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Abstract. An interactive instruction following task has been proposed
as a benchmark for learning to map natural language instructions and
first-person vision into sequences of actions to interact with objects in
3D environments. We found that an existing end-to-end neural model
for this task tends to fail to interact with objects of unseen attributes
and follow various instructions. We assume that this problem is caused
by the high sensitivity of neural feature extraction to small changes in
vision and language inputs. To mitigate this problem, we propose a neuro-
symbolic approach that utilizes high-level symbolic features, which are
robust to small changes in raw inputs, as intermediate representations.
We verify the effectiveness of our model with the subtask evaluation
on the ALFRED benchmark. Our experiments show that our approach
significantly outperforms the end-to-end neural model by 9, 46, and
74 points in the success rate on the ToggleObject, PickupObject, and
SliceObject subtasks in unseen environments respectively.
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1 Introduction

To operate robots in human spaces, instruction following tasks in 3D environments
have attracted substantial attention [1,2,18]. In these tasks, robots are required
to translate natural language instructions and egocentric vision into sequences of
actions. To enable robots to perform further complex tasks that require interaction
with objects in 3D environments, the “interactive instruction following” task has
been proposed [19]. Here, interaction with objects refers to the movement or the
state change of objects caused by actions such as picking up or cutting.

In interactive instruction following, agents need to be robust to variations of
objects and language instructions that are not seen during training. For example,
as shown in Figure 1, objects are of the same class but vary in attributes such
as color, shape, and texture. Also, as shown in Figure 2, language instructions
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Fig. 1. An example of four different apples that an agent is required to pick up, taken
from the ALFRED benchmark [19]. An agent is required to interact with objects of
various shapes, colors, and textures.

Fig. 2. An example where different language instructions are given by different annota-
tors to the same action, taken from the ALFRED benchmark [19]. Predicates (blue),
referring expressions (red), and modifiers (green) have the same meaning but can be
expressed in various ways. Modifiers can be omitted. Agents should take the correct
action consistently no matter how the given instruction is expressed.

vary in predicates, referring expressions pointing to objects, and the presence or
absence of modifiers, even though their intents are the same.

However, our analysis revealed that the end-to-end neural baseline proposed by
Shridhar et al. [19] for the task is not robust to variations of objects and language
instructions, i.e., it often fails to interact with objects of unseen attributes or to
take the correct actions consistently when language instructions are replaced by
their paraphrases. Similar phenomena have been observed in the existing studies.
For example, end-to-end neural models that compute outputs from vision or
language inputs with only continuous representations in the process are shown
to be sensitive to small perturbations in inputs in image classification [20] and
natural language understanding [10].

Given these observations, we hypothesize that reasoning over the high-level
symbolic representations of objects and language instructions are robust to small
changes in inputs. In this study, we aim to mitigate this problem by utilizing
high-level symbolic representations that can be extracted from raw inputs and
reasoning over them. Specifically, high-level symbolic representations in this study
refer to classes of objects, high-level actions, and their arguments of language
instructions. These symbolic representations are expected to be robust to small
changes in the input because of their discrete nature.

Our contributions are as follows.
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– We propose Neuro-Symbolic Instruction Follower (NS-IF), which introduces
high-level symbolic feature extraction and reasoning modules to improve
the robustness to variations of objects and language instructions for the
interactive instruction following task.

– In subtasks requiring interaction with objects, our NS-IF significantly outper-
forms an existing end-to-end neural model, S2S+PM, in the success rate while
improving the robustness to the variations of vision and language inputs.

2 Neuro-Symbolic Instruction Follower

We propose Neuro-Symbolic Instruction Follower (NS-IF) to improve the robust-
ness to variations of objects and language instructions as illustrated in Figures 1
and 2. The whole picture of the proposed method is shown in Figure 3. Specifically,
different from the S2S+PM baseline [19], we introduce semantic understanding
module (§2.4) and MaskRCNN (§2.5) to extract high-level symbolic features from
raw inputs, subtask updater (§2.6) to make the model recognize which subtask
is being solved, and object selector (§2.8) to make robust reasoning over the
extracted symbolic features. Other components are adopted following S2S+PM.
Each component of NS-IF is explained below in detail.

2.1 Notation

The length of the sequence of actions required to accomplish a task is T . The
action at time t is at. The observed image at time t is vt. The total number of
subtasks is N . The step-by-step language instruction for the n-th subtask is ln,
and the language instruction indicating the goal of the overall task is g. Let bn
be the high-level action for the language instruction ln for each subtask, and rn
be its argument. The total number of observable objects in vt is M . The mask
of the m-th object is um, and the class of the m-th object is cm. An example is
displayed in Figure 4.

2.2 Language Encoder

The high-level symbolic representations of step-by-step language instructions
consist of only the high-level actions b1:N and the arguments r1:N , and information
about modifiers is lost. To avoid the failure caused by the lack of information, we
input all the words in the language instructions to the language encoder to obtain
continuous representations. The word embeddings of the language instruction
g representing the goal and the step-by-step language instruction l1:N for all
subtasks are concatenated and inputted into bidirectional LSTM [8] (BiLSTM)
to obtain a continuous representation H of the language instruction.4

4 When using only high-level symbolic expressions as input to the BiLSTM, the
accuracy decreased. Therefore, we use continuous representation as input here.
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Fig. 3. Overview of the proposed NS-IF. The modules are colored to clarify the difference
between the S2S+PM baseline [19] and our NS-IF.

2.3 Visual Encoder

Similarly, for the image vt, a continuous representation Vt is obtained with
ResNet-18 [7], whose parameters are fixed during training.

2.4 Semantic Understanding

Here, we convert the language instructions ln for each subtask into high-level
actions bn and their arguments rn. To this end, we trained RoBERTa-base [13]
on the ALFRED training set. We adopted RoBERTa-base here because it excels
BERT-base [4] in natural language understanding tasks [13]. For predicting bn
and rn from ln, two classification heads are added in parallel on top of the last
layer of RoBERTa-base.

We used the ground truth bn and rn provided by ALFRED during training.
At test time, we used bn and rn predicted by the RoBERTa-base. To see the
impact of the prediction error of semantic understanding, we also report the
results when using the ground truth bn and rn at test time.
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(a) Instructions and their high-level actions and arguments

(b) Visual inputs and ground-truth actions and objects for each time step

Fig. 4. An example of the interactive instruction following task taken from ALFRED.

2.5 MaskRCNN

MaskRCNN [6] is used to obtain the masks u1:M and classes c1:M of each object
from the image vt. Here, we use a MaskRCNN pre-trained on ALFRED.5

2.6 Subtask Updater

We find that the distribution of the output action sequences varies greatly
depending on which subtask is being performed. In this section, to make it easier
to learn the distribution of the action sequences, the subtask st being performed
is predicted at each time. Since our aim is to evaluate the approach on each
subtask, we conducted experiments under the condition that the ground truth st
is given during both training and testing.

2.7 Action Decoder

The action decoder predicts the action at at each time using LSTM. Different
from S2S+PM, the action decoder takes high-level actions b1:N as inputs. Namely,
the inputs are the hidden state vector ht−1 at time t− 1, the embedding vector
of the previous action at−1, the embedding representation of the high-level action
E(b1:N )T p(st) and Vt at time t obtained using the embedding layer E and st,

5 https://github.com/alfworld/alfworld
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Fig. 5. Detailed illustration of the object selector (§2.8).

and the output xt−1 from ht−1 to H. Vt, and wt, which is the concatenation of
the output xt of attention from ht−1 to H. Then, after concatenating wt to the
output ht of LSTM, we obtain the distribution of behavior at via linear layer
and Softmax function.

2.8 Object Selector

When the action at is an interaction action such as Pickup or Slice, models need
to select the object with a mask. The object selector module outputs the mask
of an selected object detected by MaskRCNN as follows:

p(ot) =
∑
n

p(st = n)Softmax(E(c1:M )E(rn)
T ) (1)

m∗ = argmaxotp(ot). (2)

Then, the model outputs the mask um∗ . The overview of the object selector is
shown in Figure 5.

2.9 Progress Monitor

Following Shridhar et al. [19], our model learns the auxiliary task with the
Progress Monitor, which monitors the progress of the task. Specifically, from ht

and wt, we obtain normalized progress (t/T ) and completed subtasks (number
of accomplished subtasks divided by N) through independent linear layers.
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3 Experiments

3.1 Dataset

We used the ALFRED dataset, in which roughly three annotators provided
different language instructions for the final objective and each subtask for each
demonstration played by skilled users of AI2-Thor [12]. ALFRED also provides
the Planning Domain Definition Language (PDDL; [16]), which contains the
high-level actions and their arguments. They are used to define the subtasks
when creating the dataset. In this study, we defined high-level actions and their
arguments as the output of semantic understanding. The number of training sets
is 21,023. Since the test sets are not publicly available, we use the 820 validation
sets for rooms that are seen during training, and the 821 validation sets for rooms
that are not seen during training. Note that the object to be selected in the
validation set is an object that has never been seen during training, regardless
of rooms. Therefore, models need to be robust to unseen objects in both the
validation sets.

3.2 Training Details

For NS-IF, we followed the hyperparameters proposed by Shridhar et al. [19].
For RoBERTa-base, we used the implementation and default hyperparameters
provided by Huggingface [21]. The hyperparameters for training NS-IF and
RoBERTa-base are summarized in Table 1.

Table 1. Hyperparameters for training NS-IF and RoBERTa-base.

Hyperparameter NS-IF RoBERTa-base

Dropout 0.3 0.1
Hidden size (encoder) 100 768
Hidden size (decoder) 512 -

Warmup ratio 0.0 0.1
Optimizer Adam [11] AdamW [14]

Learning rate 1e-4 5e-5
Epoch 20 5

Batch Size 8 32
Adam ε 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999

Gradient Clipping 0.0 1.0

3.3 Main Results

In this study, we evaluated the performance on each subtask, which is appropriate
to assess the robustness to variations of objects and instructions in detail. The
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Table 2. Success rate (%) for each subtask in seen and unseen environments. The
scores that take into account the number of actions required for success are given in
parentheses. Higher is better. The best success rates among the models without oracle
are boldfaced. The best success rates among all the models are underlined.

Model Goto Pickup Slice Toggle
Se

en
S2S+PM [19] - (51) - (32) - (25) - (100)
S2S+PM (Reproduced) 55 (46) 37 (32) 20 (15) 100 (100)
MOCA [17] 67 (54) 64 (54) 67 (50) 95 (93)
NS-IF 43 (37) 64 (58) 71 (57) 83 (83)

NS-IF (Oracle) 43 (37) 69 (63) 73 (59) 100 (100)

U
ns
ee
n

S2S+PM [19] - (22) - (21) - (12) - (32)
S2S+PM (Reproduced) 26 (15) 14 (11) 3 (3) 34 (28)
MOCA [17] 50 (32) 60 (44) 68 (44) 11 (10)
NS-IF 32 (19) 60 (49) 77 (66) 43 (43)

NS-IF (Oracle) 32 (19) 65 (53) 78 (53) 49 (49)

Table 3. Accuracy (%) of semantic understanding (i.e., high-level action and argument
prediction) for each subtask in seen and unseen environments.

High-level Action Argument

Goto Pickup Slice Toggle Goto Pickup Slice Toggle

Seen 99.40 99.01 91.39 97.87 71.58 89.68 92.72 76.60
Unseen 99.22 98.84 97.14 99.42 73.73 89.78 96.19 64.74

baseline models are SEQ2SEQ+PM [19], which uses only continuous representa-
tions in the computation process at each time, and MOCA [17], which factorizes
the task into perception and policy. Note that both the baselines are end-to-end
neural models unlike our NS-IF.

We report the results in Table 2. The proposed NS-IF model improves the
success rate especially in the tasks requiring object selection, such as Pickup,
Slice and Toggle. Notably, NS-IF improved the score on Slice in the Unseen
environments from 3% to 77% compared to S2S+PM, and surpass MOCA. The
fact that only objects of unseen attributes need to be selected to accomplish
the tasks in the test sets indicates that the proposed method is more robust to
variations of objects on these subtasks than the baselines.

On the other hand, the S2S+PM model fails in many cases and does not
generalize to unknown objects. Moreover, the accuracy of S2S+PM is much lower
in Unseen rooms than in Seen ones, which indicates that S2S+PM is less robust
not only to unknown objects but also to the surrounding room environment. By
contrast, the difference in accuracy of NS-IF between Seen and Unseen is small,
indicating that the proposed model is relatively robust to unknown rooms. This
may be related to the fact that the output of ResNet is sensitive to the scenery
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Table 4. Three kinds of scores, (I), (II), and (III), that reflect the robustness to
variations of language instructions in the subtask evaluation. These scores indicate the
number of unique demonstrations where a model (I) succeeds with all the language
instructions, (II) succeeds with at least one language instruction but fails with other
paraphrased language instructions, or (III) fails with all the language instructions.
Higher is better for (I), and lower is better for (II) and (III). The best scores among
the upper three models are boldfaced.

Model Goto Pickup Slice Toggle

Se
en

S2S+PM (Reproduced) 315 / 240 / 239 105 / 52 / 202 7 / 5 / 29 29 / 0 / 0
MOCA [17] 386 / 281 / 131 184 / 90 / 86 24 / 8 / 9 26 / 2 / 1
NS-IF 243 / 204 / 349 215 / 37 / 107 29 / 3 / 9 17 / 12 / 0

NS-IF (Oracle) 250 / 178 / 368 253 / 9 / 97 32 / 0 / 9 29 / 0 / 0

U
ns
ee
n S2S+PM (Reproduced) 147 / 99 / 513 42 / 21 / 281 1 / 0 / 31 13 / 10 / 30

MOCA [17] 216 / 307 / 233 155 / 84 / 103 18 / 6 / 7 4 / 6 / 44
NS-IF 168 / 145 / 441 182 / 36 / 122 24 / 1 / 6 19 / 9 / 25

NS-IF (Oracle) 165 / 89 / 502 218 / 12 / 113 25 / 0 / 7 28 / 0 / 25
(I) ↑ / (II) ↓ / (III) ↓

of the room, while the output of MaskRCNN is not. The failed cases of NS-IF in
Pickup and Slice are caused by the failure to predict the action at, or failure to
find the object in drawers or refrigerators after opening them.

There are still some shortcomings in the proposed model. There was little
improvement in the Goto subtask. It may be necessary to predict the bird’s eye
view from the first person perspective, or the destination based on the objects
that are visible at each time step. In addition, the accuracy of other subtasks
(PutObject, etc.) that require specifying the location of the object has not yet
been improved. This is because the pre-trained MaskRCNN used in this study
has not been trained to detect the location of the object.

3.4 Performance of Semantic Understanding

To investigate the cause of the performance gap between NS-IF and its oracle,
we evaluated the performance of the semantic understanding module for each
subtask. The results are given by Table 3.

The accuracies of high-level action prediction are 91 ∼ 99 %. Whereas, the
accuracies of argument prediction are 64 ∼ 96%. This may be because the number
of classes of arguments are 81, while that of high-level actions is eight.

For the Toggle subtask, the accuracy of argument prediction is lower than
80%. This error might primarily cause the drop of the success rate in Toggle in
Table 2 from NS-IF to NS-IF (Oracle). Thus, improving the accuracy of argument
prediction would close the gap.

In contrast, despite of the error of argument prediction in Goto as seen in
Table 3, the success rates of NS-IF and its oracle in Table 2 were almost the same.
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This observation implies that our NS-IF failed to fully utilize the arguments to
perform the Goto subtasks. Mitigating this failure is future work.

4 Analysis: Evaluating the Robustness to Variations of
Language Instructions

The robustness of models to variations of language instructions can be evaluated
by seeing whether the predictions remains correct even if the given language
instructions are replaced by paraphrases (e.g., Figure 2) under the same conditions
of the other variables such as the room environment and the action sequence to
accomplish the task.

The results are shown in Table 4. The reported scores show that the proposed
model increased the overall accuracy while improving the robustness to variations
of language instructions compared to S2S+PM. The numbers of demonstrations
corresponding to (I), “succeeds with all the language instructions”, for NS-IF
were superior to the baselines for Pickup, Slice, and Toggle in unseen environ-
ments, which indicates that NS-IF is the most robust to paraphrased language
instructions. Using oracle information further increased the robustness.

The cases that fall into the category (III), “fails with all the language instruc-
tions", are considered to result from causes unrelated to the lack of the robustness
to variations of language instructions. These failures are, for example, caused by
the failure to select an object in a drawer or a refrigerator after opening them.

5 Related Work

5.1 Neuro-Symbolic Method

In the visual question answering (VQA) task, Yi et al. [23] proposed neural-
symbolic VQA, where the answer is obtained by executing a set of programs
obtained by semantic parsing from the question against a structural symbolic
representation obtained from the image using MaskRCNN [6]. Reasoning on
a symbolic space has several advantages such as (1) allowing more complex
reasoning, (2) better data and memory efficiency, and (3) more transparency,
making the machine’s decisions easier for humans to interpret. In the VQA task,
several similar methods have been proposed. Neuro-Symbolic Concept Learner
[15] uses unsupervised learning to extract the representation of each object from
the image and analyze the semantics of the questions. Neural State Machine
[9] predicts a scene graph including not only the attributes of each object but
also the relationships between objects to enable more complex reasoning on the
image. However, they are different from our study in that they all deal with
static images and the final output is only the answer. Neuro-symbolic methods
were also applied to the video question answering task, where a video, rather
than a static image, is used as input to answer the question [22]. However, here
too, the final output is only the answer to the question.
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5.2 Embodied Vision-and-Language Task

Tasks that require an agent to move or perform other actions in an environment
using vision and language inputs have attracted much attention in recent years.
In the room-to-room dataset [1], a Vision-and-Language Navigation task was
proposed to follow language instructions to reach a destination. In both the
embodied question answering [3] and interactive question answering [5] tasks,
agents need to obtain information through movement in an environment and
answer questions, and the success or failure is determined by only the final output
answer. In contrast to these tasks, ALFRED [19] aims to accomplish a task that
involves moving, manipulating objects, and changing states of objects.

6 Conclusion

We proposed a neuro-symbolic method to improve the robustness to variations of
objects and language instructions for interactive instruction following. In addition,
we introduced the subtask updater that allows the model to recognize which
subtask is being solved at each time step. Our experiments showed that the
proposed method significantly improved the success rate in the subtask requiring
object selection, while the error propagated from the semantic understanding
module degraded the performance. The experimental results suggest that the
proposed model is robust to variations of objects. The analysis showed that the
robustness to variations of language instructions was improved by our model.

ALFRED contains the ground truth output of semantic understanding and
the prior knowledge of which subtask was being solved at each step, so it was
possible to use them in training. It should be noted that the cost of annotations
of them can not be ignored for other datasets or tasks. If the cost is impractical,
it may be possible to solve the problem by unsupervised learning, as in NS-CL
[15]. Whereas, for training MaskRCNN, annotation is not necessary because the
mask and class information of the object can be easily obtained from AI2-Thor.
Therefore, whether annotation of mask and class is necessary or not depends
on how well an object detection model trained on artificial data obtained from
simulated environments generalizes to real world data. Future work includes
learning subtack updater to enable evaluation on the whole task.
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