Skip to main content

A Survey of Recommender Systems Based on Hypergraph Neural Networks

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13828))

Included in the following conference series:

  • 1024 Accesses

Abstract

Unlike highly purposeful search, a recommender system tends to uncover the user’s potential interests and is a personalized information filtering system. Recently, the performance of hypergraph neural networks in classification tasks has attracted much attention. Compared with traditional recommender systems, hypergraph neural network-based recommender systems have better mining higher-order associations, accurate modeling of multivariate relationships, handling of multimodal and heterogeneous data, and clustering advantages. This fact drives the development of recommendation algorithms based on hypergraph neural networks. To this end, we 1) define generic links of recommender systems, and systematically analyze the challenges of hypergraph neural network-based recommender systems in different research directions. 2) present some new perspectives on existing weaknesses and future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, W., Long, J., Li, K.C., Xu, J., Ma, N., Lei, X.: A fast defogging image recognition algorithm based on bilateral hybrid filtering. ACM TOMM 17(2), 1–16 (2021)

    Article  Google Scholar 

  2. Xu, Z., Liang, W., Li, K.C., Xu, J., Zomaya, A.Y., Zhang, J.: A time-sensitive token-based anonymous authentication and dynamic group key agreement scheme for industry 5.0. IEEE TII 18(10), 7118–7127 (2021)

    Google Scholar 

  3. Wang, J., Luo, W., Liang, W., Liu, X., Dong, X.: Locally minimum storage regenerating codes in distributed cloud storage systems. China Commun. 14(11), 82–91 (2017)

    Article  Google Scholar 

  4. Liang, W., Li, Y., Xu, J., Qin, Z., Li, K.C.: Qos prediction and adversarial attack protection for distributed services under dlaas. IEEE Trans. Comput. 2021, 1–14 (2021)

    Google Scholar 

  5. Diao, C., Zhang, D., Liang, W., Li, K.C., Hong, Y., Gaudiot, J.L.: A novel spatial-temporal multi-scale alignment graph neural network security model for vehicles prediction. IEEE Trans. Intell. Trans Syst. 24, 904–914 (2022)

    Article  Google Scholar 

  6. Peng, L., Peng, M., Liao, B., Huang, G., Liang, W., Li, K.: Improved low-rank matrix recovery method for predicting mirna-disease association. Sci. Rep. 7(1), 6007 (2017)

    Article  Google Scholar 

  7. Qiu, M., Chen, Z., et al.: Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE Syst. J. 11(2), 813–822 (2014)

    Article  Google Scholar 

  8. Li, Y., Gai, K., et al.: Intercrossed access controls for secure financial services on multimedia big data in cloud systems. ACM TMMCCA 12(4s), 1–18 (2016)

    Google Scholar 

  9. Li, J., Ming, Z., et al.: Resource allocation robustness in multi-core embedded systems with inaccurate information. J. Syst. Arch. 57(9), 840–849 (2011)

    Article  Google Scholar 

  10. Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity Conference (2016)

    Google Scholar 

  11. Hu, F., Lakdawala, S., et al.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Infor. Tech. Biomed. 13(4), 656–663 (2009)

    Article  Google Scholar 

  12. Qiu, M., Xue, C, Shao, Z, et al.: Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In: IEEE EUC Conference, pp. 25–34 (2006)

    Google Scholar 

  13. Resnick, P., Iacovou, N., et al.: Grouplens: an open architecture for collaborative filtering of netnews. In: ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  14. Zhao, Z.D., Shang, M.S.: User-based collaborative-filtering recommendation algorithms on hadoop. In: IEEE 3rd International Conference on Knowledge Discovery and Data Mining, pp. 478–481 (2010)

    Google Scholar 

  15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International Conference on World Wide Web (2001)

    Google Scholar 

  16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  17. Chang, Y.-W., Hsieh, C.-J., et al.: Training and testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 11, 1471–1490 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Rendle, S.: Factorization machines. In: 2010 IEEE ICDM (2010)

    Google Scholar 

  19. Shan, Y., Hoens, T.R., Jiao, J., et al.: Deep crossing: web-scale modeling without manually crafted combinatorial features. In: 22nd ACM SIGKDD (2016)

    Google Scholar 

  20. Qu, Y., et al.: Product-based neural networks for user response prediction. In: 16th IEEE ICDM (2016)

    Google Scholar 

  21. Guo, H., Tang, R., et al.: Deepfm: a factorization-machine based neural network for CTR prediction. In: 26th Conference on Artificial Intelligence, pp. 1725–1731 (2017)

    Google Scholar 

  22. Qiu, H., Dong, T., et al.: Adversarial attacks against network intrusion detection in IoT systems. IEEE IoT J. 8(13), 10327–10335 (2020)

    Google Scholar 

  23. Qiu, H., Zheng, Q., et al.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. ITS 22(7), 4560–4569 (2020)

    Google Scholar 

  24. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems, vol. 19 (2016)

    Google Scholar 

  25. Feng, Y., You, H., Zhang, Z., et al.: Hypergraph neural networks. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  26. Bai, S., Zhang, F., Torr, P.H.L: Hypergraph convolution and hypergraph attention. Pattern Recognit. 110, 107637 (2021)

    Google Scholar 

  27. Vijaikumar, M., Hada, D., Shevade, S.: Hypertenet: hypergraph and transformer-based neural network for personalized list continuation. In: IEEE ICDM, pp. 1210–1215 (2021)

    Google Scholar 

  28. Jo, J., Baek, J., Lee, S., et al.: Edge representation learning with hypergraphs. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  29. Do, M.T., Yoon, S.E., Hooi, B., Shin, K.: Structural patterns and generative models of real-world hypergraphs. In: 26th ACM SIGKDD (2020)

    Google Scholar 

  30. Kim, E.-S., Kang, W.Y., et al.: Hypergraph attention networks for multimodal learning. In: EEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  31. Zhang, R., Zou, Y., Ma., J.: Hyper-sagnn: a self-attention based graph neural network for hypergraphs. In: ICLR (2020)

    Google Scholar 

  32. Cheng, H.-T., Koc, L., et al.: Wide & deep learning for recommender systems. In: 1st Workshop on Deep Learning for Recommender Systems (2016)

    Google Scholar 

  33. Li, Z., Cui, Z., Wu, S., et al.: Fi-gnn: modeling feature interactions via graph neural networks for CTR prediction. In: 28th ACM Conference on Information and Knowledge Management (2019)

    Google Scholar 

  34. Su, Y., Zhang, R., Erfani, S., Xu, Z.: Detecting beneficial feature interactions for recommender systems. In AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  35. Ji, S., Feng, Y., et al.: Dual channel hypergraph collaborative filtering. In: 26th ACM SIGKDD (2020)

    Google Scholar 

  36. Yu, J., Yin, H., et al.: Self-supervised multi-channel hypergraph convolutional network for social recommendation. In: Web Conference (2021)

    Google Scholar 

  37. Xia, L., Huang, C., Xu, Y., et al.: Hypergraph contrastive collaborative filtering. In: 45th ACM SIGIR Conference on Research and Development in Information Retrieval (2022)

    Google Scholar 

  38. Gu, S., Wang, X., Shi, C., Xiao, D.: Self-supervised graph neural networks for multi-behavior recommendation (2022)

    Google Scholar 

  39. Han, J., Tao, Q., et al.: DH-HGCN: dual homogeneity hypergraph convolutional network for multiple social recommendations. In: 45th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2190–2194 (2022)

    Google Scholar 

  40. Yang, Y., Huang, C., Xia, L., et al.: Multi-behavior hypergraph-enhanced transformer for sequential recommendation. In: 28th ACM SIGKDD (2022)

    Google Scholar 

  41. Li, Y., Chen, H., et al.: Hyperbolic hypergraphs for sequential recommendation. In: 30th ACM l Conference on Information Knowledge Management, pp. 988–997 (2021)

    Google Scholar 

  42. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Soc. 27, 415–444 (2001)

    Article  Google Scholar 

  43. Zhang, S., Yao, T., et al.: A novel blockchain-based privacy-preserving framework for online social networks. Connection Sci. 33(3), 555–575 (2021)

    Article  Google Scholar 

  44. Zhang, S., Li, X., et al.: A privacy-preserving friend recommendation scheme in online social networks. Sustain. Cities Soc. 38, 275–285 (2018)

    Article  Google Scholar 

  45. Chen, L., Liu, Y., et al.: Matching user with item set: Collaborative bundle recommendation with deep attention network. In: IJCAI (2019)

    Google Scholar 

  46. Yu, Z., Li, J., Chen, L., Zheng, Z.: Unifying multi-associations through hypergraph for bundle recommendation. Knowl.-Based Syst. 255, 109755 (2022)

    Article  Google Scholar 

  47. Xia, X., Yin, H., et al.: Self-supervised hypergraph convolutional networks for session-based recommendation. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  48. Abel, F., Herder, E., et al.: Cross-system user modeling and personalization on the social web. User Model. User-Adap. Inter. 23, 169–209 (2013). https://doi.org/10.1007/s11257-012-9131-2

  49. Pan, W., et al.: Transfer learning in collaborative filtering for sparsity reduction. In: AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingqin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., He, T., Zhu, H., Li, Y., Xie, S., Hosam, O. (2023). A Survey of Recommender Systems Based on Hypergraph Neural Networks. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics