Skip to main content

GeoNet: Artificial Neural Network Based on Geometric Network

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Abstract

Artificial neural network has achieved great success in many fields. Considering the unique advantages of naturally generated networks, we combine the geometric complex network model with the existing neural network model to build a neural network with geometric space structure characteristics. We proposes a GeoNet neural network model based on a random geometric network structure and finds that the neural network with a natural structure has good classification performance, and the classification accuracy is higher than the widely used neural network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  2. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  3. Gulyás, A., Bíró, J.J., Kőrösi, A., Rétvári, G., Krioukov, D.: Navigable networks as nash equilibria of navigation games. Nat. Commun. 6(1), 1–10 (2015)

    Article  Google Scholar 

  4. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  5. Latora, V., Marchiori, M.: Economic small-world behavior in weighted networks. Eur. Phys. J. B-Condensed Matter Complex Syst. 32(2), 249–263 (2003)

    Article  Google Scholar 

  6. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  10. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  11. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  12. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  13. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  14. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5927–5935 (2017)

    Google Scholar 

  15. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  16. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  17. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  19. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  20. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  21. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: International Conference on Machine Learning, pp. 4095–4104. PMLR (2018)

    Google Scholar 

  22. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  23. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  24. Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. The Neuroscientist 23(5), 499–516 (2017)

    Article  Google Scholar 

  25. Chialvo, D.R.: Critical brain networks. Physica A Stat. Mech. Appl. 340(4), 756–765 (2004)

    Article  Google Scholar 

  26. Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural networks for image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1284–1293 (2019)

    Google Scholar 

  27. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  28. Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687 (2014)

  29. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

    Google Scholar 

  32. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  33. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Open Funding Projects of the State Key Laboratory of Communication Content Cognition (No. 20K05 and No. A02107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, X. et al. (2023). GeoNet: Artificial Neural Network Based on Geometric Network. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics