
Stat-weight: Improving the Estimator of
Interleaved Methods Outcomes with Statistical

Hypothesis Testing

Alessandro Benedetti[0000−0002−8781−8619] and
Anna Ruggero[0000−0003−1733−1132]

Sease Ltd., London, UK
a.benedetti@sease.io, a.ruggero@sease.io

Abstract. Interleaving is an online evaluation approach for information
retrieval systems that compares the effectiveness of ranking functions in
interpreting the users’ implicit feedback. Previous work such as Hofmann
et al (2011) [10] has evaluated the most promising interleaved methods at
the time, on uniform distributions of queries. In the real world, ordinar-
ily, there is an unbalanced distribution of repeated queries that follows
a long-tailed users’ search demand curve. The more a query is executed,
by different users (or in different sessions), the higher the probability
of collecting implicit feedback (interactions/clicks) on the related search
results. This paper first aims to replicate the Team Draft Interleaving
accuracy evaluation on uniform query distributions and then focuses on
assessing how this method generalizes to long-tailed real-world scenar-
ios. The reproducibility work raised interesting considerations on how
the winning ranking function for each query should impact the overall
winner for the entire evaluation. Based on what was observed, we propose
that not all the queries should contribute to the final decision in equal
proportion. As a result of these insights, we designed two variations of
the ∆AB score winner estimator that assign to each query a credit based
on statistical hypothesis testing. To replicate, reproduce and extend the
original work, we have developed from scratch a system that simulates
a search engine and users’ interactions from datasets from the industry.
Our experiments confirm our intuition and show that our methods are
promising in terms of accuracy, sensitivity, and robustness to noise.

Keywords: Interleaving · Statistical Significance · Real-world Query
Distribution.

1 Introduction

Online evaluation is used to estimate the best ranking function for an information
retrieval system, directly addressing a live instance with real users and data. It
compares ranking functions through the interpretation of the users’ behavior,
represented by the collected interactions with the system under evaluation. This
is called implicit feedback [27].

ar
X

iv
:2

30
3.

10
09

4v
1

 [
cs

.I
R

]
 1

7
M

ar
 2

02
3

2 Alessandro Benedetti and Anna Ruggero

Online evaluation is widely used because implicit feedback is generally cheap
and easy to obtain, and it allows businesses to calculate useful metrics on end-
users that interact directly with the ranking function (metrics like the rate of
clicked documents).

This paper focuses on interleaved evaluation approaches, specifically, the
Team-Draft Interleaving (TDI) method [21], applied to the comparison of two
ranking functions.

Interleaving is an alternative to AB testing [23]. It avoids the principal source
of variance caused by the separation of the users in groups and the consequent
necessary combination of the results [23]. In AB testing one group is exposed to
the control system and another group is exposed to the variant. Each group sees
just a single ranking function during the evaluation.

On the other hand, interleaved methods, when responding to a query, create a
unique list with search results impartially picked from the two ranking functions.
This interleaved list is presented to the end-users transparently, so they don’t
know which result item is coming from which ranking function.

In previous works interleaved methods have been evaluated with a uniform
distribution of queries [10]. Experimental setups have simulated users submitting
a query by randomly sampling from a set of available queries (with replacement).

In real-world applications, the same query is executed multiple times by dif-
ferent users and by the same users in different sessions. The number of collected
implicit feedback is not uniformly distributed across the query set. This pa-
per aims to replicate and then reproduce some of the experiments from one of
the most prominent surveys on interleaved methods [10], investigating the effect
that different query distributions have on the accuracy of TDI, extending and
generalizing its evaluation to different settings commonly found in production
systems.

Specifically, three research questions arise:

– RQ1: Is it possible to replicate the original paper experiments?
– RQ2: How does the original work generalize in the real-world scenario where

queries have a long-tailed distribution?
– RQ3: Does applying statistical hypothesis testing improve the TDI evalua-

tion accuracy in such a scenario?

Thanks to the insights collected during the reproducibility work we designed
two novel methods that enrich the TDI scoring estimator with a preliminary
statistical analysis: stat-pruning and stat-weight. The idea is to weigh differently
the contribution of each query to the final winner of the evaluation. Such contri-
bution should be proportional to the statistical significance of the observations
collected for the query.

We present a set of experiments using a large set of explicitly labeled data
and a framework, developed from scratch, to simulate the implicit feedback with
user clicks under different conditions. These experiments show some interesting
perspectives on the original work replicability, confirm that TDI generalizes quite
accurately to the considered real-world scenario, and validate the intuition that

Improving Interleaved Methods with Statistical Hypothesis Testing 3

our statistical analysis-based methods can enrich TDI to bring better accuracy
in identifying the best ranking function.

The concepts ’ranking function’, ’ranking model’, and ’ranker’ are used in-
terchangeably.

The paper is organized as follows: Section 2 presents the related work. Section
3 details the experimental setup, datasets, and runs used for replication and
reproduction. Section 4 introduces the theory behind the proposed improvements
and describe our the stat-pruning and stat-weight implementation. Section 5
discusses the experiments’ runs and the obtained results. The paper’s conclusions
and future directions are listed in Section 6.

2 Related Work

Evaluation of Information Retrieval systems follows two approaches: offline and
online evaluation.

For the offline, the most commonly used is the Cranfield framework [3]: an
evaluation method based on explicit relevance judgments. The experimental col-
lection is composed of triples that represent: a document, a query, and the rel-
evance of that document for that query. The relevance judgments are provided
by a team of trained experts and this is why this process is expensive. Collecting
these judgments requires a lot of effort and there is the possibility that they do
not reflect the same document relevance perceived by the common users.

Users’ interactions are easier to obtain and come with a minimal cost. Being
performed directly by the end-users, they can be used to represent their intent
closely, bypassing the domain experts’ indirection. Implicit feedback is a very
promising approach but, as a drawback, it could be noisy and therefore requires
some further elaborations. One type of noise introduced is click position bias.
Users tend to click documents in the top positions of the search result list,
independently of the relevance of the result. Many papers focus on this topic
and develop approaches to make interleaving fairer [1,2,21,24]. Implicit feedback
is collected in real-time and it’s at the base of the interleaving process. Despite
the fact that the most common method of online evaluation is still AB testing,
interleaving is experiencing a growing interest in research. This type of testing
uses a smaller amount of traffic, with respect to AB testing, without losing
accuracy in the obtained result [1,16,23]. Interleaving was introduced the first
time by Joachims [15,14] and from then, many other authors proposed their
changes and improvements [1,20,21,24,22].

Team Draft Interleaving (TDI from now on) is among the most successful and
used interleaving approaches [21] because of its simplicity of implementation and
good accuracy. It is based on the strategy that captains use to select their players
in team matches. TDI produces a fair distribution of ranking functions’ elements
in the final interleaved list. It also showed to overcome issues of a previously
implemented approach, Balanced interleaving, in determining the winning model
[1].

4 Alessandro Benedetti and Anna Ruggero

Fig. 1. Example of the Team Draft Interleaving method. Two combinations (ABBA
and ABAB are shown out of the four combinations possible)

Team Draft Interleaving considers two ranking models: rankerA and rankerB
(see Figure 1). For a given query, each ranker returns its ranked list of documents
la = (a1, a2, ...) and lb = (b1, b2, ...). The algorithm creates a unique ranked list
I = (i1, i2, ...). This list is created by interleaving elements from the two lists la
and lb as described by Chapelle et al.[1]. Each element ij is labelled TeamA if
it is selected from la and TeamB if it is selected from lb.

The list I is returned to the user, who interacts with the search results of
interest. Let us consider clicks as a target interaction type for our analysis: given
a click c, cj is the position of the clicked search result in the ranked list I.
Iterating on all clicks, the number of clicks collected by each ranker is computed
as in Chapelle et al. [1]:

ha = |{cj : icj ∈ TeamA}|

hb = |{cj : icj ∈ TeamB}|
If ha > hb then rankerA is the winner for that query; if ha < hb then rankerB
is the winner; otherwise it is a tie.

To assess the overall winner between rankerA and rankerB, the ∆AB score
is computed as [1]:

∆AB =
wins(A) + 1

2
ties(A,B)

wins(A) + wins(B) + ties(A,B)
− 0.5 (1)

Where:

– wins(A) is the number of queries in which rankerA is the winner

Improving Interleaved Methods with Statistical Hypothesis Testing 5

– wins(B) is the number of queries in which rankerB is the winner
– ties(A,B) is the number of queries in which the two rankers equalize

A ∆AB score < 0 means rankerB is the overall winner, a ∆AB score = 0 means
a tie, a ∆AB score > 0 means rankerA is the overall winner.

Other types of interleaved methods are Document Constraint [8], Probabilis-
tic Interleaving [10] and Optimized Interleaving [20].

Document constraint infers preference relations between pairs of documents,
estimated from their clicks and ranks. The method compares the inferred con-
straints to the original result lists and assesses how many constraints are violated
by each. The list that violates fewer constraints is deemed better. This method
demonstrated to be more reliable than either balanced interleave or team draft
on synthetic data, but it’s more computationally expensive.

In probabilistic interleaving, both the choice of the model that contributes
to the interleaving list and the document to put in the list, are selected based
on probability. This approach shows higher reliability, efficiency, and robustness
to the noise with respect to the others.

Optimized interleaving proposes to formulate interleaving as an optimization
problem that is solved to obtain the interleaved lists that maximize the expected
information gained from users’ interactions.

To conclude this Section it’s worth mentioning that a generalized form of the
Team Draft Interleaving has been proposed [17] and that additional research has
been performed by Hofmann et al. with a new interleaving approach that aims
to reduce the bias related to the way results are presented to the users [9] and
studies on the fidelity, soundness, and efficiency of interleaved methods [11].

3 Experiments

We present a set of experiments designed to answer our three research ques-
tions. This paper aims to replicate and then reproduce under different scenarios
experiment 1 from one of the most prominent surveys on interleaved methods
[10].

In the first set of experiments, we address RQ1 with the same settings and
data as the original work (uniform query distribution). We compare a large num-
ber of ranker pairs over simulated user clicks to examine if the accuracy of the
TDI method matches the published results from the original research. We dis-
cuss the assumptions and details that we found to hold up, and the ones that
could not be confirmed. In addition we assess how the traditional TDI accu-
racy compares with two novel methods for ∆AB score calculations (stat-pruning
and stat-weight) under the uniform distribution conditions. It has been chosen
to reproduce this experiment with the TDI method for the simple implementa-
tion and the easier reproduction process. Even if probabilistic interleaving has
been shown to be the best method, TDI maintains a good trade-off between
performance and simplicity.

In the second set of experiments, we address RQ2 and RQ3 introducing
experimental scenarios with a long-tailed query distribution. We compare a large

6 Alessandro Benedetti and Anna Ruggero

number of ranker pairs over different real-world query distributions extracted
from anonymized query logs. The aim is to examine how well the traditional
TDI method generalizes in these real-world scenarios and how stat-pruning and
stat-weight perform for comparison.

Finally, the last set of experiments introduces a realistic click model simulator
to assess how well TDI, stat-pruning and stat-weight methods respond to noise.

The datasets used are detailed in 3.1. The experimental setup is described in
3.2 and the experiment runs are explained in 3.3.

3.1 Datasets

All experiments make use of the MSLR-WEB30k Microsoft learning to rank
(MSLR) dataset1. This dataset represents queries and documents by IDs. It
consists of feature vectors extracted from query-document pairs along with rel-
evance judgment labels. The relevance judgments are obtained explicitly from
a retired labeling set of a commercial web search engine, which takes 5 values
from 0 (irrelevant) to 4 (perfectly relevant). The features describe aspects of the
query-document pair widely used in the research community such as the length
of a field of the document or the term frequency of the query terms in a field of
the document. In the data files, each row corresponds to a query-document pair.
The first element is the relevance label of the pair, the second is the query id,
and the following elements are the features.

The experiments use the training set of fold 1. This set contains 18, 919
queries, with an average of 119.96 judged documents per query. To define the
ranking functions to compare in our experiments, we leverage the features pro-
vided for the documents of the dataset. Specifically, from each feature, we define
a ranker (identified by the feature id) that sorts the search results descending
by the feature value.

The experiments involving the long-tailed distributions make use of an in-
dustrial dataset we called long-tail-1. It consists of a list of query executions
extracted from the query log of a commercial search engine over a period of
time. Each query is associated with the number of times is executed by different
users. The amount of users collected per query is capped to 1, 000. This thresh-
old ensures maintaining the long-tailed distribution while keeping a sustainable
computational cost.

From this dataset, we derive the long tail in Figure 2.

3.2 Experimental Setup

To replicate the original experiments we designed and developed a system that
simulates a search engine with users submitting queries and interacting with the
results (clicks). The code references are in the appendix.

The experiments are designed to evaluate the interleaved methods’ ability to
establish the better of two ranking functions based on (simulated) user clicks.
1 download from http://research.microsoft.com/en-us/projects/mslr/default.aspx.

http://research.microsoft.com/en-us/projects/mslr/default.aspx.

Improving Interleaved Methods with Statistical Hypothesis Testing 7

Fig. 2. Total unique queries: 1 861, Total executions:156 550

When a query is submitted to the simulated search engine it returns the pre-
calculated list of matching search results with explicit relevance judgments from
the dataset MSLR. The result set is ranked by a TDI interleaved evaluation of
two ranking functions.

Each experiment run repeats a number of simulations proportional to the
number r of different ranking functions we want to include in the evaluation.
Each ranking function is identified by an incremental id that is aligned with the
id of the feature of reference. When an experiment evaluates r ranking functions,
it evaluates the first r, ordered by ascending id. Specifically, given a set of ranking
functions, the number of simulations s in the run is the number of unique pairs
in the set, where the pairs are subject to the commutative property (AB = BA).
The user interactions are simulated using a query distribution and a click model.

The system simulates a user submitting a query from the set of available
queries in the distribution (in long-tailed distributions each query is submitted
multiple times). The search engine responds with an interleaved result list that is
presented to the user. The simulation models the assumption that more relevant
documents are more likely to be clicked. The user clicks are randomly generated
following the probability distribution that the click model assigns to the relevance
judgments provided.

Once the simulation completes, the ranking function preference of each click
collected is evaluated and the ∆AB score is computed to establish the winner by
the interleaving evaluation chosen. The ground truth winner is calculated as the
ranking function with the best average Normalised Discounted Cumulative Gain
(NDCG from now on) [13,12] on the considered query set. The NDCG calculation
is based on the explicit relevance judgments provided with the dataset MSLR.

8 Alessandro Benedetti and Anna Ruggero

Depending on the run, to determine the NDCG we use the complete search
results list for a query or a top-k (cut-off at k). The winning ranker identified
by the ∆AB score is compared to the ground truth winner for the pair, when
they match we have a correct guess. To assess the accuracy of the interleaved
evaluation method we count the number of correct guesses over the total number
of simulations s in the run showing at least one click.

Below we describe the query distributions, the click models, and the NDCG
we used in our experiments.

Query Distributions The query distribution in input to the simulation establishes
the number of queries that the user submits to the system. We use two types of
query distributions in our experiments: uniform and long-tailed.

In the uniform query distribution, each unique query is executed a constant
number of times. When considering q queries in a run, we refer to the first q
query ids, in the same order as they appear in the dataset MSLR rows.

In the long-tailed query distribution, each query is executed a variable num-
ber of times. Starting from the long-tail-1 distribution from the industry, we
scaled down the number of queries and their executions by a factor u ≤ 1 (see
Figure 3). The first reason for that is to experiment how the evaluation methods

Fig. 3. Long-tailed query distributions used in the experiments

perform with different instances of realistic long-tailed distributions. The second
reason is to act within the computational limits of our experimental setup. For
each ranker pair to interleave, we simulate a number of query executions taken
from the query distribution. The closer u gets to 1, the higher the total number
of executions (see Table 1). Higher the number of executions higher the cost in

Improving Interleaved Methods with Statistical Hypothesis Testing 9

Table 1. Scaling the query executions

u unique queries total executions
0.020 283 1247
0.125 472 7681
0.250 455 14449

terms of memory and time consumption. Running the full simulation, on all the
rankers, with the original long-tailed distribution would have required too much
time and memory in our setup.

Click Models The click model in input to the simulation establishes the prob-
ability of a search result to be clicked given its explicit relevance label (ground
truth). Using different click models makes it possible to study the evaluation
methods at different levels of noise in user clicks.

The click model simulates user interactions according to the Dependent Click
Model (DCM) [6,7], an extension of the cascade model [4].

According to this model, users scan result lists from the top-ranking result to
the last. For each document they see, they decide to click it or not, depending on
its perceived relevance (e.g., based on the title, thumbnail, and content snippets).
After clicking on a document, users assess the full relevance of the search result
and if the information need is satisfied then they stop scanning the result list.
Otherwise, they progress.

Table 2. Click models used in the experiments [10]

perfect model
R(d) 0 1 2 3 4

P (c | R(d)) 0.00 0.20 0.40 0.80 1.00
P (s | R(d)) 0.00 0.00 0.00 0.00 0.00

realistic model
R(d) 0 1 2 3 4

P (c | R(d)) 0.05 0.10 0.20 0.40 0.80
P (s | R(d)) 0.00 0.20 0.40 0.60 0.80

For each document viewed by the user, P (c | R(d)) is the probability that
a click is performed given the relevance label of the examined document R(d).
P (s | R(d)) is the probability that a user stops scanning the result list because it
has satisfied the information need after clicking a document with the relevance
label R(d).

We use the two-click models proposed by the original research [10]. The re-
alistic click model presents a noisier click behavior. Furthermore, the overall
expected clicks quantity is lower for the realistic click model because the click

10 Alessandro Benedetti and Anna Ruggero

probabilities are consistently lower and the stop probabilities are higher. For
these reasons, the realistic click model increases the difficulty for the interleaved
methods to correctly guess the best ranking function. Table 2 lists the probabil-
ities defined for the two models.

NDCG The NDCG metrics we used in our experiments are the complete NDCG
(the complete search results list for a query) and the NDCG@10 (cut-off at 10).

Using NDCG@10 is quite common in the industry as many search engines
show 10 documents on their first page and it aligns with the decision of having
the simulated users click only the top-10 results. When comparing the complete
NDCG with NDCG@10 we noticed that the average difference between the pair
of rankers to evaluate is smaller, making it more difficult for the interleaved
methods to correctly guess the best ranker (see Table 3 and Table 4).

Table 3. complete NDCG and NDCG@10 for the first 10 rankers, averaged over the
1000 queries

ranker NDCG NDCG@10
1 0.550 0.195
2 0.578 0.260
3 0.603 0.284
4 0.585 0.261
5 0.550 0.192
6 0.550 0.195
7 0.578 0.260
8 0.603 0.284
9 0.585 0.261
10 0.550 0.192

Table 4. average difference in NDCG over the 9 180 pairs of rankers

NDCG NDCG@10
0.026 0.046

3.3 Runs

We divided the runs into four groups: replication, uniform query distribution,
long-tailed query distribution, and realistic click model. A seed is set at the
beginning of each run so that it is possible to reproduce all the random choices of
the experiment reliably in repeated executions. Using different seeds will result in
slightly different results. An interesting future study could be to execute each run

Improving Interleaved Methods with Statistical Hypothesis Testing 11

multiple times with different seeds and explore such differences from a statistical
perspective.

Replication The scope of this set of runs is to replicate the experiment 1 from
the original research and answer RQ1. As a baseline, to reduce the computa-
tional stress we evaluate the Team Draft Interleaving method only. We define a
ranker for each of the 136 individual features provided with the MSLR dataset.
We exhaustively compare all 9, 180 distinct pairs derived from the 136 rankers.
The query distribution used is uniform and for each ranker pair, the user sub-
mits 1, 000 queries. The query set consists of the first distinct 1, 000 queries as
occurring in the MSLR dataset rows. The click model used is the perfect model.
The results report the percentage of pairs for which the TDI method correctly
identified the better ranker.

– Run 1: exactly replicates the original experiment, users click on the top-10
results for each query, to determine NDCG for the ground truth we use the
complete set of documents provided with the dataset MSLR, i.e., no cut-off
is used.

We observed some inconsistencies with the original work results so we added to
this group two additional runs:

– Run 2: users click on the complete list of search results for each query. To
determine NDCG for the ground truth we use the complete set of documents
provided with the dataset MSLR, i.e., no cut-off is used.

– Run 3: users click on the top-10 results for each query. To determine NDCG
for the ground truth we calculate NDCG@10.

Uniform query distribution The scope of this set of runs is to evaluate how the
stat-pruning and stat-weight methods compare with the TDI baseline. We ex-
haustively compare all 9, 180 distinct pairs derived from the 136 rankers. The
query distribution used is uniform, each run uses a different number q of queries.
The query set consists of the first distinct q queries as occurring in the MSLR
dataset rows. The click model used is the perfect model. Users click on the top-
10 results for each query. Unless stated otherwise, to determine NDCG for the
ground truth we calculate NDCG@10. The results compare the percentage of
pairs for which the TDI, stat-pruning and stat-weight methods correctly identi-
fied the better ranker.

– Run 4: the query set consists of the first distinct 1, 000 queries as occurring
in the MSLR dataset. Each query is executed once.

– Run 5: the query set consists of the first distinct 100 queries as occurring
in the MSLR dataset. Each query is executed once.

12 Alessandro Benedetti and Anna Ruggero

– Run 6: the query set consists of the first distinct 100 queries as occurring
in the MSLR dataset. Each query is executed 10 times.

– Run 7: the query set consists of the first distinct 100 queries as occurring in
the MSLR dataset. Each query is executed 10 times. To determine NDCG
for the ground truth we use the complete set of documents provided with
the dataset MSLR, i.e., no cut-off is used.

Long-tailed query distribution The scope of this set of runs is to evaluate how
the stat-pruning and stat-weight methods compare with the TDI baseline over
long-tailed query distributions and answer RQ2 and RQ3. The click model used
is the perfect model. Each run uses a different long-tailed query distribution, see
Figure 2 and Table 1 for reference. Users click on the top-10 results for each
query. Unless stated otherwise, to determine NDCG for the ground truth we
calculate NDCG@10. The results compares the percentage of pairs for which
the TDI, stat-pruning and stat-weight methods correctly identified the better
ranker.

– Run 8: the query set consists of 283 unique queries repeated following the
long-tailed distribution with u = 0.020. We exhaustively compare all 9, 180
distinct pairs derived from the 136 rankers.

– Run 9: the query set consists of 472 unique queries repeated following the
long-tailed distribution with u = 0.125. We exhaustively compare all 9, 180
distinct pairs derived from the 136 rankers.

– Run 10: the query set consists of 455 unique queries repeated following the
long-tailed distribution with u = 0.250. We exhaustively compare all 2, 415
distinct pairs derived from the first 70 rankers.

– Run 11: the query set consists of 283 unique queries repeated following
the long-tailed distribution with u = 0.020. We exhaustively compare all
9, 180 distinct pairs derived from the 136 rankers. To determine NDCG for
the ground truth we use the complete set of documents provided with the
dataset MSLR, i.e., no cut-off is used.

Realistic click model The scope of this set of runs is to evaluate how the stat-
pruning and stat-weight methods compare with the TDI baseline over long-tailed
query distributions with noisier clicks. We exhaustively compare all 9, 180 dis-
tinct pairs derived from the 136 rankers. The click model used is the realistic
model. The query distribution used is long-tailed. The query set consists of 283
unique queries repeated following the long-tailed distribution with u = 0.020,
see Figure 2 and Table 1 for reference. Users click on the top-10 results for each
query. The results compares the percentage of pairs for which the TDI, stat-
pruning and stat-weight methods correctly identified the better ranker.

– Run 12: to determine NDCG for the ground truth we calculate NDCG@10.
– Run 13: to determine NDCG for the ground truth we use the complete set

of documents provided with the dataset MSLR, i.e., no cut-off is used.

Improving Interleaved Methods with Statistical Hypothesis Testing 13

4 Improving the Overall Winner Decision

The research questions RQ1 and RQ2 are addressed by the experiments in Sec-
tions 3 and 5, here we want to focus on RQ3 which requires a deeper analysis.

In TDI, for each query in the dataset, a winner between two ranking functions
is estimated. The estimation is based on the number of interactions (clicks for
example) that prefer a ranking function or the other. In the interleaved result
list, an interaction with a document that was picked from the ranked list A (the
original ranked list produced by rankerA), shows a preference for rankerA and
vice versa for rankerB.

The reliability of each winner is not assessed. All the winners (i.e., all the
queries) are considered equal when aggregating the results to establish the overall
winning ranker (Equation 1).

This may include preferences that are obtained with few clicks or preferences
that are not strong enough given the number of clicks collected.

To mitigate this problem, this paper proposes two variations for the ∆AB

score: stat-pruning and stat-weight. They rely on an additional phase in the TDI
evaluation, which assigns to each query a credit inversely proportional to the
probability of obtaining by chance at least the same number of clicks, assuming
the two rankers are equivalent. This credit per query affects the overall winner
calculation. It should reduce the impact of queries with a weak winning ranker
leading to a more accurate overall winner estimation.

4.1 Statistical hypothesis testing

While performing our reproducibility research we observed two problems:

– some queries have many interactions, but a very weak preference for the
winning ranker

– some queries have a decent preference for the winning ranker but few inter-
actions (the long tail)

In classic TDI, each query has the same weight when calculating the ∆AB

score. The overall winner decision may be polluted by the aforementioned queries.
Previous works have explored the possibility of assigning a different credit to

each click [20]. The approach we suggest is to assign a different credit to each
query.

The idea is to exploit statistical hypothesis testing to estimate if the obser-
vations for a query are reliable and to what extent. This additional phase is
executed after the computation of ha and hb, and before the computation of the
∆AB score.

The theory behind our approach is statistical hypothesis testing [25]. A statis-
tical test verifies or contradicts a null hypothesis based on the collected samples.
A result has statistical significance when it is very unlikely to have occurred
given the null hypothesis [18].

14 Alessandro Benedetti and Anna Ruggero

The p-value of an observed result is the probability of obtaining a result at
least as extreme, given that the null hypothesis is true. The result is statistically
significant, by the standards of the study, when

p-value <= α

Such a scenario leads to the rejection of the null hypothesis and acceptance
of the alternate hypothesis. The significance level, denoted by α is assigned at
the beginning of a study [5].

Accordingly for this test, we need a null hypothesis, a p-value, and a signifi-
cance level.

Our null hypothesis is that the two ranking functions we are comparing are
equivalent and have the same chance to win in a query i.e. the probability of
both ranking functions winning is 0.5.

For each query:

– n is the total number of clicks collected
– the winning ranker is the ranker that collected more clicks
– k is the clicks collected by the winning ranker.
– p is 0.5 (null hypothesis).

Given we are limiting our evaluation to two ranking functions:

k ≥ n

2

When k = n
2 , there is a draw, the query doesn’t show any preference for the

ranking function since each ranker collects the same amount of clicks.
The p-value is calculated through a binomial distribution as the probability

of obtaining exactly that number of clicks k assuming the null hypothesis is true:

P (X = k) =

(
n

k

)
pk(1− p)n−k (2)

When k > n
2 , the query shows a preference for a ranking function. We are

testing whether the clicks are biased towards the winning ranking function, so a
single-tailed test is used.

The p-value is calculated through a binomial distribution as the probability,
for the winning model, to obtain at least that number of clicks k assuming the
null hypothesis is true:

P (X ≥ k) = 1− P (X < k)

= 1−
k−1∑
i=0

(
n

i

)
pi(1− p)n−i

(3)

4.2 Stat-pruning

The first approach we designed is the simplest and most aggressive: the statis-
tical significance of each query is determined by comparing the p-value with a

Improving Interleaved Methods with Statistical Hypothesis Testing 15

significance level α = 0.05. This is the standard threshold used in most statistical
tests.

If the p-value is below the threshold, the result is considered significant. The
queries not reaching significance are discarded from the ∆AB score calculation.

The downside of this approach is that is strictly coupled to the significance
level α hyper-parameter. The setting of this parameter may not be simple to
decide, other works explore this aspect [19,26].

4.3 Stat-weight

Let’s present for simplicity the original ∆AB score formula again (Equation 1):

∆AB =
wins(A) + 1

2 ties(A,B)

wins(A) + wins(B) + ties(A,B)
− 0.5

The credit associated with each win or tie is a constant 1.
The idea is to assign a different credit to each win and tie. This credit is the

estimated probability of the win/tie to have happened not by chance.

credit(qx) = 1− p-value(qx)

The p-value for a query qx that presents a tie is calculated with the Equa-
tion 2.

The p-value for a query qx that presents a win is calculated with the Equa-
tion 3 and it is normalised with a min-max normalization (min = 0 and max =
0.5) to be between 0 and 1.

The proposed updates to the ∆AB score formula are the following:

wins(A)⇒
wins(A)∑

a=0

credit(qa)

wins(B)⇒
wins(B)∑

b=0

credit(qb)

ties(A,B)⇒
ties(A,B)∑

t=0

credit(qt)

qa is in the query set showing a preference for the rankerA.
qb is in the query set showing a preference for the rankerB.
qt belongs to the query set showing a tie.

5 Results and Analysis

In this Section, we present and discuss the results of our experiments.

16 Alessandro Benedetti and Anna Ruggero

Table 5. Query distribution: uniform 1, 000 queries, click model: perfect model, 136
rankers (9, 180 pairs)

id NDCG clicks accuracy original-accuracy
1 complete top-10 0.852 0.898
2 complete complete 0.825 0.898
3 top-10 top-10 0.902 0.898

5.1 Replication

run-1 follows the same experimental setup, dataset, and parameters from the
original research, but it fails to replicate the originally recorded accuracy of TDI.

Also, the average ground truth NDCGs calculated for the rankers, don’t align
with the ones reported by the original paper (Table 6):

Table 6. complete NDCG, averaged over the 1000 queries

ranker NDCG original-paper NDCG
1 0.550 0.231
14 0.536 0.201
64 0.600 0.301
77 0.570 0.262
84 0.574 0.256
96 0.549 0.219
97 0.564 0.303
106 0.606 0.253
108 0.614 0.306
134 0.614 0.341

We thought that the difference could have been caused by a dis alignment
between the published paper and the original experiments NDCG and clicks
generation parameters used at the time. For these reasons we executed two
additional runs, trying to explain the possible causes of this failed replication.
The closer we got to the original recorded accuracy is with run-3, but not exactly
the same (see Table 5). Also, the monitored average NDCG@10 over the 1, 000
queries are closer but not exactly matching the original work ones (Table 7).
The random seed that drives the TDI interleaved-lists generation and the clicks
can have a part, but it can’t affect the ground truth NDCG scores.

After discussing with the authors of the paper, we could ascertain that the
NDCG formula used is the same as ours. However, we weren’t able to check the
input parameters since we couldn’t have access to the original paper code. Our
best guesses are therefore the following:

– NDCG: the published paper clearly specifies it is the complete NDCG, but
the original experiments maybe initially used it and then were updated to

Improving Interleaved Methods with Statistical Hypothesis Testing 17

Table 7. NDCG@10, averaged over the 1,000 queries

ranker NDCG@10 original-paper NDCG
1 0.195 0.231
14 0.179 0.201
64 0.294 0.301
77 0.246 0.262
84 0.239 0.256
96 0.194 0.219
97 0.234 0.303
106 0.295 0.253
108 0.306 0.306
134 0.333 0.341

use the NDCG@10 for the final reports. This could explain why NDCG@10
scores are much closer to the reported ones.

– Queries: the query set used is not the same as our runs i.e., not the first
distinct 1, 000 queries as occurring in the MSLR dataset rows. This could
explain why NDCG@10 scores are closer but not exactly the same as the
reported ones.

5.2 Uniform Query Distribution

Table 8. NDCG: top-10, clicks: top-10, click model: perfect model, 136 rankers (9, 180
pairs)

accuracy

id queries users TDI stat-pruning stat-weight
4 1 000 1 0.902 N/A 0.886
5 100 1 0.812 N/A 0.790
6 100 10 0.857 0.853 0.883

From Table 8, run-4 and run-5 show a better accuracy for the original TDI
method with a uniform distribution of 100 or 1, 000 queries if each query is
executed once. In these scenarios there are very few clicks per query, the accuracy
for stat-pruning is not available as it removes aggressively all the queries as
deemed not significant. stat-weight doesn’t shine as well: it has too few clicks
per query to work on. This is a little unrealistic for real-world use cases, even if
uniform. So run-6 explores what happens if the distribution is uniform and each
query is executed 10 times.

18 Alessandro Benedetti and Anna Ruggero

In this scenario, we start to see the benefits of the stat-weight approach
with a 2.6% increase in accuracy (it correctly guessed 239 additional pairs) in
comparison to the classic TDI.

Comparing run-5 and run-6 we notice that by increasing the number of
users running the queries uniformly, all the methods improve their accuracy and
converge more quickly. This is expected as we get more clicks per query and
it’s interesting to notice that stat-weight is able to better handle the additional
interactions discerning where they are reliable or not to identify the best ranker.

stat-weight was originally designed for long-tailed distributions, but the take
away from this set of runs is that it is quicker to converge and can perform
better than TDI also in uniform distributions, with the caveat that queries are
repeated more than once by the users.

stat-pruning showed to be generally too aggressive and it’s the worst in terms
of accuracy (using α = 0.05).

Table 9. NDCG: complete, clicks: complete, click model: perfect model, 136 rankers
(9, 180 pairs)

accuracy

id queries users TDI stat-pruning stat-weight
7 100 10 0.828 0.839 0.857

From Table 9, run-7 makes the task more difficult as the complete NDCG
presents less difference between the rankers, so it’s more challenging for the
interleaving methods to guess correctly. See Table 3 and Table 4 for NDCG
comparisons.

stat-weight demonstrated to be more sensitive in this difficult scenario iden-
tifying correctly 267 additional pairs.

5.3 Long-tailed Query Distribution

Table 10. NDCG: top-10, clicks: top-10, click model: perfect model

accuracy

id u rankers TDI stat-pruning stat-weight
8 0.020 136 0.880 0.860 0.897
9 0.125 136 0.892 0.900 0.904
10 0.250 70 0.904 0.910 0.911

From Table 10, run-8, run-9 and run-10 explore different long-tailed distri-
butions. Due to computational limits, we had to restrict the number of rankers

Improving Interleaved Methods with Statistical Hypothesis Testing 19

the closer we were getting to the original long-tailed-1 distribution. For this rea-
son, it’s not fair to compare the executions against each other and each must be
observed independently.

The steepest the long-tail, the better stat-pruning performs. This is expected
as we assume the long part of the tail to add uncertainty for TDI, an uncertainty
that is cut by the stat-pruning and mitigated by the stat-weight approach. This
confirms the intuition that statistical hypothesis testing improves the classic TDI
∆AB score accuracy in the long-tailed scenario.

Table 11. NDCG: complete, clicks: top-10, click model: perfect model, 136 rankers
(9180 pairs)

accuracy

id u rankers TDI stat-pruning stat-weight
11 0.020 136 0.827 0.817 0.837

From Table 11, run-11 explores again the harder problem of closer rankers
with the complete NDCG. We can see that stat-weight confirms its sensitivity
and it is able to identify correctly 91 additional pairs also in the long-tailed
scenario.

5.4 Realistic Click Model

Table 12. Query distribution: long-tailed u=0.020, clicks: top-10, click model: realistic
model, 136 rankers (9, 180 pairs)

accuracy

id NDCG TDI stat-pruning stat-weight
12 top-10 0.818 0.708 0.833
13 complete 0.782 0.693 0.795

From Table 12, run-12 introduces an additional challenge with the realis-
tic model that produces noisier and fewer clicks, so it’s more difficult for the
interleaving methods to guess correctly. stat-weight demonstrated to be robust
to noise with a 1.5% increase (137 additional pairs) in comparison to the clas-
sic TDI. Finally, run-13 tests the methods under an even more difficult situa-
tion with the complete NDCG. The overall scores across the three methods are
smaller, but the stat-weight keeps consistently the lead.

6 Conclusions And Future Directions

RQ1 has not been satisfied.

20 Alessandro Benedetti and Anna Ruggero

Replicating the original research turns to be challenging from many angles:
it was easy to align with the datasets but it required a substantial amount of
work to figure out the exact parameters used in the original runs and design and
develop from scratch the experiment code to cover all the necessary scenarios.

Unfortunately, it was not possible to exactly replicate the reported accuracy
for TDI due to missing information and code unavailability. After a discussion
with the authors of the paper, two hypotheses have been made: NDCG reported
as a complete NDCG was instead using a cut-off; the query set is different from
the one we used (which 1000 queries?).

RQ2 has been satisfied. We verified that it is possible to generalize the original
TDI evaluation to long-tailed query distributions with good accuracy.

RQ3 has been satisfied. The reproducibility work brought many interesting
insights and we developed a new set of statistical-based ∆AB score methods:
stat-pruning and stat-weight. Applying statistical hypothesis testing to assign a
credit score to each of the queries in the evaluations has shown to be promising
because adapts quite well to various real-world scenarios and doesn’t add a
substantial overhead in terms of performance.

stat-weight performs consistently well across realistic uniform and long-tailed
query distributions, it’s sensitive to small differences between the rankers and it
is robust to noise.

stat-pruning performs well in some realistic scenarios, but it felt generally
too aggressive and too coupled with the hyper-parameter α that can be tricky
to tune.

We validated the intuitions of our analysis and our proposed methods using
experiments based on a simulation framework developed from scratch.

Applying stat-weight to other interleaved methods in real-world scenarios is
an interesting direction for future works. Also calculating the query credit with
different statistical approaches and normalization could be explored. Finally, it
would be interesting to run experiments with bigger numbers and many seeds
to see how the different evaluation methods perform.

A Experiment framework code

A.1 Github Repository

https://github.com/SeaseLtd/statistical-interleaving

A.2 Datasets

MSLR long-tail-1

A.3 Runs

Instructions to replicate the runs are in the README.
The detailed output of each run is in: output

https://github.com/SeaseLtd/statistical-interleaving
http://research.microsoft.com/en-us/projects/mslr/default.aspx.
https://github.com/SeaseLtd/statistical-interleaving/tree/main/data/long-tail-1
https://github.com/SeaseLtd/statistical-interleaving/tree/main/runs_output

Improving Interleaved Methods with Statistical Hypothesis Testing 21

References

1. Chapelle, O., Joachims, T., Radlinski, F., Yue, Y.: Large-scale validation and anal-
ysis of interleaved search evaluation. ACM Transactions on Information Systems
(TOIS) 30(1), 1–41 (2012)

2. Chuklin, A., Serdyukov, P., De Rijke, M.: Click model-based information retrieval
metrics. In: Proceedings of the 36th international ACM SIGIR conference on Re-
search and development in information retrieval. pp. 493–502 (2013)

3. Cleverdon, C.W., Mills, J., Keen, E.M.: Factors determining the performance of
indexing systems,(volume 1: Design). Cranfield: College of Aeronautics 28 (1966)

4. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: Proceedings of the 2008 international conference on
web search and data mining. pp. 87–94 (2008)

5. Dalgaard, P.: Power and the computation of sample size. In: Introductory Statistics
with R, pp. 155–162. Springer (2008)

6. Guo, F., Li, L., Faloutsos, C.: Tailoring click models to user goals. In: Proceedings
of the 2009 workshop on Web Search Click Data. pp. 88–92 (2009)

7. Guo, F., Liu, C., Wang, Y.M.: Efficient multiple-click models in web search. In:
Proceedings of the second acm international conference on web search and data
mining. pp. 124–131 (2009)

8. He, J., Zhai, C., Li, X.: Evaluation of methods for relative comparison of retrieval
systems based on clickthroughs. In: Proceedings of the 18th ACM conference on
Information and knowledge management. pp. 2029–2032 (2009)

9. Hofmann, K., Behr, F., Radlinski, F.: On caption bias in interleaving experiments.
In: Proceedings of the 21st ACM international conference on Information and
knowledge management. pp. 115–124 (2012)

10. Hofmann, K., Whiteson, S., De Rijke, M.: A probabilistic method for inferring
preferences from clicks. In: Proceedings of the 20th ACM international conference
on Information and knowledge management. pp. 249–258 (2011)

11. Hofmann, K., Whiteson, S., Rijke, M.D.: Fidelity, soundness, and efficiency of in-
terleaved comparison methods. ACM Transactions on Information Systems (TOIS)
31(4), 1–43 (2013)

12. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)

13. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant
documents. In: ACM SIGIR Forum. vol. 51, pp. 243–250. ACM New York, NY,
USA (2017)

14. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 133–142 (2002)

15. Joachims, T., et al.: Evaluating retrieval performance using clickthrough data.
(2003)

16. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Using historical click data
to increase interleaving sensitivity. In: Proceedings of the 22nd ACM international
conference on Information & Knowledge Management. pp. 679–688 (2013)

17. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Generalized team draft
interleaving. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. pp. 773–782 (2015)

18. Myers, J.L., Well, A.D., Lorch, J.: Developing the fundamentals of hypothesis
testing using the binomial distribution. Research Design and Statistical Analysis
pp. 65–90 (2010)

22 Alessandro Benedetti and Anna Ruggero

19. Queen, J.P., Quinn, G.P., Keough, M.J.: Experimental design and data analysis
for biologists. Cambridge university press (2002)

20. Radlinski, F., Craswell, N.: Optimized interleaving for online retrieval evaluation.
In: Proceedings of the sixth ACM international conference on Web search and data
mining. pp. 245–254 (2013)

21. Radlinski, F., Kurup, M., Joachims, T.: How does clickthrough data reflect re-
trieval quality? In: Proceedings of the 17th ACM conference on Information and
knowledge management. pp. 43–52 (2008)

22. Schuth, A., Bruintjes, R.J., Buüttner, F., van Doorn, J., Groenland, C., Oosterhuis,
H., Tran, C.N., Veeling, B., van der Velde, J., Wechsler, R., et al.: Probabilistic
multileave for online retrieval evaluation. In: Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
pp. 955–958 (2015)

23. Schuth, A., Hofmann, K., Radlinski, F.: Predicting search satisfaction metrics with
interleaved comparisons proceedings of the 38th international acm sigir conference
on research and development in information retrieval, santiago, chile, august 9–13,
2015, ricardo a. ACM (2015)

24. Schuth, A., Sietsma, F., Whiteson, S., Lefortier, D., de Rijke, M.: Multileaved com-
parisons for fast online evaluation. In: Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management. pp. 71–80
(2014)

25. Sirkin, R.M.: Statistics for the social sciences. Sage (2006)
26. Sproull, N.L.: Handbook of research methods: A guide for practitioners and stu-

dents in the social sciences. Scarecrow press (2002)
27. Yue, Y., Gao, Y., Chapelle, O., Zhang, Y., Joachims, T.: Learning more powerful

test statistics for click-based retrieval evaluation. In: Proceedings of the 33rd in-
ternational ACM SIGIR conference on Research and development in information
retrieval. pp. 507–514 (2010)

	Stat-weight: Improving the Estimator of Interleaved Methods Outcomes with Statistical Hypothesis Testing

