Skip to main content

LowFreqAttack: An Frequency Attack Method in Time Series Prediction

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13828))

Included in the following conference series:

  • 764 Accesses

Abstract

Time series prediction has become an important research direction in data mining because of the time-varying pattern of data in various fields. However, time series prediction suffers from the problem of vulnerability to adversarial example attack, which leads to models making wrong decisions in critical application scenarios and causing great losses to people’s lives and properties. In addition, there is relatively little attacks research on time series prediction, and the existing attack methods simply migrate classical-attack methods in the image to time series prediction. On the one hand, it not only without fully considering the characteristics of temporal data but also without comparing and analyzing the effects of those classical-attack methods on time series prediction models. On the other hand, there is no comparative analysis of the effectiveness of these classical attack methods in different time series prediction methods. To address the above problems, this paper firstly compares the effectiveness of the attack methods on some time series prediction models and analyzes the inner mechanism of these time series prediction models. In addition, this paper finds that the defense ability of those models is related to their ability to portray the overall trend of time series data. Therefore, this paper further propose the new attack method, LowFreqAttack. The experimental results show that LowFreqAttack can attack the three existing time series prediction models better than the existing attach methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRS) a survey. ACM Compu. Surv. 50(6), 1–40 (2018)

    Article  Google Scholar 

  2. Kaushik, S., et al.: Ai in healthcare: time-series forecasting using statistical, neural, and ensemble architectures. Front. Big Data 3, 4 (2020)

    Google Scholar 

  3. Xia,F., Hao, R., Li, J., Xiong, N., Yang, L.T., Zhang. Y.: Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor networks. J. Syst. Archit. 59(10), 1231–1242 (2013)

    Google Scholar 

  4. Kumar, P., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IOT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)

    Google Scholar 

  5. Chunxue, W., Luo, C., Xiong, N., Zhang, W., Kim, T.-H.: A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)

    Article  Google Scholar 

  6. Cheng, H., Xie, Z., Shi, Y., Xiong, N.: Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM. IEEE Access 7, 117883–117896 (2019)

    Article  Google Scholar 

  7. Zhang, L., et al.: SATP-GAN: self-attention based generative adversarial network for traffic flow prediction. Transportmetrica B Transp. Dyn. 9(1), 552–568 (2021)

    Article  Google Scholar 

  8. Yao, Y., Xiong, N., Park, J.H., Ma, L., Liu, J.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Google Scholar 

  9. Chunxue, W., et al.: UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 7, 117227–117245 (2019)

    Article  Google Scholar 

  10. Fu, A., Zhang, X., Xiong, N., Gao, Y., Wang, H., Zhang. J.: VFL: a verifiable federated learning with privacy-preserving for big data in industrial IOT. IEEE Trans. Indust. Inform. (2020)

    Google Scholar 

  11. Shafiq, M., Tian, Z., Bashir, A.K., Du, X., Guizani., M.: Corrauc: a malicious bot-IoT traffic detection method in IOT network using machine-learning techniques. IEEE Internet of Things J. 8(5), 3242–3254 (2020)

    Google Scholar 

  12. Shastri, S., Singh, K., Kumar, S., Kour, P., Mansotra, V.: Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos, Solit, Fract 140, 110227 (2020)

    Article  MathSciNet  Google Scholar 

  13. Qiu, M., Gai, K., Xiong, Z.: Privacy-preserving wireless communications using bipartite matching in social big data. Futur. Gener. Comput. Syst. 87, 772–781 (2018)

    Article  Google Scholar 

  14. Zhou, Y., Zhang, Y., Hao, L., Xiong, N., Vasilakos, A.V.: A bare-metal and asymmetric partitioning approach to client virtualization. IEEE Trans. Serv. Comput. 7(1), 40–53 (2014)

    Article  Google Scholar 

  15. Lin, C., He, Y., Xiong. N.: An energy-efficient dynamic power management in wireless sensor networks. In: Fifth International Symposium on Parallel Distributed Computing (2006)

    Google Scholar 

  16. Qiu, H., Qiu, M., Zhihui, L.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  17. Qiu, M., Zhang, L., Ming, Z., Chen, Z., Qin, X., Yang, L.T.: Security-aware optimization for ubiquitous computing systems with seat graph approach. J. Comput. Syst. Sci. 79(5), 518–529 (2013)

    Google Scholar 

  18. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1), 25–45 (2021)

    Article  Google Scholar 

  19. Karim, F., Majumdar, S., Darabi, H.: Adversarial attacks on time series. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3309–3320 (2020)

    Article  Google Scholar 

  20. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A. Adversarial attacks on deep neural networks for time series classification. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  21. Tao, W., Wang, X., Qiao, S., Xian, X., Liu, Y., Zhang, L.: Small perturbations are enough: adversarial attacks on time series prediction. Inf. Sci. 587, 794–812 (2022)

    Article  Google Scholar 

  22. Gai, K., Qiu, M., Elnagdy, S.A.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 171–176. IEEE (2016)

    Google Scholar 

  23. Qiu, H., et al.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)

    Article  MathSciNet  Google Scholar 

  24. Ma, T., Xiao, C., Wang. H., Health-ATM: A deep architecture for multifaceted patient health record representation and risk prediction. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 261–269. SIAM (2018)

    Google Scholar 

  25. Chen, Y., Zhou, L., Pei, S., Zhiwen, Yu., Chen, Y., Liu, X., Jixiang, D., Xiong, N.: KNN-block dbscan: fast clustering for large-scale data. IEEE Trans. Syst. Cybernet. Syst 51(6), 3939–3953 (2019)

    Article  Google Scholar 

  26. Zhao, J., Huang, J., Xiong, N.: An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access 7, 33859–33869 (2019)

    Article  Google Scholar 

  27. Gao, Y, et al.: Human action monitoring for healthcare based on deep learning. IEEE Access 6, 52277–52285 (2018)

    Google Scholar 

  28. Zhang, W., Zhu, S., Tang, J., Xiong, N.: A novel trust management scheme based on Dempster-Shafer evidence theory for malicious nodes detection in wireless sensor networks. J. Supercomput. 74(4), 1779–1801 (2018)

    Article  Google Scholar 

  29. Huang, S., Zeng, Z., Ota, K., Dong, M., Wang, T., Xiong. N.N.: An intelligent collaboration trust interconnections system for mobile information control in ubiquitous 5g networks. IEEE Trans. Netw. Sci. Eng. 8(1):347–365 (2020)

    Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: 30th Proceedings on Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  31. Tuli, S., Dasgupta, J., Grant, E., Griffiths, T.J.: Are convolutional neural networks or transformers more like human vision? arXiv preprint arXiv:2105.07197 (2021)

  32. Zhang, K., Gençay, R., Ege Yazgan, M.: Application of wavelet decomposition in time-series forecasting. Econ. Lett. 158, 41–46 (2017)

    Google Scholar 

  33. Ismail Fawaz, Hassan, Forestier, Germain, Weber, Jonathan, Idoumghar, Lhassane, Muller, Pierre-Alain.: Evaluating surgical skills from kinematic data using convolutional neural networks. In: Frangi, Alejandro F.., Schnabel, Julia A.., Davatzikos, Christos, Alberola-López, Carlos, Fichtinger, Gabor (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 214–221. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_25

    Chapter  Google Scholar 

  34. Qiu, M., Chen, Z., Ming, Z., Qin, X., Niu, J.: Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE Syst. J. 11(2), 813–822 (2014)

    Article  Google Scholar 

  35. Goodfellow, I.J., Shlens, J., Szegedy. C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  36. Kurakin, A., Goodfellow, J.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)

    Google Scholar 

  37. Cortés-Ibáñez, J.A., et al.; An industrial world application case study: preprocessing methodology for time series. Inf. Sci. 514, 385–401 (2020)

    Google Scholar 

  38. Yang, Z., Abbasi, I.A., Algarni, F., Ali, S., Zhang. M.: An IoT time series data security model for adversarial attack based on thermometer encoding. Secur. Commun. Netw. 2021 (2021)

    Google Scholar 

  39. Devlin, J., Chang, M., Lee, K., Toutanova. K.: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  40. Brown, T., et al. : Language models are few-shot learners. In: 33rd Proceedings Conference on Advances in Neural Information Processing Systems, pp. 1877–1901 (2020)

    Google Scholar 

  41. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  42. Liu, Z., et al,.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  43. Naseer, M.M., et al.: Intriguing properties of vision transformers. In: 34th Proceedings of Advances in Neural Information Processing Systems, pp. 23296–23308 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant No. U20A20182 and 62177019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, N.N., He, W., Lu, M. (2023). LowFreqAttack: An Frequency Attack Method in Time Series Prediction. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics