Skip to main content

Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering

  • Conference paper
  • First Online:
Book cover Advances in Information Retrieval (ECIR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13980))

Included in the following conference series:

Abstract

To date, graph collaborative filtering (CF) strategies have been shown to outperform pure CF models in generating accurate recommendations. Nevertheless, recent works have raised concerns about fairness and potential biases in the recommendation landscape since unfair recommendations may harm the interests of Consumers and Producers (CP). Acknowledging that the literature lacks a careful evaluation of graph CF on CP-aware fairness measures, we initially evaluated the effects on CP-aware fairness measures of eight state-of-the-art graph models with four pure CF recommenders. Unexpectedly, the observed trends show that graph CF solutions do not ensure a large item exposure and user fairness. To disentangle this performance puzzle, we formalize a taxonomy for graph CF based on the mathematical foundations of the different approaches. The proposed taxonomy shows differences in node representation and neighbourhood exploration as dimensions characterizing graph CF. Under this lens, the experimental outcomes become clear and open the doors to a multi-objective CP-fairness analysis (Codes are available at: https://github.com/sisinflab/ECIR2023-Graph-CF.).

Authors are listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the rest of the paper, when no confusion arises, we will refer to C-fairness with user fairness, to P-fairness with item exposure, and to their combination as CP-fairness.

  2. 2.

    A solution is Pareto optimal if no other solution can improve an objective without hurting the other one.

  3. 3.

    The point that simultaneously minimizes (maximizes) all the metrics.

References

  1. Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: RecSys, pp. 42–46, ACM (2017)

    Google Scholar 

  2. Anelli, V.W., et al.: Elliot: A comprehensive and rigorous framework for reproducible recommender systems evaluation. In: SIGIR, pp. 2405–2414, ACM (2021)

    Google Scholar 

  3. Anelli, V.W., et al.: How neighborhood exploration influences novelty and diversity in graph collaborative filtering. In: MORS@RecSys, CEUR Workshop Proceedings, vol. 3268, CEUR-WS.org (2022)

    Google Scholar 

  4. Anelli, V.W., et al.: Reshaping graph recommendation with edge graph collaborative filtering and customer reviews. In: DL4SR@CIKM, CEUR Workshop Proceedings, vol. 3317, CEUR-WS.org (2022)

    Google Scholar 

  5. van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. CoRR abs/1706.02263 (2017)

    Google Scholar 

  6. Boltsis, G., Pitoura, E.: Bias disparity in graph-based collaborative filtering recommenders. In: SAC, pp. 1403–1409, ACM (2022)

    Google Scholar 

  7. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, pp. 3438–3445, AAAI Press (2020)

    Google Scholar 

  8. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: A linear residual graph convolutional network approach. In: AAAI, pp. 27–34, AAAI Press (2020)

    Google Scholar 

  9. Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogín, A., Noia, T.D.: A flexible framework for evaluating user and item fairness in recommender systems. User Model. User Adapt. Interact. 31(3), 457–511 (2021)

    Article  Google Scholar 

  10. Ekstrand, M.D., Riedl, J., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum. Comput. Interact. 4(2), 175–243 (2011)

    Article  Google Scholar 

  11. Fu, Z., et al.: Fairness-aware explainable recommendation over knowledge graphs. In: SIGIR, pp. 69–78, ACM (2020)

    Google Scholar 

  12. He, R., McAuley, J.J.: Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, pp. 507–517, ACM (2016)

    Google Scholar 

  13. He, R., McAuley, J.J.: VBPR: visual bayesian personalized ranking from implicit feedback. In: AAAI, pp. 144–150, AAAI Press (2016)

    Google Scholar 

  14. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639–648, ACM (2020)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (Poster), OpenReview.net (2017)

    Google Scholar 

  16. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  17. Li, C., Hsu, C., Zhang, Y.: Fairsr: Fairness-aware sequential recommendation through multi-task learning with preference graph embeddings. ACM Trans. Intell. Syst. Technol. 13(1), 16:1–16:21 (2022)

    Google Scholar 

  18. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: ICML, Proceedings of Machine Learning Research, vol. 97, pp. 4212–4221, PMLR (2019)

    Google Scholar 

  19. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: Fairmatch: A graph-based approach for improving aggregate diversity in recommender systems. In: UMAP, pp. 154–162, ACM (2020)

    Google Scholar 

  20. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: A graph-based approach for mitigating multi-sided exposure bias in recommender systems. ACM Trans. Inf. Syst. 40(2), 32:1–32:31 (2022)

    Google Scholar 

  21. Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., He, X.: Ultragcn: Ultra simplification of graph convolutional networks for recommendation. In: CIKM, pp. 1253–1262, ACM (2021)

    Google Scholar 

  22. Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: Cpfair: Personalized consumer and producer fairness re-ranking for recommender systems. In: SIGIR, pp. 770–779, ACM (2022)

    Google Scholar 

  23. Ni, J., Li, J., McAuley, J.J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: EMNLP/IJCNLP (1), pp. 188–197, Association for Computational Linguistics (2019)

    Google Scholar 

  24. Paparella, V.: Pursuing optimal trade-off solutions in multi-objective recommender systems. In: RecSys, pp. 727–729, ACM (2022)

    Google Scholar 

  25. Paudel, B., Christoffel, F., Newell, C., Bernstein, A.: Updatable, accurate, diverse, and scalable recommendations for interactive applications. ACM Trans. Interact. Intell. Syst. 7(1), 1:1–1:34 (2017)

    Google Scholar 

  26. Peng, S., Sugiyama, K., Mine, T.: SVD-GCN: A simplified graph convolution paradigm for recommendation. In: CIKM, pp. 1625–1634, ACM (2022)

    Google Scholar 

  27. Rahman, T.A., Surma, B., Backes, M., Zhang, Y.: Fairwalk: Towards fair graph embedding. In: IJCAI, pp. 3289–3295, ijcai.org (2019)

    Google Scholar 

  28. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461, AUAI Press (2009)

    Google Scholar 

  29. Rendle, S., Krichene, W., Zhang, L., Anderson, J.R.: Neural collaborative filtering vs. matrix factorization revisited. In: RecSys, pp. 240–248, ACM (2020)

    Google Scholar 

  30. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: CSCW, pp. 175–186, ACM (1994)

    Google Scholar 

  31. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295, ACM (2001)

    Google Scholar 

  32. Shani, G., Gunawardana, A.: Evaluating Recommendation Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_8

    Chapter  Google Scholar 

  33. Shen, Y., et al.: How powerful is graph convolution for recommendation? In: CIKM, pp. 1619–1629, ACM (2021)

    Google Scholar 

  34. Sun, J., Cheng, Z., Zuberi, S., Pérez, F., Volkovs, M.: HGCF: hyperbolic graph convolution networks for collaborative filtering. In: WWW, pp. 593–601, ACM / IW3C2 (2021)

    Google Scholar 

  35. Sun, J., et al.:A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. In: KDD, pp. 2030–2039, ACM (2020)

    Google Scholar 

  36. Tao, Z., Wei, Y., Wang, X., He, X., Huang, X., Chua, T.: MGAT: multimodal graph attention network for recommendation. Inf. Process. Manag. 57(5), 102277 (2020)

    Article  Google Scholar 

  37. Vargas, S.: Novelty and diversity enhancement and evaluation in recommender systems and information retrieval. In: SIGIR, pp. 1281, ACM (2014)

    Google Scholar 

  38. Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: RecSys, pp. 109–116, ACM (2011)

    Google Scholar 

  39. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (Poster), OpenReview.net (2018)

    Google Scholar 

  40. Voit, M.M., Paulheim, H.: Bias in knowledge graphs - an empirical study with movie recommendation and different language editions of dbpedia. In: LDK, OASIcs, vol. 93, pp. 14:1–14:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  41. Wang, N., Lin, L., Li, J., Wang, H.: Unbiased graph embedding with biased graph observations. In: WWW, pp. 1423–1433, ACM (2022)

    Google Scholar 

  42. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network for recommendation. In: KDD, pp. 950–958, ACM (2019)

    Google Scholar 

  43. Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174, ACM (2019)

    Google Scholar 

  44. Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001–1010, ACM (2020)

    Google Scholar 

  45. Wang, Y., Tang, S., Lei, Y., Song, W., Wang, S., Zhang, M.: Disenhan: Disentangled heterogeneous graph attention network for recommendation. In: CIKM, pp. 1605–1614, ACM (2020)

    Google Scholar 

  46. Wu, J., et al.: Disenkgat: Knowledge graph embedding with disentangled graph attention network. In: CIKM, pp. 2140–2149, ACM (2021)

    Google Scholar 

  47. Wu, J., et al.: Self-supervised graph learning for recommendation. In: SIGIR, pp. 726–735, ACM (2021)

    Google Scholar 

  48. Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., Wang, M.: Learning fair representations for recommendation: A graph-based perspective. In: WWW, pp. 2198–2208, ACM / IW3C2 (2021)

    Google Scholar 

  49. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: WSDM, pp. 153–162, ACM (2016)

    Google Scholar 

  50. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: KDD, pp. 974–983, ACM (2018)

    Google Scholar 

  51. Zhao, M., et al.: Investigating accuracy-novelty performance for graph-based collaborative filtering. In: SIGIR, pp. 50–59, ACM (2022)

    Google Scholar 

  52. Zheng, Y., Gao, C., Chen, L., Jin, D., Li, Y.: DGCN: diversified recommendation with graph convolutional networks. In: WWW, pp. 401–412, ACM / IW3C2 (2021)

    Google Scholar 

  53. Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., Hu, X.: Towards deeper graph neural networks with differentiable group normalization. In: NeurIPS (2020)

    Google Scholar 

  54. Zhu, J., et al.: BARS: towards open benchmarking for recommender systems. In: SIGIR, pp. 2912–2923, ACM (2022)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the following projects: IPZS-PRJ4_IA_NORMATIVO, Codice Pratica VHRWPD7 - CUP B97I19000980007 - COR 1462424 ERP 4.0, Grant Agreement Number 101016956 H2020 PASSEPARTOUT, Secure Safe Apulia, Codice Pratica 3PDW2R7 SERVIZI LOCALI 2.0, MISE CUP: I14E20000020001 CTEMT - Casa delle Tecnologie Emergenti Comune di Matera, PON ARS01_00876 BIO-D, CT_FINCONS_II.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniele Malitesta or Claudio Pomo .

Editor information

Editors and Affiliations

A Experimental Settings and Protocols

A Experimental Settings and Protocols

Datasets. As a pre-processing stage, for each dataset, we randomly sample 60k interactions and drop users and items with less than five interactions to avoid the cold-start effect [12, 13]. The final dataset statistics are: (1) Baby has 5,842 users, 7,925 items, 35,475 interactions; (2) Boys & Girls has 3,042 users, 12,912 items, 35,762 interactions; (3) Men has 3,909 users, 27,656 items, 51,519 interactions.

Reproducibility. Datasets are split using the 70/10/20 train/validation/test hold-out strategy. Baselines are trained through grid search (48 explored configurations), with a batch size of 256 and 400 epochs. Datasets and codes (implemented with Elliot [2]) are available at this link.

Evaluation. As for the overall accuracy, we use the recall (Recall@k) and the normalized discounted cumulative gain (nDCG@k). Concerning the item exposure, we focus on: (1) item novelty [37, 38] through the expected free discovery (EFD@k) measuring the expected portion of relevantly-recommended items that have already been seen by the users; (2) item diversity [32] with the 1’s complement of the Gini index (Gini@k), a statistical dispersion measure which estimates how a model suggests heterogeneous items to users; (3) the average percentage of items from the long-tail (APLT@k) which are recommended in users’ lists [1] to calculate recommendation’s bias towards popular items. User fairness indicates how equally each user group receives accurate recommendations. Users are split into quartiles based on the number of items they interacted with. We then measure UMADrat@k and the UMADrank@k [9], where the former stands for the average deviation in the predicted ratings among users groups, while the latter represents the average deviation in the recommendation accuracy (calculated in terms of nDCG@k) among users groups. The best hyper-parameter configurations are found by considering Recall@20 on the validation.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anelli, V.W., Deldjoo, Y., Di Noia, T., Malitesta, D., Paparella, V., Pomo, C. (2023). Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13980. Springer, Cham. https://doi.org/10.1007/978-3-031-28244-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28244-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28243-0

  • Online ISBN: 978-3-031-28244-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics