Skip to main content

Uncertainty Quantification for Text Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13982))

Abstract

This half-day tutorial introduces modern techniques for practical uncertainty quantification specifically in the context of multi-class and multi-label text classification. First, we explain the usefulness of estimating aleatoric uncertainty and epistemic uncertainty for text classification models. Then, we describe several state-of-the-art approaches to uncertainty quantification and analyze their scalability to big text data: Virtual Ensemble in GBDT, Bayesian Deep Learning (including Deep Ensemble, Monte-Carlo Dropout, Bayes by Backprop, and their generalization Epistemic Neural Networks), as well as Evidential Deep Learning (including Prior Networks and Posterior Networks). Next, we discuss typical application scenarios of uncertainty quantification in text classification (including in-domain calibration, cross-domain robustness, and novel class detection). Finally, we list popular performance metrics for the evaluation of uncertainty quantification effectiveness in text classification. Practical hands-on examples/exercises are provided to the attendees for them to experiment with different uncertainty quantification methods on a few real-world text classification datasets such as CLINC150.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://paperswithcode.com/dataset/clinc150.

  2. 2.

    https://sites.google.com/view/uq-tutorial.

  3. 3.

    https://nlp.stanford.edu/IR-book/information-retrieval-book.html.

  4. 4.

    https://www.python.org/.

  5. 5.

    https://jupyter.org/.

  6. 6.

    https://neurips.cc/Conferences/2020/Schedule?showEvent=16649.

  7. 7.

    https://github.com/IBM/UQ360; https://uq360.mybluemix.net/.

  8. 8.

    https://sites.google.com/view/uncertainty-nlp.

References

  1. Abdar, M.: A review of uncertainty quantification in deep learning: techniques. Appli. Challen. Inf. Fusion 76, 243–297 (2021). https://doi.org/10.1016/j.inffus.2021.05.008

  2. Arora, G., Jain, C., Chaturvedi, M., Modi, K.: HINT3: Raising the bar for Intent Detection in the Wild. In: Proceedings of the First Workshop on Insights from Negative Results in NLP, pp. 100–105. Association for Computational Linguistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.insights-1.16

  3. Arora, U., Huang, W., He, H.: Types of out-of-distribution texts and how to detect them. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10687–10701. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic (Nov 2021). https://doi.org/10.18653/v1/2021.emnlp-main.835

  4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight Uncertainty in neural network. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 1613–1622. PMLR (Jun 2015)

    Google Scholar 

  5. Cerutti, F., Kaplan, L.M., Kimmig, A., Şensoy, M.: Handling epistemic and aleatory uncertainties in probabilistic circuits. Mach. Learn. 111(4), 1259–1301 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerutti, F., Kaplan, L.M., Sensoy, M.: Evidential reasoning and learning: a survey. In: Thirty-First International Joint Conference on Artificial Intelligence, vol. 6, pp. 5418–5425 (Jul 2022). https://doi.org/10.24963/ijcai.2022/760

  7. Charpentier, B., Zügner, D., Günnemann, S.: Posterior network: uncertainty estimation without ood samples via density-based pseudo-counts. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1356–1367. Curran Associates, Inc. (2020)

    Google Scholar 

  8. Foong, A.Y.K., Li, Y., Hernández-Lobato, J.M., Turner, R.E.: ’In-Between’ Uncertainty in Bayesian Neural Networks (Jun 2019). https://doi.org/10.48550/arXiv.1906.11537

  9. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 1050–1059. PMLR (Jun 2016)

    Google Scholar 

  10. GGawlikowski, J., et al.: A Survey of Uncertainty in Deep Neural Networks (Jan 2022). https://doi.org/10.48550/arXiv.2107.03342

  11. Ghosh, S., et al.: Uncertainty quantification 360: a hands-on tutorial. In: 5th Joint International Conference on Data Science & Management of Data (9th ACM IKDD CODS and 27th COMAD), CODS-COMAD 2022, pp. 333–335. Association for Computing Machinery, New York (Jan 2022). https://doi.org/10.1145/3493700.3493767

  12. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 1321–1330. JMLR.org, Sydney, NSW, Australia (Aug 2017)

    Google Scholar 

  13. Guo, Z., et al.: A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning (Jun 2022). https://doi.org/10.48550/arXiv.2206.05675

  14. Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3

  15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  16. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  17. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian Active Learning for Classification and Preference Learning (Dec 2011). https://doi.org/10.48550/arXiv.1112.5745

  18. Hu, Y., Khan, L.: Uncertainty-aware reliable text classification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD 2021, pp. 628–636. Association for Computing Machinery, New York (Aug 2021). https://doi.org/10.1145/3447548.3467382

  19. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021). https://doi.org/10.1007/s10994-021-05946-3

  20. Kabir, H.M.D., Khosravi, A., Hosen, M.A., Nahavandi, S.: Neural network-based uncertainty quantification: a survey of methodologies and applications. IEEE Access 6, 36218–36234 (2018). https://doi.org/10.1109/ACCESS.2018.2836917

  21. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  22. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  23. Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope prediction. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1311–1316. Association for Computational Linguistics, Hong Kong, China (Nov 2019). https://doi.org/10.18653/v1/D19-1131

  24. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017). https://doi.org/10.1038/s41598-017-17876-z

  25. Li, Y., Chen, J., Feng, L.: Dealing with uncertainty: a survey of theories and practices. IEEE Trans. Knowl. Data Eng. 25(11), 2463–2482 (2013). https://doi.org/10.1109/TKDE.2012.179

  26. Lu, X., et al.: Robustness of Epinets against Distributional Shifts (Jun 2022). https://doi.org/10.48550/arXiv.2207.00137

  27. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  28. Malinin, A., Prokhorenkova, L., Ustimenko, A.: Uncertainty in gradient boosting via ensembles. In: International Conference on Learning Representations (Mar 2021)

    Google Scholar 

  29. Mena, J., Pujol, O., Vitrià, J.: A survey on uncertainty estimation in deep learning classification systems from a bayesian perspective. ACM Comput. Sur. 54(9), 193:1–193:35 (2021). https://doi.org/10.1145/3477140

  30. Osband, I., et al.: Epistemic Neural Networks (Oct 2022). https://doi.org/10.48550/arXiv.2107.08924

  31. Ovadia, Y., et al.: Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  32. Psaros, A.F., Meng, X., Zou, Z., Guo, L., Karniadakis, G.E.: Uncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Comparisons (Jan 2022). https://doi.org/10.48550/arXiv.2201.07766

  33. Rawat, M., Hebbalaguppe, R., Vig, L.: PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug and Play Data Augmentation (Oct 2021). https://doi.org/10.48550/arXiv.2111.00506

  34. Sensoy, M., Kaplan, L., Cerutti, F., Saleki, M.: Uncertainty-Aware Deep Classifiers Using Generative Models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(04), pp. 5620–5627 (2020). https://doi.org/10.1609/aaai.v34i04.6015

  35. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential Deep Learning to Quantify Classification Uncertainty. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  36. Siddhant, A., Lipton, Z.C.: Deep bayesian active learning for natural language processing: results of a large-scale empirical study. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2904–2909. Association for Computational Linguistics, Brussels, Belgium (Oct 2018). https://doi.org/10.18653/v1/D18-1318

  37. Ulmer, D.: A Survey on Evidential Deep Learning For Single-Pass Uncertainty Estimation (Dec 2021). https://doi.org/10.48550/arXiv.2110.03051

  38. Van Landeghem, J., Blaschko, M., Anckaert, B., Moens, M.F.: Benchmarking scalable predictive uncertainty in text classification. IEEE Access 10, 43703–43737 (2022). https://doi.org/10.1109/ACCESS.2022.3168734

    Article  Google Scholar 

  39. Widmann, D., Lindsten, F., Zachariah, D.: Calibration tests in multi-class classification: a unifying framework. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  40. Widmann, D., Lindsten, F., Zachariah, D.: Calibration tests beyond classification. In: International Conference on Learning Representations (2021)

    Google Scholar 

  41. Zhang, H., Xu, H., Zhao, S., Zhou, Q.: Learning Discriminative Representations and Decision Boundaries for Open Intent Detection (Jul 2022). https://doi.org/10.48550/arXiv.2203.05823

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dell Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Sensoy, M., Makrehchi, M., Taneva-Popova, B. (2023). Uncertainty Quantification for Text Classification. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13982. Springer, Cham. https://doi.org/10.1007/978-3-031-28241-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28241-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28240-9

  • Online ISBN: 978-3-031-28241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics