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1 HES SO, Valais, Sierre, Switzerland
{gianluca.rizzo,mina.dinani}@hevs.ch
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Abstract. The rationale behind the ever increasing combined adoption
of Artificial Intelligence and Internet of Things (IoT) technologies in the
industry lies in its potential for improving resource efficiency of the man-
ufacturing process, reducing capital and operational expenditures while
minimizing its carbon footprint. Nonetheless, the synergetic application
of these technologies is hampered by several challenges related to the
complexity, heterogeneity and dynamicity of industrial scenarios. Among
these, a key issue is how to reliably deliver target levels of data quality
and veracity, while effectively supporting a heterogeneous set of appli-
cations and services, ensuring scalability and adaptability in dynamic
settings. In this paper we perform a first step towards addressing this
issue. We outline ABIDI, an innovative and comprehensive Industrial IoT
reference architecture, enabling context-aware and veracious data ana-
lytics, as well as automated knowledge discovery and reasoning. ABIDI
is based on the dynamic selection of the most efficient IoT, network-
ing and cloud/edge technologies for different scenarios, and on an edge
layer that efficiently supports distributed learning, inference and decision
making, enabling the development of real-time analysis, monitoring and
prediction applications. We exemplify our approach on a smart building
use case, outlining the key design and implementation steps which our
architecture implies.
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1 Introduction

In recent years, the automation of industrial processes has taken a step forward
towards a more fine-grained control and actuation with the widespread adop-
tion of technologies, such as Industrial Internet of Things (IIoT) and Artificial
Intelligence, that propel what is being called the fourth industrial revolution,
or Industry 4.0 [1,2]. The main idea underlying Industry 4.0 is to collect large
amounts of data at every stage of the production process, and to exploit them
to make automated decisions as informed as possible, in order to reach the pro-
duction goals in the most efficient way, while reducing or eliminating the need
for human intervention. Such approach opens up countless new challenges in
IIoT. Among these, how to optimally deploy sensors in a complex industrial
machinery, in order to detect variations in the state of the system and enable
targeted, proactive interventions and maintenance; how to transmit IIoT data in
a reliable and energy-efficient way; how to effectively address potential security
and privacy issues of cloud computing; how to implement reliable and real-time
distributed decision making, moving the computing load to the edge of the net-
work and within IIoT systems; how to efficiently process IIoT data streams with
high variety, volume, and velocity; and how to flexibly support a heterogeneous
set of applications, services, prediction models and visualization tools that pro-
vide information to stakeholders. The sheer amount and heterogeneity of data
available in large IIoT systems amplify these challenges, in terms of scalability
and information integration.

Some of these issues can be addressed by introducing computing nodes phys-
ically close to where data is produced [3,4]. These devices, which form what is
called the edge layer, allow shifting the computing load away from the cloud,
reducing latency of computing tasks, relieving IIoT systems from much of the
computing load due to data pre-processing, but also of more complex tasks such
as anomaly detection, or training and execution of machine learning models.

The modularity of this approach and the distribution of the computing load
has several advantages. Among these, it allows alleviating the burden on the cen-
tralized part of the infrastructure, in particular for time-sensitive applications.
Moreover, it enables processing information closer to the source makes it possible
to perform computations without transmitting sensitive information throughout
the entire network. In general, moving the computation to the edge improves the
computational performance and the communication latency and robustness [5].
Edge nodes can also add context to the data collected, thus enabling informed
decisions pertaining to the part of the network to which they are connected.

However, this novel paradigm also introduces several new challenges. First,
there is no clear consensus on how an heterogeneous edge-based architecture
should be structured, in order to efficiently support the above mentioned ser-
vices in an IIoT environment [6]. Edge nodes may be heterogeneous, and have
limited resources, making scalability and efficient real time orchestration a key
issue in real scenarios. The sensing, communication and computing infrastruc-
ture needs to be resilient to different types of faults and service disruptions.
Thus, it must be designed and managed by taking into account reliability and
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service availability requirements, in order to deliver the target levels of service
in case of hardware/software failures. New learning paradigms, and in general
new decentralized algorithmic patterns, need to be developed and efficiently sup-
ported by the edge/cloud infrastructure to fully exploit the possibilities offered
by the availability of large data streams. To the best of our knowledge, most IIoT
architectures are not edge-based [7,8], and very few edge-based IoT architectures
have been proposed so far. Debauche et al. propose an edge infrastructure to
deploy microservices and AI applications at the edge layer, which is used for
IoT applications in agriculture [9]. Guimarães et al. propose an edge-based IoT
architecture to monitor industrial nodes [10]. These architectures are however
tailored for a narrow, specific application domain, and though they demonstrate
the potential of edge computing in IIoT, they do not specify how to generalize
their approaches to other domains and applications.

To achieve the goal of designing a general edge-based IoT architecture, in this
work we outline ABIDI, a framework for context-aware and veracious data ana-
lytics with automated knowledge discovery and reasoning for IIoT. The ABIDI
framework encompasses the entire IIoT stack, from the devices to the edge, and
to the cloud or central infrastructure, where the application performs the desired
computation. The goal of this framework is to enable the efficient and reliable
collection of data and the development of AI applications that can be seam-
lessly deployed on a variety of IIoT scenarios. This is achieved by designing an
IIoT architecture whose efficiency depends on both the integration between its
modules and the optimization within each module.

In particular, we enable improvements of network performance and reliabil-
ity by designing a methodology to select the best communication technologies in
different contexts, and by proposing an IIoT network architecture which allows
reducing latency and energy consumption while easing integration with upper
layers. We propose an edge architecture that enables the AI-based IIoT systems,
distributing the computation between the cloud/central infrastructure and edge
nodes transparently to the application developers. We introduce new privacy-
preserving, fully distributed and scalable learning schemes which do not need
any parameter server and benefit from node mobility. We further develop visu-
alization tools for data quality assessment that provide insight on the structure,
contextual properties and dependencies present in the data streams and thus
assist in the development of case dependent pre-processing methods, and we
implement energy load prediction models for real world use cases.

The paper is organized as follows. In Sect. 2 we outline the architecture of
our framework, we describe our approaches to the implementation of its main
functional components. In Sect. 3 we present an application of our framework to
a real world case. Finally, Sect. 4 discusses some of the key open research issues
that our approach implies, and Sect. 5 presents our main conclusions.
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2 The ABIDI Framework

A schematic representation of the overall architecture of the ABIDI framework
is presented in Fig. 1. It is divided into three main layers: 1) the IoT layer,
encompassing the IoT devices and the communication network; 2) the edge layer,
providing low-latency decision making for IIoT devices and end user devices; and
3) the cloud layer, composed by a big data processing level, a data analysis level
focusing on prediction of future events and patterns, and an application level.

Fig. 1. A high-level representation of the architecture of the ABIDI framework.

IoT Layer. A first key component of the ABIDI framework at the IoT layer
is a methodology for the selection of the most appropriate wireless communi-
cation technology (in terms of resource efficiency, but also of reliability and
QoS support) for each use case or final application. Another important element
of the ABIDI IoT layer is the use of energy harvesting techniques to power
IIoT devices, taking advantage of the many energy sources typically available at
industrial facilities.

Edge Layer. It is typically composed by an heterogeneous set of autonomous
computing and communication devices, such as gateways, industry robots, wire-
less access points and cellular base stations. This layer is responsible for several
functionalities related to data quality : 1) collection, aggregation and contextu-
alization of the data coming from IIoT environments; 2) aggregation/real time
monitoring and collection of metrics about data quality, such as data integrity,
consistency, accuracy, completeness, validity, uniqueness and timeliness; 3) data
creation (e.g. auto-filling values in forms, automatic extraction of data) and data
enrichment; 4) data maintenance (reactive: data correction; proactive: business
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rules) and data unification (matching and deduplication); and 5) (in synergy
with cloud) data protection (e.g. identification of sensitive data, detection of
fraudulent behavior) and data retirement (end of life).

Given the tight resource constraints of IoT devices, another key role of the
edge layer is the implementation of computation offloading services. Offloading
computation (and power consumption) intensive tasks to the edge enables faster
decision making of applications running at the edge (thus improving capability
to handle latency-sensitive applications), and it saves energy in IoT devices,
extending their lifetime.

With respect to the IIoT layer, edge devices implement IIoT and network
coordination functions in a self-organized and autonomous manner. This includes
enabling IoT integration by acting as gateways for local IoT systems, and joint
management of IoT, network and edge resources. Such coordinated control has
as its main goals to enable the delivery of the QoS required by the different
verticals and applications (such as the support for latency-sensitive applications),
and to implement reactive (and possibly proactive) schemes for ensuring service
continuity in case of disruptions.

For what concerns the use of ML and data intensive strategies (for the imple-
mentation of ABIDI platform applications as well as for the management of the
platform itself) the edge layer plays a double role. On one side, it implements
mechanisms for model training which are close to data and thus resource efficient
and context aware. In addition, it executes local machine learning prediction
models. With this respect, one of the key roles of the edge layer is to enable
the implementation of learning architectures which are able to provide high lev-
els of data security and privacy preservation, of scalability (with respect to both
participating systems and of applications) and of resiliency to infrastructure fail-
ures. Indeed these features are critical in present day IIoT scenarios in which
data (as well as computing resources) are spread across an ever growing number
of heterogeneous devices, and in which harnessing locally available devices, even
in an opportunistic manner, is key to achieve high levels of QoS (e.g. in terms
of latency of computing tasks) in a resource efficient manner.

To perform efficient inference and learning at the edge, the ABIDI architec-
ture is designed to enable the communication not only of data, but also of models
and computational tasks. This increases the overall efficiency of the infrastruc-
ture, by distributing the computation in an organic manner in the edge layer, and
between the centralized infrastructure and the edge. For example, in a classical
IoT network, sensors collect data and transmit it to the central server, which
is in charge of all the computation. In an edge infrastructure, the intermediate
layers can instead manage part of the operations, such as aggregating data or
spotting malfunctioning devices, transmitting to the central server only the cor-
rect, aggregated information. Edge nodes can therefore relieve the central server
of unnecessary operations, making local decisions. This paradigm brings clear
advantages in terms of computational and transmission speed.

Cloud Layer. The data collected by the IIoT devices and potentially the results
of the elaboration at the edge level are transferred to the cloud layer. The ABIDI
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infrastructure relies on suitable database technologies to collect the data. Differ-
ent applications may require different databases, or a pre-existing infrastructure
could be integrated in the ABIDI architecture. Regardless of how this infras-
tructure is defined and which hardware and software are used, the storage of
the data collected remains a potential bottleneck in any data-centric pipeline.
Therefore, the ABIDI architecture adopts a flexible data infrastructure that can
be optimized for different tasks.

The data analysis level from the cloud layer includes automated and semi-
automated data cleaning, data visualization tools, and machine learning for pre-
dictive and descriptive modeling. The successful operations of final applications,
such as evidence-based decision support tools, depends on the quality of the
data, such as their timeliness and reliability. In ABIDI architecture, automated
data cleaning methods are applied to solve any data quality deficiencies that
are relatively simple to treat, and to perform basic fault detection procedures.
The adoption of automated methods, when they are reliable, allows minimizing
human effort, which is crucial when operating with big data. As a solution for
optimizing between reliability and human effort, semi-supervised methods are
applied in cases that cannot be reliably solved using automated methods.

In the data analysis level, interactive exploratory data visualization tools are
utilized to enable effortless monitoring and inspection of the big data and of the
data quality. The visualization tool prepares the developers of automated data
processing system to improve the quality of their data to meet the contextual
requirements, to reflect the needs of decision-making process and to allow provid-
ing domain specific answers to the user. Through an effective visualization, the
massive amount of data becomes accessible and understandable, which makes
it possible to both ensure the appropriateness of the automated pre-processing
steps and to add use case dependent methods above the automated ones. The
combined application of these two approaches allows achieving high quality stan-
dards for IIoT data, particularly in those application contexts where it is often
plagued by noise, or where it is often incomplete and inaccurate.

Machine learning regression is applied in the analysis level for descriptive
modeling and for prediction of IIoT data streams. The descriptive models esti-
mate the value of a data variable at a certain moment, and the estimations are
useful for missing value imputation and anomaly detection. Predictive regres-
sion models differ from the descriptive ones in that they estimate values of the
variables at a future moment. The predictions can offer substantial profits when
utilized in decision support tools. The ABIDI architecture includes a full auto-
mated pipeline for creating baseline regression models for time series prediction.

Technology Selection in IIoT Network. Although in industrial environ-
ments, traditionally, assets have been connected using wired communication
technologies (based on Field-bus or Industry Ethernet), recent advances on wire-
less communications have enabled the access to new elements and data, provid-
ing advantages in terms of flexibility, mobility, installation, and cost, among
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others [11]. While wireless sensor networks (WSNs) have been largely used in
building automation, smart city or agriculture domains, the industrial environ-
ments differ from these due to their particular constraints, especially in terms
of latency, environment, heterogeneity and mobility [12]. There are many wire-
less communication technologies and protocols that may be named as Industrial
IoT networks [13]. Regarding existing literature that presents technical features,
existing deployments, and future trends, the ABIDI framework considers follow-
ing IoT network technologies as the most relevant: BLE, ZigBee, WiFi, Wire-
lessHart, LoRaWAN, Sigfox, 6LoWPAN, NB-IoT, LTE Cat-M1, and 5G.

Although there are many surveys and reviews on IIoT networks, such as [14],
few studies have considered factors beyond technical parameters, including the
constraints of factories environments and its integration with the other layers of
the IIoT architecture [15]. Through reviewing literature and technical specifica-
tions, Table 1, which summarizes the main parameters of each technology, has
been created to assist technology selection. As it can be observed, the different
IIoT network technologies have their strengths and weaknesses, and therefore
cannot comply with all the requirements of every use case or application.

The ABIDI framework is based on a two-step procedure for selecting the
appropriate communication technology for a specific use case or application, as
follows.

1. Determine the essential use case specific requirements set by the final appli-
cation. These requirements may be divided in the following categories:
• Technical factors: They include technical characteristics such as the

transmission capacity (data rate), the time taken from the instant
the node transmits the message until it arrives to the final applica-
tion (latency), the communication coverage (range), the bi-directionality
(duplex) and the loss of messages (reliability).

• Implementation factors: They integrate those factors especially rele-
vant during the IoT network implementation phase. The most important
one is cost, which is the sum of the cost of IoT devices and nodes plus
the cost of network infrastructures (for those technologies that demand
the deployment of private network elements, such as 6LoWPAN, Zigbee,
WiFi or LoRa), or the cost of data plans (for those technologies that
provide the network infrastructure, such as Sigfox, 5G, or NB-IoT).

• Functional factors: They cover factors that affect everyday working of
IoT applications, including the autonomy of the devices (energy consump-
tion), which is determined by the time the IoT device is turned on and
especially by the energy consumption during the communication process.

2. Compare these requirements with Table 1, and select the most suitable tech-
nology. This step is implemented via Machine Learning based algorithms,
which recommend the best communication technology based on use case
requirements, and on all system constraints.
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Table 1. Summary of the main parameters considered in ABIDI methodology for IIoT
technology selection.

Technology Data ratea Latencyb Rangec Duplex Reliability Consumption Cost

BLE Mbps 30 ms 100m half low low low

ZigBee kbps 40 ms 100m half high low low

WiFi Mbps 30 ms 100m half med med low

WirelessHart kbps 10 ms 200m half high med high

LoRaWAN kbps 300 ms 10 km half med med med

Sigfox bps 4 s 50 km limitedd high high med

6LoWPAN kbps 20 ms 100m half med low low

NB-IoT kbps 2 s 10 km half high high high

LTE Cat-M1 kbps 2 s 10 km half high high high

5G Gbps 10 ms 10 km half high high high
a, b, c Approximate values—in the order of magnitude.
d Sigfox provides limited bidirectional capacity: the IoT device can upload up to 140 12-byte
messages a day, but it can only receive four 8-byte messages.

3 A Building Management Use Case

In order to assess the ABIDI framework, we implemented it in a smart build-
ing testbed at CEDINT-UPM in Madrid, Spain, a three-story construction that
hosts offices, research labs, and other facilities. It is equipped with 30 IoT power
meter devices are installed at panel boards, allowing specific energy consumption
monitoring of 560 electrical lines; 40 IoT ambient sensor devices measuring tem-
perature, luminosity, humidity and presence detection—apart from battery level;
and 30 HVAC controllers, which provide set-point temperature, fan speed, work-
ing mode (cold/heat), state (on/off) and indoor temperature data. By means of
an Elastic Stack-based IoT Platform, data collected were distributed and repli-
cated to provide inputs for machine learning (ML) and visualization tools. The
two main goals have been: i) optimizing energy consumption by context-aware
data analytics of energy consumption patterns, taking into account energy mea-
surements, ambient parameters and user behaviour; and ii) ensuring data relia-
bility and veracity, by improving communications, and detecting and correcting
missing or wrong measurements.

We applied the ABIDI framework methodology to select the optimal com-
munication technology. The main technical requirements were low data rate,
medium reliability, non-critical latency, variable sending frequency (30 s–15 min),
and bi-directionality. To this end, we performed an experimental characterization
for communication reliability and energy consumption.

Experimental results for reliability (latency and error rate) of the differ-
ent technologies were obtained using an ad-hoc testbed (Table 2). Latency was
measured considering an end-to-end trip, from the Industrial IoT node to the
application server. For error rate, the same latency packets were used. Based
on these results, 6LoWPAN outperformed alternative protocols with regards to
communication latency.
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Table 2. Experimental latency, error rate and consumption results

Technology 6LoWPAN LoRaWAN Sigfox BLE WiFi

Latency (ms) 20 290 3700 26 32

Error Rate (%) 0.01 0.6 0 0.03 0

Tx. Consumption (mAs) 0.8 6.3 804.8 1.0 3.4

As a second step, we experimentally measured the energy consumption of
the transmission process at 5 V (Table 2). These measurements were taken using
a Nordic Semiconductor Power Profiler Kit II. Then, the transmission current
demand per se was integrated during the time of packet transmission. Regard-
ing power consumption, 6LoWPAN outperformed again the other technologies,
especially Sigfox, which was expected to have a greater consumption as its on-air
time is much longer.

Bottom line, considering the number on IoT nodes (100) and area of deploy-
ment (50 m × 40 m), the variable sending frequency and the non-restrictive
requirements in terms of latency an reliability, BLE and 6LoWPAN seemed to
be the best choices. However, the features of 6LoWPAN mesh topology, which
enables the utilization of a single network coordinator or access point for the
entire use case (together with the fact that it implements IPv6 connectivity,
allowing direct access from the Internet), made 6LoWPAN the final choice. To
infer energy consumption patterns, we have combined temperature measure-
ments of indoor ambient sensors and the HVAC energy consumption measured
with BatMeter smart meters, as the latter data sources alone proved insufficient.

A baseline XGBoost regression model was built for short-term (one hour
ahead) HVAC energy consumption prediction. Error metrics CV-RMSE, Rel-
RMSE and MASE for the model were 0.292, 0.811, and 0.870, respectively. Rel-
RMSE and MASE measures include a built-in comparison to a näıve time series
prediction model, and the value being less than one indicates the model is per-
forming better than the näıve model. This showed that the suggested baseline
model is capable of providing useful outputs in short-term predictions.

In data pre-processing phase, it was possible to automatically detect a mal-
functioning sensor in the monitored area by inspecting the rate of data packages
sent by each sensor node. Semi-supervised methods, where IoT data streams
were combined with relevant metadata, allowed imputing missing temperature
data by utilizing peer sensors in the room. While a reasonably light approach
was enough to meet the data quality requirements of the desired application, a
more thorough visual interface was also developed for this setup (Fig. 2) for ease
of inspection of data streams.

The layout of the final application is in Fig. 3. The quality of data was ensured
for each of the five parameters utilized in the final application. Gradients of tem-
perature data sources were inspected together with the gradient of the electric-
ity consumption data, so as to label times of HVAC usage in every room. The
application layout shows a figure of each data stream, highlights the times of
HVAC usage in each temperature figure, visualizes the number of active HVAC



ABIDI: A Reference Architecture for Reliable Industrial Internet of Things 35

Table 3. Basic information of the UPM data set

Indoor ambient sensors Number of sensors 34

Sensors per space 1–4

Parameters Temperature, humidity, light, motion

Smart meters Number 32

Parameters Power consumption (528 lines)

Time range of data collection Start In steps through 2018–2020

End Ongoing (12/2021)

Frequency of data collection From seconds to an hour

Fig. 2. Application screenshot, detecting HVAC usage in the UPM building, displaying
all of the relevant data streams.

units as a function of time, and provides a summary of the estimated electricity
consumption per room for a given period of time. These data allowed determine
new opportunities for optimization of power consumption. In particular, the fact
that the highest peaks in power consumption were caused by HVAC units being
turned on simultaneously in multiple rooms suggest that smart scheduling of
HVAC duty cycles could substantially reduce these peaks, and thus contribute
to preventing outages (Table 3).

Fig. 3. Screenshot of the visualization tool, detecting HVAC usage in UPM building.
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4 Key Research Challenges

We discuss some technical challenges for full implementation of the ABIDI app-
roach, including IIoT architecture and protocols, energy harvesting, network
optimization, Cloud infrastructure optimization, and Application layer. It is cru-
cial to identify and analyze those challenges for seeking novel solutions.

Reliable IIoT Architecture and Protocols. In order to increase perfor-
mance and reliability for IIoT networks, and meet with the most-demanding
communication requirements (e.g. robot control), some leading-edge techniques
must be implemented at various levels of the architecture. Specifically, MAC
layer enhancements such as Time Slotted Channel Hopping (TSCH) could be
used in 6LoWPAN. TSCH avoids packet losses and reduces latency by dynam-
ically changing the carrier frequency in a globally synced mesh network among
all the nodes in the network [16]. On the other hand, for other communica-
tion technologies, such as LoRaWAN or NB-IoT, the scheme of Static Context
Header Compression (SCHC) could be implemented. SCHC allows compression
of IPv6/UDP/CoAP packets, with the aim of making them suitable for trans-
mission over their restricted links of these technologies and providing higher
interoperability by using IPv6 connectivity [17].

Resource Optimization of ML Training at the Edge. One of the key open
issues in gossip learning lies in the lack of understanding of the relationship
between patterns of exchange of models and of movement of agents, and some
of the primary performance parameters of the scheme. A key challenge concerns
how to optimally tune model merging as a function of the context and of the
specific problem. Different merging strategies have shown to perform very dif-
ferently according to the specific model, but also as a function of the degree of
dynamicity of the environment. New approaches need to be designed in order
to improve their efficiency in heterogeneous settings, i.e. when applied to set
of nodes with very diverse sensing and computing capabilities. Finally, strate-
gies for improving the communication efficiency of these schemes have to be
designed, and the trade-off between performance and resource efficiency has to
be characterized.

Energy Harvesting. As already mentioned, the location of IoT devices within
manufacturing equipment and processes means that they have to be battery-
powered. Energy harvesting (EH) rises as a green, sustainable, and virtually
infinite power supply to wireless devices, obtaining the available energy from
the environment to reduce the need for storage components. Power generation
density depends mainly on the real characteristics of the ambient energy avail-
ability for the IoT device location. Even if RF appears to be a common energy
source provided by manufacturing equipment and existing wireless communi-
cations, its power density is small compared to other energy sources such as
light or magnetic induction. A more in-depth analysis of the power density of
the diverse energy harvesting techniques in factories is needed. Another deciding
factor is the availability of the energy source, which may be steady (RF) or more
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unpredictable (light), affecting the power supply profile. Time variation of the
energy sources should be characterized. Finally, a recent trend of study is the use
of hybrid energy harvesting schemes, combining high-power-density techniques
(PV) with more steady sources (RF).

Edge/Cloud Balance-Network Optimization. The flexibility of the ABIDI
architecture at the edge layer allows it to adaptively distribute the computa-
tion. For this, the particular application deployed at the edge level will be con-
tainerized providing the architecture with more flexibility at the edge layer.
This containerization provides the edge-layer with the option to dynamically
adapt the computational resources by using an (intra-)edge layer load balancing
mechanism such as Kubernetes. The flexibility of the architecture will then be
complemented with an inter-layer load-balancing mechanism which allows the
edge layer to offload tasks to the server infrastructure. To this end, appropriate
load balancing mechanisms need to be designed, capable of efficiently cooperate
with the data-offloading and task balancing processes.

Cloud Infrastructure Optimization. On the cloud side, for each use case the
database used must be tailored to the specific needs to optimize its performance
in terms of throughput. This is better done when the scenario characteristics in
terms of data and operations are fully determined, to obtain the database con-
figuration that best serves the application. This approach can be also applied to
entire software pipelines, such as when Kafka is employed to transmit data from
the edge nodes to the database on the cloud, to optimize every step of the data
collection process. The configuration methodology remains the same, requiring
only to define the interface between Irace and the desired database/pipeline [18].

Application Layer. Turning the current approach taken for improving data
quality in cloud environment into a full, low-effort pipeline applicable to a wide
range of use cases is a key challenge. A full pipeline from data to decision support
tool visualization has currently only been implemented for time series regression
models, and expanding to other kind of tasks, such as classification, is important
to widen the spectrum of covered use cases. Utilizing Bayesian Estimation or
some other suitable algorithm for hyperparameter tuning instead of using a grid
search could also improve computational efficiency of the process.

5 Conclusions

Technologies such as artificial intelligence and Internet of Things are reshaping
industrial processes to the point that relevant actors are calling this transfor-
mation the fourth industrial revolution. The combination of big data and auto-
mated decision making is helping companies in transitioning from general mass
production to a smart production that uses information to increase efficiency and
reduce waste and operational costs. This transformation does not come without
challenges, since current approaches are limited in scope and application.

In this work we have presented the ABIDI architecture for Industrial Internet
of Things. ABIDI is a general framework that can be instantiated to address
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different real world cases, making use of the most suitable technologies for each
scenario. It encompasses the whole IIoT stack, from the sensors and network
layer to the final application, combining the use of cloud architectures with
an edge layer of computational nodes that can improve the performance and
robustness of the final application, and can perform distributed AI tasks. We
have discussed how the components of our architecture address the shortcomings
of the current state of the art. Finally, we have reported a real world scenario
where we instantiated our architecture, and we have outlined the steps necessary
to reach the full vision of the ABIDI infrastructure.
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