Skip to main content

CTDA: Contrastive Temporal Domain Adaptation for Action Segmentation

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

  • 1216 Accesses

Abstract

In video action segmentation scenarios, intelligent models require sufficient training data. However, the significant expense of human annotation for action segmentation makes this method prohibitively expensive, and only very limited training videos can be accessible. Further, large Spatio-temporal variations exist in training and test data. Therefore, it is critical to have effective representations with few training videos and efficiently utilize unlabeled test videos. To this end, we firstly present a brand new Contrastive Temporal Domain Adaptation (CTDA) framework for action segmentation. Specifically, in the self-supervised learning module, two auxiliary tasks have been defined for binary and sequential domain prediction. They are then addressed by the combination of domain adaptation and contrastive learning. Further, a multi-stage architecture is devised to acquire the comprehensive results of action segmentation. Thorough experimental evaluation shows that the CTDA framework achieved the highest action segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chen, M.H., Li, B., Bao, Y., AlRegib, G.: Action segmentation with mixed temporal domain adaptation. In: WACV, pp. 605–614 (2020)

    Google Scholar 

  3. Chen, M.H., Li, B., Bao, Y., AlRegib, G., Kira, Z.: Action segmentation with joint self-supervised temporal domain adaptation. In: CVPR, pp. 9454–9463 (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Swersky, K., et al.: Big self-supervised models are strong semi-supervised learners. In: NIPS, vol. 33, pp. 22276–22288 (2020)

    Google Scholar 

  5. Chen, X., Fan, H., Girshick, R., et al.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  6. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  7. Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for action segmentation. In: CVPR, pp. 3575–3584 (2019)

    Google Scholar 

  8. Fathi, A., Ren, X., Rehg, J.M.: Learning to recognize objects in egocentric activities. In: CVPR, pp. 3281–3288. IEEE (2011)

    Google Scholar 

  9. Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Fine-grained action segmentation using the semi-supervised action GAN. Pattern Recogn. 98, 107039 (2020)

    Google Scholar 

  10. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  11. Gao, S.H., Han, Q., Li, Z.Y., Peng, P., Wang, L., Cheng, M.M.: Global2Local: efficient structure search for video action segmentation. In: CVPR, pp. 16805–16814 (2021)

    Google Scholar 

  12. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. NIPS 33, 21271–21284 (2020)

    Google Scholar 

  13. He, K., Fan, H., Wu, Y., et al.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2020). https://doi.org/10.1109/CVPR42600.2020.00975

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: CVPR, pp. 156–165 (2017)

    Google Scholar 

  16. Lea, C., Reiter, A., Vidal, R., Hager, G.D.: Segmental spatiotemporal CNNs for fine-grained action segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 36–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_3

    Chapter  Google Scholar 

  17. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: CVPR, pp. 10285–10295 (2019)

    Google Scholar 

  18. Lei, P., Todorovic, S.: Temporal deformable residual networks for action segmentation in videos. In: CVPR, pp. 6742–6751 (2018)

    Google Scholar 

  19. Li, S.J., AbuFarha, Y., Liu, Y., Cheng, M.M., Gall, J.: MS-TCN++: multi-stage temporal convolutional network for action segmentation. TPAMI (2020)

    Google Scholar 

  20. Long, M., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS (2016)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217. PMLR (2017)

    Google Scholar 

  22. Mac, K.N.C., Joshi, D., Yeh, R.A., Xiong, J., Feris, R.S., Do, M.N.: Learning motion in feature space: locally-consistent deformable convolution networks for fine-grained action detection. In: ICCV, pp. 6282–6291 (2019)

    Google Scholar 

  23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. NIPS 32, 8026–8037 (2019)

    Google Scholar 

  24. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)

    Article  Google Scholar 

  25. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI (2018)

    Google Scholar 

  26. Richard, A., Gall, J.: Temporal action detection using a statistical language model. In: CVPR, pp. 3131–3140 (2016)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  29. Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: CVPR, pp. 1961–1970 (2016)

    Google Scholar 

  30. Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vision for recognizing food preparation activities. In: UbiComp, pp. 729–738 (2013)

    Google Scholar 

  31. Wang, D., Hu, D., Li, X., Dou, D.: Temporal relational modeling with self-supervision for action segmentation (2021)

    Google Scholar 

  32. Wang, Z., Gao, Z., Wang, L., Li, Z., Wu, G.: Boundary-aware cascade networks for temporal action segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 34–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_3

    Chapter  Google Scholar 

  33. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML, pp. 5423–5432. PMLR (2018)

    Google Scholar 

  34. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotemporal learning via video clip order prediction. In: CVPR, pp. 10334–10343 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (61976220 and 61832017), Beijing Outstanding Young Scientist Program (BJJWZYJH012019100020098), and the Research Seed Funds of School of Interdisciplinary Studies, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, H., Lu, Z., Wen, JR. (2023). CTDA: Contrastive Temporal Domain Adaptation for Action Segmentation. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics