Skip to main content

SPEM: Self-adaptive Pooling Enhanced Attention Module for Image Recognition

  • Conference paper
  • First Online:
  • 1231 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Abstract

Recently, many effective attention modules are proposed to boot the model performance by exploiting the internal information of convolutional neural networks in computer vision. In general, many previous works overlook the design of the pooling strategy of the attention mechanism since they adopt the global average pooling for granted, which hinders the further improvement of the performance of the attention mechanism. However, we empirically find and verify a phenomenon that the simple linear combination of global max-pooling and global min-pooling can produce effective pooling strategies that match or exceed the performance of global average pooling. Based on this empirical observation, we propose a simple-yet-effective attention module SPEM which adopts a self-adaptive pooling strategy based on global max-pooling and global min-pooling and a lightweight module for producing the attention map. The effectiveness of SPEM is demonstrated by extensive experiments on widely-used benchmark datasets and popular attention networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. arXiv preprint arXiv:1412.7755 (2014)

  2. Canbek, G.: Gaining insights in datasets in the shade of “garbage in, garbage out’’ rationale: feature space distribution fitting. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 12(3), e1456 (2022)

    Article  Google Scholar 

  3. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  4. Geiger, R.S., et al.: “Garbage in, garbage out’’ revisited: what do machine learning application papers report about human-labeled training data? Quant. Sci. Stud. 2(3), 795–827 (2021)

    Article  Google Scholar 

  5. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471. PMLR (2015)

    Google Scholar 

  6. Guo, M.H., et al.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 8, 331–368 (2022). https://doi.org/10.1007/s41095-022-0271-y

    Article  Google Scholar 

  7. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. He, W., Huang, Z., Liang, M., Liang, S., Yang, H.: Blending pruning criteria for convolutional neural networks. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894, pp. 3–15. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7_1

    Chapter  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Huang, Z., Liang, S., Liang, M., He, W., Yang, H.: Efficient attention network: accelerate attention by searching where to plug. arXiv preprint arXiv:2011.14058 (2020)

  13. Huang, Z., Liang, S., Liang, M., Yang, H.: DIANet: dense-and-implicit attention network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4206–4214 (2020)

    Google Scholar 

  14. Huang, Z., Shao, W., Wang, X., Lin, L., Luo, P.: Convolution-weight-distribution assumption: rethinking the criteria of channel pruning. arXiv preprint arXiv:2004.11627 (2020)

  15. Huang, Z., Shao, W., Wang, X., Lin, L., Luo, P.: Rethinking the pruning criteria for convolutional neural network. In: Advances in Neural Information Processing Systems, vol. 34, pp. 16305–16318 (2021)

    Google Scholar 

  16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  17. Lee, H., Kim, H.E., Nam, H.: SRM: a style-based recalibration module for convolutional neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1854–1862 (2019)

    Google Scholar 

  18. Li, H., et al.: Real-world image super-resolution by exclusionary dual-learning. IEEE Trans. Multimed. (2022)

    Google Scholar 

  19. Li, X., Hu, X., Yang, J.: Spatial group-wise enhance: improving semantic feature learning in convolutional networks. arXiv preprint arXiv:1905.09646 (2019)

  20. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normalization: an adaptive regulator of batch noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4819–4827 (2020)

    Google Scholar 

  21. Luo, M., Wen, G., Hu, Y., Dai, D., Xu, Y.: Stochastic region pooling: make attention more expressive. Neurocomputing 409, 119–130 (2020)

    Article  Google Scholar 

  22. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  23. Qin, J., Huang, Y., Wen, W.: Multi-scale feature fusion residual network for single image super-resolution. Neurocomputing 379, 334–342 (2020)

    Article  Google Scholar 

  24. Qin, J., Xie, Z., Shi, Y., Wen, W.: Difficulty-aware image super resolution via deep adaptive dual-network. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 586–591. IEEE (2019)

    Google Scholar 

  25. Qin, J., Zhang, R.: Lightweight single image super-resolution with attentive residual refinement network. Neurocomputing 500, 846–855 (2022)

    Article  Google Scholar 

  26. Qin, Z., Zhang, P., Wu, F., Li, X.: FcaNet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 783–792 (2021)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Smith, A.J.: The need for measured data in computer system performance analysis or garbage in, garbage out. In: Proceedings Eighteenth Annual International Computer Software and Applications Conference (COMPSAC 1994), pp. 426–431. IEEE (1994)

    Google Scholar 

  29. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  30. Wang, Q., Wu, B., Zhu, P., Li, P., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  31. Wang, Q., Wu, T., Zheng, H., Guo, G.: Hierarchical pyramid diverse attention networks for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8326–8335 (2020)

    Google Scholar 

  32. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  33. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Computer Science, pp. 2048–2057 (2015)

    Google Scholar 

  34. Yang, Z., Zhu, L., Wu, Y., Yang, Y.: Gated channel transformation for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (NSFC) under Grant No. 62206314 and Grant No. U1711264, GuangDong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wushao Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, S., Wen, W., Qin, J. (2023). SPEM: Self-adaptive Pooling Enhanced Attention Module for Image Recognition. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics