the proposal of Svendsen et al. [35]. They develop a safety proof
calculus whereas we are interested in reachability. Their logic furthermore has
to deal with promises occurring at any program step (as they show soundness
with respect to the promising semantics of [21]), whereas we rely on all promises
being made at the beginning.

Partial order models of concurrency have already been used for giving the se-
mantics of memory models [7,18,19], but not for reasoning. Wright et al [40] take
the approach of using a semantic dependency relation, which is a partial order
generated through an event structure representation of a C/C++ program [28],
which is a partial order over a thread’s execution. An Owicki-Gries logic is pro-
vided to reason directly over such partial orders. Incorrectness logic as used for
proving reachability properties of sequential programs has been introduced by
O’Hearn [26], with a predecessor approach with (almost) the same principles by
de Vries and Koutavas [37]. The first extension of incorrectness logic to concur-
rent programs has been proposed by Raad et al. in the form of an incorrectness
separation logic [30] which is however not compositional.

Colvin [8] defines a semantics based on a reordering relation for several
hardware memory models, which is then lifted to a Hoare calculus. This is
then rephrased into a reachability property by defining triples ⟨⟨p⟩⟩ s ⟨⟨q⟩⟩ =
¬{p} s {¬q}, which states that it is possible for s to reach q if execution starts
in a state satisfying p. Note that this is weaker than O’Hearn’s notion of in-
completeness, which states that all states satisfying q are reachable from an
execution starting in a state satisfying p.

7 Conclusion

In this paper, we have proposed a reachability (incorrectness) logic for concurrent
programs running on weak memory models. The reasoning technique is based
on assertions which are event structures abstractly describing the contents of
memory and the views of all threads. We have proven soundness and complete-
ness of the proof calculus, and have demonstrated its applicability by proving
the outcomes of some standard litmus tests to be reachable.

Acknowledgements. We thank Christopher Pulte for clarifying one aspect of
the Register rule of ARMv8’s operational semantics to us and Sadegh Dalvandi
for initial discussions on the semantics.
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