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Abstract. Parameter-Efficient transfer learning with Adapters have been
studied in Natural Language Processing (NLP) as an alternative to full
fine-tuning. Adapters are memory-efficient and scale well with down-
stream tasks by training small bottle-neck layers added between trans-
former layers while keeping the large pretrained language model (PLMs)
frozen. In spite of showing promising results in NLP, these methods are
under-explored in Information Retrieval. While previous studies have
only experimented with dense retriever or in a cross lingual retrieval
scenario, in this paper we aim to complete the picture on the use of
adapters in IR. First, we study adapters for SPLADE, a sparse retriever,
for which adapters not only retain the efficiency and effectiveness oth-
erwise achieved by finetuning, but are memory-efficient and orders of
magnitude lighter to train. We observe that Adapters-SPLADE not only
optimizes just 2% of training parameters, but outperforms fully fine-
tuned counterpart and existing parameter-efficient dense IR models on
IR benchmark datasets. Secondly, we address domain adaptation of neu-
ral retrieval thanks to adapters on cross-domain BEIR datasets and
TripClick. Finally, we also consider knowledge sharing between rerankers
and first stage rankers. Overall, our study complete the examination of
adapters for neural IR.3

Keywords: Adapters · Information Retrieval · Sparse Neural Retriever

1 Introduction

Information Retrieval (IR) systems often aim to return a ranked list of docu-
ments ordered with respect to their relevance to a user query. In modern web
search engines, there is, in fact, not a single retrieval model but several ones spe-
cialized in diverse information needs such as different search verticals. To add to
this complexity, multi-stage retrieval considers effectiveness-efficiency trade-off
where first stage retrievers are essential for fast retrieval of potentially relevant
candidate documents from a large corpus. Further down the pipeline, rerankers
are added focusing on effectiveness.
3 The code can be found at:https://github.com/naver/splade/tree/adapter-splade
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With the advent of large Pretrained Language Models (PLM), recent neural
retrieval models have millions of parameters. Training, updating and adapting
such models implies significant computing and storage cost calling for efficient
methods. Moreover, generalizability across out-of-domain datasets is critical and
even when effectively adapted to new domains, full finetuning often comes at
the expense of large storage and catastrophic forgetting. Fortunately, such re-
search questions have already been studied in the NLP literature [1,2,9,10] with
parameter-efficient tuning. In spite of very recent work exploring parameter-
efficient techniques for neural retrieval, the use of adapters in IR has been over-
looked. Previous work on dense retriever had mixed results [11] and successful
adaptation was achieved for cross lingual retrieval [17]. Our study aims to com-
plete the examination of adapters for neural IR and investigates it with neural
sparse retrievers. We study ablation of adapter layers to analyze whether all lay-
ers contribute equally. We examine how adapter-tuned neural sparse retriever
SPLADE [5] fares on benchmark IR datasets MS MARCO [21], TREC DL 2019
and 2020 [3] and out-of-domain BEIR datasets [30]. We explore whether general-
izability of SPLADE can be further improved with adapter-tuning on BEIR and
out-of-domain dataset such as TripClick [26]. In addition, we examine knowl-
edge transfer between first stage retrievers and rerankers with full fine-tuning
and adapter-tuning. To the best of our knowledge, this is the first work which
studies adapters on sparse retrievers, focuses on sparse models’ generalizabil-
ity and explores knowledge transfer between retrievers in different stages of the
retrieval pipeline. In summary, we address the following research questions:

1. RQ1: What is the efficiency-accuracy trade-off of parameter-efficient fine-
tuning with adapters on the sparse retriever model SPLADE?

2. RQ2: How does each adapter layer ablation affect retrieval effectiveness?
3. RQ3: Are adapters effective for adapting neural sparse neural retrieval in a

new domain?
4. RQ4: Could adapters be used to share knowledge between rerankers and first

stage rankers?

2 Background and Related Work

Parameter efficient transfer learning techniques aim to adapt large pretrained
models to downstream tasks using a fraction of training parameters, achieving
comparable effectiveness to full fine-tuning. Such methods [9,15,10,25,28] are
memory efficient and scale well to numerous downstream tasks due to the mas-
sive reduction in task specific trainable parameters. This makes them an attrac-
tive solution for efficient storage and deployment compared to fully fine-tuned
instances. Such methods have been successfully applied to language translation
[25], natural language generation [16], Tabular Question Answering [22], and on
the GLUE benchmark [7,28], In spite of all its advantages and a large research
footprint in NLP, parameter-efficient methods remain under-explored in IR.

A recent comprehensive study [4] categorises parameter efficient transfer
learning into 3 categories: 1) Addition based 2) Specification based 3) Reparam-
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eterization based. Addition based methods insert intermediate modules into the
pretrained model. The newly added modules are adapted to the downstream task
while keeping the rest of the pretrained model frozen. The modules can be added
vertically by increasing the model depth as observed in Houlsby Adapters [9]
and Pfeiffer Adapters [25]. Houlsby Adapters insert small bottle-neck layers af-
ter both the multi-head attention and feed-forward layer of the each transformer
layer which are optimized for NLP tasks on GLUE benchmark. Pfeiffer Adapter
inserts the bottle-neck layer after only the feed-forward layer and has shown com-
parable effectiveness to fine-tuning on various NLP tasks. Prompt-based adapter
methods such as Prefix-tuning [15] prepend continuous task-specific vectors to
the input sequence which are optimized as free-parameters. Compacter [20] hy-
pothesizes that the model can be optimized by learning transformations of the
bottle-neck layer in a low-rank subspace leading to less parameters.

Specification based methods fine-tune only a subset of pretrained model pa-
rameters to the task-at-hand while keeping the rest of the model frozen. The
fine-tuned model parameters can be only the bias terms as observed in BitFit
[2], or only cross-attention weights as in the case of Seq2Seq models with X-
Attention [6]. Re-parameterization methods transform the pretrained weights
into parameter efficient form during training. This is observed in LoRA [10]
which optimises rank decomposition matrices of pretrained layer while keeping
the original layer frozen.

Recent studies exploring parameter efficient transfer learning for Information
Retrieval show promising results of such techniques for dense retrieval models
[11,17,19,29]. [11] studies parameter efficient prefix-tuning, [15] and LoRA [10]
on bi-encoder and cross-encoder dense models. Additionally, they combine the
two methods by sequentially optimizing one method form epochs, freezing it and
optimizing the other for n epochs. Their studies show that while cross-encoders
with LoRA and LoRA+(50% more parameters compared to LoRA) outperform
fine-tuning with TwinBERT [18] and ColBERT [13], parameter-efficient meth-
ods do not outperform fine-tuning for bi-encoders across all datasets. [17] uses
parameter-efficient techniques such as Sparse Fine-Tuning Masks and Adapters
for multilingual and cross-lingual retrieval tasks with rerankers. They train lan-
guage adapters with Masked Language Modeling (MLM hereafter) task and
then task-specific retrieval adapters. This enables the fusion of reranking adapter
trained with source language data together with the language adapter of the tar-
get language. Concurrent to our work, [29] studies parameter-efficient prompt
tuning techniques such as Prefix tuning and P-tuning v2, specification based
methods such as BitFit and adapter-tuning with Pfeiffer Adapters on late inter-
action bi-encoder models such as Dense Passage Retrieval [12] and ColBERT.
They are motivated by cross-domain generalization of dense retrievals and achieve
better results with P-tuning compared to fine-tuning on the BEIR benchmark.
[19] studies various parameter-efficient tuning procedures at both retrieval and
re- ranking stages. They conduct a comprehensive study of parameter-efficient
techniques such as BitFit, Prefix-tuning, Adapters, LoRA, MAM adapters with
dense bi-encoders and cross-encoders with BERT-base as the backbone model.
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Their parameter-efficient techniques achieve comparable effectiveness to fine-
tuning on top-20 retrieval accuracy and marginal gains on top-100 retrieval ac-
curacy.

Compared to prior works, our experiments first study the use of adapters for
state of the art sparse models such as SPLADE, contrary to previous work that
studied dense bi-encoder models4. Furthermore, our results show improvements
compared to the previous studies. We also studied the case of using distinct
adapters for query and document encoders in a “bi-adapter” setting where the
same pretrained backbone model is used by both the query and the document
encoder but different adapters are trained for the queries and documents. Sec-
ondly, we address another research questions ignored by previous work, which
is efficient domain adaptation5 for neural first stage rankers. We start from a
trained neural ranker and study adaptation with adapters on a different domain,
such as the ones present in the BEIR benchmark. Finally, we also study param-
eters sharing between rerankers and first stage rankers using adapters, which to
our knowledge has not been studied yet.

3 Parameter-Efficient Retrieval with Adapters

In this section, we first present the self-attention used in transformers and how
the adapters we use for our experiments interact with them. We then introduce
the models used for first stage ranking and reranking.

3.1 Self-Attention Transformer Layers

Large pretrained language models are based on the transformer architecture
composed of N stacked transformer layers . Each transformer layer comprises of
a fully connected feed-forward module and a multi-headed self attention module.
Each attention layer has a function of query matrix (Q ∈ RnXdk), a key matrix
and a value matrix. The attention can be formally written as:

A(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where the query Q, key K and value V are parameterized by weight matrices
Wq ∈ RnXdk , Wk ∈ RnXdk , and Wv ∈ RnXdv , as Q = XWq, K = XWk

and V = XWv. Each of the N heads has its respective Qi, Vi and Ki weights
and its corresponding attention Ai. The feed-forward layer takes as input a
transformation of the concatenation of the N attentions as:

FFN(x) = σ(XW1 + b1)W2 + b2 (2)

where σ(.) is the activation function. A residual connection is further added after
each attention layer and feed-forward layer.
4 To the best of our knowledge the only work involving SPLADE and adapters/freezing
layers is [32], which found that freezing the embeddings improves effectiveness.

5 Here we use adaptation as further finetuning on the target domain.
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3.2 Adapters
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Fig. 1. Houlsby Adapter, image from the original paper [9]

In this paper, we focus on the Houlsby adapter [9], which as described in
Section 3 can be considered an additive adapter and is depicted in Figure 1. An
additive adapter inserts trainable parameters in addition to the aforementioned
transformer layers. The added modules form a bottle-neck architecture with a
down-projection, an up-projection and a non-linear transformation. The size of
the bottle-neck controls the number of training parameters in an adapter layer.
Additionally, a residual connection is applied across each adapter layers. Finally,
a layer normalization is added after each transformer sublayer. Formally, this is
defined as:

x = f(hWdown)Wup + x (3)

where x ∈ Rd is the input to the adapter layer, Wdown ∈ RdXr is the down
projection matrix transforming input x into bottle-neck dimension d, Wup ∈
RrXd is the up projection matrix transforming the bottle-neck representation
back to the d-dimensional space. Each adapter layer is initialized with a near-
identity weights to enable stable training.

3.3 Neural Sparse First Stage Retrievers

Neural sparse first stage retrievers learn contextualized representations of doc-
uments and queries in a sparse high-dimensional latent space. In this work, we
focus on SPLADE sparse retriever [5,14], which uses both L1 and FLOPS reg-
ularizations to force sparsity. We freeze the pretrained language model while
training the adapter layers. SPLADE predicts term weights of each vocabulary
token j with respect to an input token i as:

wij = transform(hi)
TEj + bj j ∈ 1, ..., |V | (4)
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where Ej is the jth vocabulary token embedding, bj is it’s bias, hi is ith input
token embedding, transform(.) is a linear transformation followed by GeLU
activation and LayerNorm. The final term importance for each vocabulary term
j is obtained by taking the maximum predicted weights over the entire input
sequence of length n, after applying a log-saturation effect:

wj = max
n

log(1 +ReLU(wij)) (5)

Given a query qi, the ranking score s of a document d is defined by the degree
to which it is relevant to q obtained as a dot product s(q, d) = w(q).w(d). The
learning objective is to discriminate representations obtained from Equation 5
of a relevant document d+ and non-relevant hard-negatives d− obtained from
BM25 and in-batch negatives d−i,j by minimizing the contrastive loss:

L = −log es(qi,d
+)

es(qi,d
+
i ) + es(qi,d

−
i ) +

∑
j e

s(qi,d
−
i,j)

(6)

SPLADE can be further improved with distillation. The learning objective
here is to minimize the MarginMSE [5] loss: mean-squared-error between the
positive negative margins of a cross-encoder teacher and the student:

L =MSE(Ms(qi, d
+)−Ms(qi, d

−),Mt(qi, d
+)−Mt(qi, d

−)) (7)

whereMSE is mean-squared error,Mt is the teacher’s margin andMs is the stu-
dent’s margin. The final objective optimizes either of the objective in Equation
6 or 7 with regularization losses:

LSPLADE = L+ λq L1 + λd LFLOPS (8)

where LFLOPS =
∑
j∈V

â2j =
∑
j∈V

(
1

N

N∑
i=1

wdi
j ) (9)

The Flops regularizer is a smooth relaxation of the average number of floating-
point operations necessary to compute the score of a document, and hence di-
rectly related to the retrieval time. It is defined using as a continuous relaxation
of the activation (i.e. the term has a non zero weight) probability aj for token
j, and estimated for documents d in a batch of size N by â2j .

Retrieval Flops: SPLADE also reports the retrieval flops (noted R-FLOPS),
i.e., the number of floating point operations on the inverted index to return the
list of documents for a given query. The R-FLOPS metric is defined by an esti-
mation of the average number of floating-point operations between a query and
a document which is defined as the expectation Eq,d

[∑
j∈V p

(q)
j p

(d)
j

]
where pj is

the activation probability for token j in a document d or a query q. It is empir-
ically estimated from a set of approximately 100k development queries, on the
MS MARCO collection. It is thus an indication of the inverted index sparsity
and of the computational cost for a sparse model (which is different from the
inference ie forward cost of the model)



Parameter-Efficient Sparse Retrievers and Rerankers using Adapters 7

3.4 Cross-Encoding Rerankers

Another way to use PLMs for neural retrieval is to use what is called “cross-
encoding” [33]. In this case, both query and document are concatenated before
being provided to the network and the score is directly computed by the net-
work. The cross-encoding procedure allows for networks that are much more
effective, but this effectiveness comes with a cost on efficiency as the retrieval
procedure now has to go through the entire network for each query document
pair, instead of being able to precompute document representations and only go
through the network for the query representation. The models are trained with
a contrastive loss as seen in equation (6) that aims to maximize the score of the
true query/document pair compared to a BM25 negative query/document pair,
without using in-batch negatives.

4 Experimental Setting and Results

We use the SPLADE github repository6 to implement our modifications and
followed the standard procedure to train SPLADE models. We implement our
SPLADE models using an L1 regularization for the query, and FLOPS regular-
ization for the document following [14]. Unless otherwise stated, the document
regularization weight λd is set to 9e−5 and the query regularization weight λq
to 5e−4 to train all variants of Adapters-SPLADE. In order to mitigate the con-
tribution of the regularizer at the early stages of training, we follow [23] and use
a scheduler for λ, quadratically increasing λ at each training iteration, until the
50k step. We use a learning rate of 8e−5, a batch size of 128, a linear scheduler
and warmup step of 6000. We set the maximum sequence length to 256. We
train for 300k iterations and keep the best checkpoint using MRR@10 on the
validation set. We use a bottle-neck reduction factor of 16 (i.e. 16 times smaller)
for all adapter layers. We use PyTorch [24], Huggingface Transformers [31] and
AdapterHub [1] to train all models on 4 Tesla V100 GPUs with 32GB memory.
We compute statistical significance with p ≤ 0.05 using the Student’s t-test and
use superscripts to identify statistical significance for almost all measures safe
for metrics related to BEIR7.

4.1 RQ1: Adapters-SPLADE

We study 2 different settings of encoding with adapters. The first called adapter,
is a mono-encoder setup where the query and document shars a single encoder.
The adapter layers are optimized with both the input sequences keeping the PLM
frozen. The second setting inspired by the work on [14], is a bi-encoder setup
which separates query and document encoders by training distinct query and
document adapters on a shared frozen PLM. We call this setting bi-adapter.

6 https://github.com/naver/splade
7 due to lack of standard procedure.
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This setting not only benefits from optimizing exclusive adapters for input se-
quence type (different lengths of query/document, etc.), it is also possible to
use smaller PLMs for the queries instead of sharing PLM weights. We explore
different backbone PLMs: DistilBERT and CC+MLM Flops, a pretrained PLM
of cocondenser trained on the masked language model (MLM) task using the
FLOPS regularization in order to make it easier to work with SPLADE, intro-
duced in [14]. We trained and evaluated Adapter-SPLADE models on the MS
MARCO passage ranking dataset [21] in full ranking setting. The results for
finetuning with BM25 triplets are available in Table 1, whereas in Table 2 we
make available the results of training models with distillation. For distillation,
we use hard-negatives and scores generated by a cross-encoder reranker8 and the
MarginMSE loss as described in [5] and set λd to 1e−2 and λq to 9e−2.

Table 1. Finetuning and adapter-tuning comparison using BM25 triplets for training.

Model # Method MS MARCO dev TREC DL 2019 TREC DL 2020 R-Flops Training
ParamsMRR@10 R@1000 NDCG@10 NDCG@10

DistilBERT
a finetuning 0.346 0.963 0.692 0.677 1.43 100%
b adapter 0.351 0.968a 0.711 0.676 1.44 2.23%
c bi-adapter 0.352 0.967a 0.690 0.666 0.74 2.23%

CC +
MLM FLOPS

d finetuning 0.366abc 0.977abc 0.712 0.684 1.09 100%
e adapter 0.376abcd 0.980abcdf 0.712 0.688 0.8 2.23%
f bi-adapter 0.372abc 0.976abc 0.701 0.700 0.37 2.23%

Table 2. Finetuning and adapter-tuning comparison using distillation training.

Model # Method MS MARCO dev TREC DL 2019 TREC DL 2020 R-Flops Training
ParamsMRR@10 R@1000 NDCG@10 NDCG@10

DistilBERT a finetuning 0.371 0.979b 0.727 0.711 3.93 100%
b adapter 0.373 0.975 0.728 0.716 1.86 2.16%

CC +
MLM FLOPS

c finetuning 0.388ab 0.982ab 0.734 0.732 4.38 100%
d adapter 0.390ab 0.983ab 0.740 0.729 2.34 2.16%

To study efficiency-effectiveness trade-off of Adapters-SPLADE, we compare
effectiveness, R-FLOPS size and number of training parameters of adapter-tuned
models with their baseline finetuned counterparts having the same backbone
PLM. [23] first showed that R-FLOPs reduction is a reasonable measure of re-
trieval speed. R-FLOPS measure the average number of floating-point operations
needed to compute a document score during retrieval. A sparse embedding and
subsequently lower FLOP achieves a retrieval speedup of the order of 1/p2 over
an inverted index where p is the probability of each document embedding di-
mension being non-zero.
8 https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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Overall, we observe, from Table 1 and 2, all variants of adapter-tuned SPLADE
outperform all baseline fine-tuned counterparts on MS MARCO and TREC DL
2019. The distilled cocondenser with MLM mono-encoder model is the highest
performing with an MRR@10 score of 0.390 and R@100 of 0.983. The differ-
ence in effectiveness between the mono-encoder and bi-encoder adapter-tuning
is marginal and depends on the PLM. Most noteworthy, we also observe that
the R-FLOPS are lower for adapter-tuned models indicating sparser representa-
tion than the fine-tuned counterparts. This is more pronounced in the adapter-
tuned models with distillation. Finally, the bi-adapter models have even lower
R-FLOPS than the mono-encoder settings, which shows that for the same effec-
tiveness the bi-adapters models are more efficient and sparse. We also observe
that the number of training parameters is only 2.23% of the total model parame-
ters for triplets training (1.5M/67M for mono-adapter DistilBERT, 3M/135M for
bi-adapter DistilBERT, 2M/111M for CC + MLM FLOPS) and 2.16% for the dis-
tillation process (1.5M/67M for mono-adapter DistilBERT, 2M/111M for CC +
MLM FLOPS). This has direct consequence in low-hardware setting where adapters
with lower number of number of training parameters and gradients can be trained
on a smaller GPU(such as 24GB P40) but full finetuning is infeasible. Overall,
there is a clear advantage in using Adapter-SPLADE over finetuning, which
differs from the previous results on dense adapters [11].

We also evaluate with the full BEIR benchmark [41] comprising of 18 differ-
ent datasets to measure generalizability of IR models with zero-shot effectiveness
on out-of-domain data. The results are listed in Table 3. We observe from that
in the mono-adapter Triplets training, adapter outperforms finetuning on mean
nDCG@10 with the highest gap in arguana. With CC+MLM Flops as the back-
bone model, finetuning and adapter-tuning performs similarly. However, adapter
scores drop on models trained with distillation. This can be attributed to the
adapter representations being sparser compared to the finetuned models. As de-
picted by the R-FLOPS in Table 1, adapter-tuned DistilBERT has less than
half the number of R-FLOPS than its finetuned counterpart whereas CC+MLM
Flops finetuned model has approximately 1.87 times the number of R-FLOPS
of the adapter-tuned model. This reflects in model representation capacity in
0-shot setting in Table 3. However, as discussed in Section 4.3, adapters are well
suited for domain adaptation when trained on out-of-domain datasets keeping
the backbone retriever intact and free from catastrophic forgetting.

4.2 RQ2: Adapter Layer Ablation

Furthermore, we perform extensive adapter layer ablation by progressively re-
moving adapter layers from the early layers of the encoder. Doing so results in n
separate models for each layer ablation setting. The frozen pretrained model for
our ablation studies is DistilBERT in a mono-encoder setting where the same in-
stance of the encoder is used to encode both the document and the query, which
is the same configuration as the adapter method in Table 1. This results in a
total of 6 configurations for the ablation study corresponding to the 6 adapter
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Table 3. nDCG@10 score comparison on the BEIR zero-shot evaluation

Datasets
Triplets training Distillation training

DistilBERT CC + MLM FLOPS DistilBERT CC + MLM FLOPS
finetuning adapter finetuning adapter finetuning adapter finetuning adapter

arguana 0.298 0.364 0.427 0.388 0.513 0.443 0.463 0.433
climate-fever 0.167 0.172 0.180 0.187 0.202 0.197 0.229 0.202
dbpedia-entity 0.379 0.392 0.388 0.401 0.419 0.417 0.438 0.432
fever 0.730 0.734 0.724 0.722 0.773 0.757 0.792 0.773
fiqa 0.295 0.289 0.317 0.320 0.332 0.314 0.342 0.337
hotpotqa 0.626 0.647 0.650 0.603 0.687 0.670 0.687 0.629
nfcorpus 0.318 0.321 0.331 0.333 0.335 0.335 0.340 0.344
nq 0.481 0.482 0.506 0.523 0.522 0.508 0.539 0.544
quora 0.819 0.810 0.821 0.806 0.825 0.722 0.841 0.552
scidocs 0.143 0.150 0.151 0.153 0.154 0.147 0.152 0.153
scifact 0.614 0.611 0.658 0.669 0.687 0.658 0.690 0.673
trec-covid 0.694 0.684 0.668 0.689 0.703 0.728 0.700 0.713
webis-touche2020 0.270 0.255 0.277 0.274 0.260 0.258 0.294 0.290

mean 0.449 0.455 0.469 0.467 0.493 0.473 0.500 0.467

Table 4. Adapter layer Ablation with adapters on DistilBERT PLM.

# Adapters
Removed

MS MARCO dev TREC DL 2019 TREC DL 2020 BEIR R-Flops Training
Params

Training
Time(Hrs)MRR@10 R@1000 NDCG@10 NDCG@10 NDCG@10

a None 0.351cdefg 0.968defg 0.711fg 0.676g 0.455 1.44 2.23% 34.42

b 0 0.348defg 0.967efg 0.708fg 0.674g 0.458 1.27 2.01% 32.23
c 0-1 0.344efg 0.968efg 0.709fg 0.699abdefg 0.459 1.34 1.80% 28.55
d 0-2 0.341efg 0.966efg 0.703fg 0.665g 0.459 1.36 1.59% 26.70
e 0-3 0.325fg 0.962fg 0.689 0.660g 0.455 1.50 1.37% 24.18
f 0-4 0.318g 0.956 0.659 0.663g 0.455 1.27 1.15% 22.51
g 0-5 0.312 0.955 0.660 0.617 0.449 2.78 0.90% 21.35

layers after each pretrained transformer layer. The final experimental setting re-
moves all 6 adapter layers (0− 5) and fine-tunes only the language model head.

We note that such an experiment (dropping adapter layers from transformer
models) has been studied in NLP [28] and was shown to improve both train-
ing and inference time while retaining comparable effectiveness. We report the
effectiveness of each adapter ablation setting on MS MARCO, TREC DL 2019
and TREC DL 2020 in Table 4. We actually observe gradual performance drop
for MS MARCO and TREC DL datasets as the training parameters decrease
with the progressive removal of adapter layers as shown in Table 4. The drop is
significantly higher (a drop of 0.25 MRR score) when layers are removed from
the second half of the model ( ≥ 0 − 3). This phenomenon is consistent with
studies in NLP [22,28] that task-specific information is stored in the later layers
of the adapters. For the BEIR datasets, this effectiveness drop is not as evident
until all adapters but the language model head is removed (configuration 0− 5).
The last configuration also has less sparsity as observed from the R-FLOPS size
of 2.78 compared to the other configurations. We also observe that the training
time drops proportional to the drop in adapter layers. The training time for
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adapter-tune without any drop in adapter layers is 34.42 hours on 4 Tesla V100
GPUS for 150, 000 iterations, and it drops to 26.70 hours with only 1% drop in
MRR with the first 0 − 2 adapter layers dropped. The lowest training time is
21.35 hours with a drop of 3.2% in MRR for the configuration with all adapters
dropped but the language model head.

4.3 RQ3: Out-of-Domain Dataset Adaptation

For the next research question, we want to check how adapters compare to full
finetuning when adapting a model trained on MSMARCO on a smaller out-of-
domain dataset. We evaluate this question under two scenarios: i) BEIR and ii)
TripClick.

BEIR: On the beir benchmark we use 3 datasets (FEVER, FiQA and NFCor-
pus) that have training, development and test sets and aim for very different
domains and tasks (fact checking , financial QA and bio-medical IR). We start
from a pre-finetuned SPLADE model called “splade-cocondenser-ensembledistil”
made available in [5]. We verify the effectiveness of the models in zero shot and
get a first set of hard negatives. These hard negatives are then used to train
either via finetuning of all parameters or via the introduction of adapters. The
networks are trained for either 10 (FEVER) or 100 epochs (FiQA and NFCor-
pus), and at the end of each epoch we compute the development set effectiveness.
We use the models with the best development set to compute the 1st round test
set effectiveness and generate hard negatives that are used for another round of
training that we call 2nd round (which repeats the 1st round, starting from the
best network of the 1st round and using negatives from the 1st round).

Results are available in Table 5. While finetuning is not always able to im-
prove the results over the zero-shot, mostly due to overfitting on the training/dev
sets. For example, on fever fine-tuning first makes all representations as it can
easily overfit to the training even without using many words and only on the
second round of training started using more dimensions. On the other hand,
adapter tuning is able to consistently improve the effectiveness over the zero
shot and first rounds (even if it does not always perform the best, as is the
case on NFCorpus). Overall, we conclude that adapters are more stable than
finetuning when finetuning on these specific domains.

Table 5. Domain adaptation comparison on BEIR Datasets

Dataset Training Zero Shot 1st Round 2nd Round
NDCG@10 Recall@100 NDCG@10 Recall@100 NDCG@10 Recall@100

Fever finetuning 0.793 0.954 0.692 0.866 0.851 0.959
adapter 0.841 0.960 0.881 0.964

FiQA finetuning 0.348 0.632 0.371 0.678 0.356 0.694
adapter 0.373 0.675 0.393 0.711

NFCorpus finetuning 0.348 0.285 0.384 0.466 0.403 0.484
adapter 0.362 0.435 0.371 0.428
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TripClick: Given that in the BEIR benchmark the adapters underperformed
finetuning on bio-medical data, we decided to further experiment on a larger
bio-medical dataset called TripClick. The TripClick collection [27] contains ap-
proximately 1.5 millions MEDLINE documents (title and abstract), and 692,000
queries. The test set is divided into three categories of queries: Head, Torso and
Tail (according to their decreasing frequency), which contain 1,175 queries each.
For the Head queries, a DCTR click model was employed to created relevance sig-
nals, otherwise raw clicks were used. We use the triplets released by [8]. Similarly
to the BEIR experiments, we start from the “splade-cocondenser-ensembledistil”
SPLADE model and fine-tune or adapt-tune it over 100,000 iterations (batch
size equal to 100). As shown in Table 6, adapter-tuning shows very competi-
tive results, on par with finetuning for head categories (frequent queries), and
achieving even better results for the less frequent queries (torso and tail).

Table 6. Performance of mono-encoder on out-of-domain Tripclick Dataset

# Training HEAD (dctr) HEAD Torso Tail
NDCG@10 Recall@100 NDCG@10 Recall@100 NDCG@10 Recall@100 NDCG@10 Recall@100

a Finetuning 0.218 0.579 0.302 0.523 0.219 0.679 0.238 0.722
b Adapter 0.219 0.578 0.299 0.526 0.229a 0.679 0.253a 0.720

4.4 RQ4: Knowledge Sharing between Rerankers and First stage
Rankers

The final research question explores sharing knowledge between rerankers and
first-stage rankers. We explore this with transforming first stage rankers into
rerankers. First, we tune the pretrained DistilBERT for reranking task as a
baseline for both finetuning and adapter-tuning. We then test transforming both
sparse (splade-cocondenser) and dense (tct_colbert-v2-msmarco) first stage
rankers into rerankers, using either fine-tuning or adapter-tuning. To be clear,
the cross-encoder is initialized with the weights of the aforementioned first stage
models, but the reranker classification head on the CLS token is randomly ini-
tialized. Also note that we rerank the top-1k returned from “splade-cocondenser-
ensembledistil” (represented by “first stage” on table).

We compare adapter-tuning with finetuning and display the results in Ta-
ble 7. We observe that finetuning the baseline model (DistilBERT) is better
than adapter-tuning. When using first stage rankers, results are varied. Dense
first stage rerankers were able to learn similarly with both adapter and fine-
tuning. However, this was not the case for sparse first stage rankers
(splade-cocondenser-ensembledistil). We posit that this may come from
two different reasons: i) The SPLADE model does not focus on the CLS rep-
resentations, but on the MLM head representations of all tokens, thus needing
more flexibility; ii) The model has been trained multiple times (initial BERT
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Table 7. Knowledge Sharing between first stage rankers and rerankers comparison
between finetuning and adapter-tuning.

Base Model # Training MS MARCO dev TREC DL 2019 TREC DL 2020
MRR@10 NDCG@10 NDCG@10

First Stage a None 0.383e 0.732 0.721

DistilBERT b finetune 0.396ace 0.764e 0.736
c adapter 0.388e 0.737 0.727

SPLADE++
d finetune 0.408abceg 0.753 0.743
e adapter 0.358 0.723 0.707

TCT Colbert v2
f finetune 0.404abce 0.749 0.731
g adapter 0.400ace 0.740 0.739

training, then condenser, then cocondenser and finally SPLADE), while not al-
ways using the same precision (fp16 or fp32), which under preliminary analysis
seems to have made some parts of the model unusable for cross-encoding with-
out full finetuning. Overall, there is slight gain in using the first stage model for
the reranker. However, there’s no increase in effectiveness of using adapters, we
actually see worse effectiveness on all settings.

5 Conclusion

Retrieval models, based on PLM, require finetuning millions of parameters which
makes them memory inefficient and non-scalable for out-of-domain adaptation.
This motivates the need for efficient methods to adapt them to information re-
trieval tasks. In this paper, we examine adapters for sparse retrieval models.
We show that with approximately 2% of training parameters, adapters can be
successfully employed for SPLADE models with comparable or even better effec-
tiveness on benchmark IR datasets such as MS MARCO and TREC. We further
analyze adapter layer ablation and see a further reduction in training param-
eters to 1.8% retains effectiveness of full finetuning. For domain adaptation,
adapters are more stable and outperform finetuning, which is prone to over-
fitting, On Tripclick dataset, adapters outperform on precision metrics Torso
and Tail queries and performs comparably on Head queries. We explore knowl-
edge transfer between first stage rankers and rerankers as a final study. Adapters
underperform full finetuning when trying to reuse sparse model to rerankers.
Dense first stage rankers perform similarly for adapters and finetuning while
sparse first stage rankers is less effective compared to finetuning. We leave this
as future work. As memory-efficient adapters are effective for Splade, we leave
for future studying larger sparse models and their generalizability. Finally, an
interesting scenario could also be to tackle unsupervised domain adaptation with
adapters.
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