
Early-stage Ransomware Detection based on
Pre-Attack Internal API Calls

Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

Abstract Ransomware attacks have become one of the main cyber threats to com-
panies and individuals. In recent years, different approaches have been proposed to
mitigate such attacks by analyzing ransomware behavior during the infection and
post-infection phases. However, few works focused on early-stage ransomware de-
tection. The analysis of recent ransomware has shown that they are designed to per-
form sensing activities to evade detection by known anti-viruses and anti-malware
software. This paper proposes an early-stage ransomware detector based on a neural
network model for multi-class classification. Our model achieves 80.00% accuracy
on our dataset and 93.00% on another state-of-the-art dataset [11]. We show that
our model performs better than the state-of-the-art approaches, especially on a chal-
lenging, large, and varied dataset we made publicly available.

1 Introduction

Ransomware is a malware designed to encrypt user information or lock access to
infected devices and their resources. A ransomware exploits secure communication
channels with C&C (Command and Control) servers to encrypt the victims’ systems
and force them to pay a ransom [9]. If the attacked entity refuses to pay the ransom,
data is deleted or published on the web. Ransomware attacks have become one of the

Filippo Coglio
Università degli Studi dell’Insubria e-mail: fcoglio@uninsubria.it

Ahmed Lekssays
Università degli Studi dell’Insubria e-mail: alekssays@uninsubria.it

Barbara Carminati
Università degli Studi dell’Insubria e-mail: barbara.carminati@uninsubria.it

Elena Ferrari
Università degli Studi dell’Insubria e-mail: elena.ferrari@uninsubria.it

1

2 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

main cyber threats to both companies and individuals. In 2021, the average cost of a
ransomware attack for companies was $4.62 million, with an increase of 148% in the
number of ransomware attacks from 2020 to 20211. This increase was expected due
to ransomware-as-a-service (RaaS) growth, where attackers sell their ransomware
in underground markets, accepting payments in cryptocurrencies to preserve their
anonymity [10]. This has turned ransomware into a lucrative tool for attackers who
look for financial gains [11].

In recent years, different approaches have been proposed to mitigate such at-
tacks using dynamic or static analysis to understand ransomware’s code structure
and behavior during infection and post-infection phases. Despite all the work, the
defense against ransomware is challenging due to the lack of knowledge of newly
detected ransomware.Therefore, there is a need to investigate effective approaches
for detecting ransomware, keeping in mind their constant evolution.

In this paper, we focus on early-stage ransomware detection. The analysis of
recent ransomware has shown that they are programmed to execute some functions
and operations to evade detection by known anti-viruses and anti-malware software.
These paranoia activities aim to sense the environment to understand whether the
ransomware can run the malicious code [11].

Thus, based on pre-attack activities, we aim to detect ransomware before the
encryption phase. We have dynamically analyzed more than 11,000 ransomware
samples and 1200 benign samples from 23 different families to extract important
API calls that ransomware mainly use before starting their attacks. These API calls
help in classifying samples into their corresponding ransomware families or be-
nign one. We have developed a neural network model for multi-class classification
that achieves 80.00% accuracy on our dataset and 93.24% on another state-of-the-
art dataset [11]. We show that our model performs better than the state-of-the-art
approaches, especially on a challenging, large, and varied dataset. In addition, we
show the effectiveness and feasibility of the proposed approach compared to previ-
ous work.

Contributions. The contributions of this work can be summarized as follows:

• we have compiled a dataset of 5203 benign and ransomware samples from 12
different families. To the best of our knowledge, it is the largest dataset available
for ransomware detection;

• we have developed a neural network model that achieves an accuracy of 80.00%
in a challenging, large, and varied dataset outperforming the state-of-the-art;

• we have made our source code and dataset publicly available2 to reproduce the
results.

Outline. The remainder of this paper is organized as follows. We discussed state-
of-the-art approaches in Section 2. Section 3 presents background knowledge on
ransomware detection. In Section 4, we discuss our methodology and the building
blocks of our solution. Section 5 shows the obtained results and the comparison with
state-of-the-art approaches. Finally, Section 6 concludes the paper.

1 https://www.pandasecurity.com/en/mediacenter/security/ransomware-statistics/
2 https://github.com/Ph1l99/RansomwareEarlyDetection

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 3

2 Related Work

In the last years, different techniques have been proposed for ransomware classifi-
cation. [11] presents several machine-learning models for early-stage ransomware
classification based on pre-attack paranoia activities using API calls as features.
They have used different techniques for data representation: Occurrence of Words
(OoW), representing the presence/absence of a feature, Bag of Words (BoW), ex-
pressing the frequency of a feature, and Sequence of Words (SoW), building a chain
of API calls to take into consideration the order in which an API is executed.

The work in [2] presents an ML model for ransomware detection by comparing
algorithms like Random Forest, Logistic Regression, Stochastic Gradient Descent,
etc. After performing a dynamic analysis using the Intel PIN tool’s dynamic bi-
nary instrumentation (DBI), features are extracted according to the CF-NCF (Class
Frequency - Non-Class Frequency) technique. According to the authors, this pro-
cess provides higher accuracy during classification experiments. [7] proposes a be-
havioral classification method by analyzing 150 samples and extracts a set of fea-
tures and attributes based on reports from VirusTotal3. The authors of [9] pre-
sented a two-stage detection method based on dynamic analysis. The first stage
relies on Markov chains, whereas the second on Random Forest. [17] relies on the
Term Frequency-Inverse Document Frequency (TF-IDF) of the N-grams extracted
from opcodes. They analyze different N-gram feature dimensions using various ma-
chine learning models. Similarly, [16] extracts N-grams features from opcodes; but
it only uses a Self-Attention Convolutional Neural Network (SA-CNN) to test the
approach, which worked well for some long sequences of opcodes.

Despite the promising results in the papers mentioned above, they have several
limitations. For instance, the usefulness of the obtained results may be distorted
by the limited number of analyzed samples, and the low variability of families in-
cluded in the training phase may not represent the current ransomware landscape.
We try to address these limitations by analyzing a more representative number of
samples from 12 different families. Another limitation of some of the presented re-
search is related to the type of analysis they have carried out; [17], and [16] use a
static analysis approach for extracting N-grams for their models. This needs to deal
with obfuscated ransomware samples, making reverse engineering the most com-
plex step in the model generation process. We resolve this obfuscation problem by
using a dynamic analysis approach to capture the pre-attack activities performed by
ransomware samples.

Furthermore, our proposal focuses exclusively on ransomware detection, unlike
the work in [2, 17, 16]. Second, it presents an early-stage ransomware detection,
while, apart from [11], all other works focused on later stages of detection. How-
ever, it differs from [11] in the choice of the API calls considered in the detection
phase. In addition, we tested our solution on, to the best of our knowledge, the
largest ransomware detection dataset that includes 12 different ransomware fami-

3 https://www.virustotal.com

4 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

lies, whereas the work on [11] has only been tested on a dataset of 5 ransomware
families.

3 Background

In this section, we introduce the main characteristics of ransomware. We will then
give a background on neural networks.

3.1 Ransomware

Ransomware is a type of malware that denies access to user files and demands a
ransom from the user to regain access to the system and stored information [8].
Ransomware are mainly of two types:

• Locker: it prevents the victim from reaching their files by denying access to
computing resources (e.g., locking the desktop or preventing the victim from
logging in) [8].

• Crypto: it encrypts data on the target machine, taking it hostage until the victim
pays the ransom and obtains the decryption key from the attacker. Some variants
of crypto-ransomware will progressively delete hostage files or release them to
the public if the victim fails to pay the ransom on time.

Ransomware can be organized in families depending on their behavior and the
type of operations they perform. In the following, we present the main characteris-
tics of well-known ransomware families:

• Cerber: it infects computers using common attack vectors, such as phishing e-
mails. It comes bundled with free online software. Cerber mainly utilizes mali-
cious Microsoft Office files with macros to spread. Once a victim opens a ma-
licious Microsoft Office document and enables macros, the ransomware begins
encrypting victim files.

• CryptoWall: once executed, CryptoWall writes its registry autorun keys in the
Windows registry to maintain its persistence through reboots. It then searches for
all system restore points and Volume Shadow Copy files and destroys them to
prevent the victim from restoring any file. Then, it begins encrypting files using
the RSA-2048 encryption algorithm.

• WannaCry: it is a crypto-ransomware that spreads by exploiting a Windows
Server Message Block (SMB) vulnerability that provides unrestricted access to
any computer running Windows. WannaCry is also able to propagate throughout
corporate LANs automatically. It encrypts files of the infected device and tries to
affect other devices in the network.

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 5

• Locky: the most common technique used by Locky to infect systems is through
receiving an e-mail with a malicious Microsoft Word attachment. When this at-
tachment is opened, an executable is downloaded from a C&C server, a private
key is generated, and the ransomware starts encrypting files by infecting all con-
nected devices.

All the above families target a single operating system, that is, Windows, that has
been shown to be the most targeted operating system.4 There are also ransomware
that target different OSs, like macOS, GNU/Linux, and Android, but the percent-
age of attacks that target Windows-based machines is very high, compared to other
operating systems.

3.2 Artificial Neural Networks

In this work, we rely on Artificial Neural Networks (ANN) for multi-class classifi-
cation. We chose ANNs because they are lightweight and they give a good detection
rate.

ANNs are mainly comprised of many interconnected computational nodes (re-
ferred to as neurons), which work in a distributed fashion to collectively learn from
the input to optimize the final output. ANNs nodes are organized into layers: an
input layer, an output layer, and hidden layers. Nodes in the input layer take a mul-
tidimensional vector that is sent to the hidden layers as input. Nodes in the hid-
den layers make decisions from the previous layer and weigh up how a stochastic
change within itself detriments or improves the final output. This is referred to as
the process of learning. Having multiple hidden layers stacked upon each other is
commonly called deep learning [12].

Each layer can have an arbitrary number of neurons and their most important fea-
ture is the activation function. In order to output a value, a neuron takes the weighted
sum of all its inputs and passes it through the activation function to obtain the re-
sults that will be handled to the next layer as input [14]. The role of the activation
function is to decide whether a neuron’s input is important or not in the process of
prediction. The most commonly used activation functions are: ReLu, Linear, Sig-
moid, and SoftMax [14]. Another important feature of standard ANNs is that they
have a feed-forward architecture, i.e., data flow just in one direction (forward). This
is a key characteristic since there are also more complex and advanced neural net-
works that have feedback: the outputs of the neurons are used as feedback inputs for
other neurons [6].

4 https://www.statista.com/statistics/701020/major-operating-systems-targeted-by-ransomware/

6 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

4 Methodology

In this section, we discuss the building blocks of our methodology which are: data
collection, feature extraction, and classification.

4.1 Data Collection

Ransomware samples. Sample collection has been challenging for different rea-
sons. First, there is no unique online repository that contains all existing ran-
somware, we had to merge all repositories to avoid duplication. Second, repositories
use security vendors’ scores and sandboxes results to map ransomware to their re-
spective families. However, these classifications may be incorrect or not accurate,
since some ransomware may have similar behavior but a completely different name.
Finally, some families, like TeslaCrypt (and its variants like AgentTesla) may con-
tain ransomware samples together with malware that affect the choice of features
used for ransomware detection. Thus, they should not be considered for this re-
search since they will affect its effectiveness.

For our samples collection, we used different online repositories (i.e., Virus-
Total5,Malware Bazaar6, and VirusShare7) to obtain a total of 11,523
samples detected in the past few years (i.e., 2018-2022). To have a balanced dataset,
the 11,523 collected samples are evenly split into 23 families namely Ako, BB, Cer-
ber, Conti, Cryptolocker, Cryptowall, Erica, Expiro, Gandcrab, Hive, Kryptik, Lock-
bit, Lockfile, Locky, Matrix, Matsnu, Shade, Stop, TeslaCrypt, Trik, Virlock, Wan-
nacry, and Winlock, where 501 samples represent each family.

Benign software. To properly identify ransomware, there is also a need to have
some benign software to be included in the classification tasks. In total, we down-
loaded 1,111 benign samples from different sources (i.e, The Portable Free-
ware Collection8 and PortableApps9). We focused on benign software
that have similar behavior to ransomware and use a large number of API calls, such
as file compressors, disk analyzers, anti-viruses, and password managers. Table 1
shows the distribution of the benign samples.

5 https://www.virustotal.com
6 https://bazaar.abuse.ch/browse/
7 https://virusshare.com/
8 https://www.portablefreeware.com/
9 https://portableapps.com/

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 7

Table 1: Benign samples distribution

Category Software Samples Category Software Samples

Anti-viruses McAfee 100 Disk analyzers CrystalDiskMark 36
Others 3 Others 4

Compressors
7-Zip 28 Browsers Google Chrome 20
PeaZip 99 Others 5
Others 3

Miscellaneous

Audacity 48

Graphics

GIMP 79 FileZilla 73
Blender 50 VeraCrypt 15
JPEGView 21 Others 102
ScribusPortable 19 Messaging clients TelegramDesktop 100
Others 4 Media players VLC 80

Text editors

AkelPad 36 Mail clients Various 3
Geany 18 Password managers KeePassXC 23
Notepad 2 33 PDF managers Various 9
Notepad++ 100 Total 1111

4.2 Features Extraction

We perform a dynamic analysis of the collected samples using widely known tools
and techniques for ransomware execution in a controlled environment. We select the
features to be used for the classification task from the reports returned by dynamic
analysis. In this step, we are interested in studying the usage of API calls that soft-
ware use to communicate with the kernel. In our context, it is worth noting that a
feature is a binary vector representing the usage of a specific API by the analyzed
sample. The main challenge in feature extraction is the selection of representative
features that could help distinguish different families. The similarity between sam-
ples belonging to different families leads to a set of similar features that affect the
effectiveness of the developed ML models.

From 12,634 analyzed samples, we removed the ones that failed to execute.
Moreover, we removed the ones that belong to underrepresented families (i.e., less
than 200 samples), which were 11 families out of 23. We removed these families
to keep the dataset balanced. The final dataset contains 5203 samples from 12 ran-
somware families, and one benign family (see Table 2). These samples contain at
least one occurrence of the API calls specified in Table 3.

We have chosen these API calls, shown in Table 3, based on the most used
evasion techniques adopted by ransomware, namely process injection, environment
sensing, and unpacking. We present each of the evasion techniques in what follows.

Process injection. Code injection is the process of copying the code from an
injecting entity εin ject into a victim entity εvictim and executing this code within the
scope of εvictim [3]. The definition of a code injection does not specify the place of
residence of εin ject and εvictim. We can have two cases: if the attacker and the victim
reside on the same system, we refer to Host-Based Code Injection, while if they
reside on different systems, the process is called Remote Code Injection.

8 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

Table 2: Ransomware curated dataset

Family Samples
Cerber 450

CryptoWall 450
Matsnu 450
Shade 450

Teslacrypt 450
Benign 450
Hive 443
Ako 432
Erica 377
Conti 359
Matrix 331

Gandcrab 295
Expiro 266
Total 5,203

Environment sensing. Before executing the malicious payload, usually, an at-
tacker wants to determine if the environment is a virtual one or not [1]. Ransomware
use different techniques for evading sandboxes and virtual analysis environments.
The first one is fingerprinting, which aims to detect the presence of sandboxes by
looking for environmental artifacts that could indicate a virtual/emulated machine.
These signs can range from device drivers, overt files on disk, and registry keys, to
discrepancies in emulated/virtualized processors. Another technique used in envi-
ronment sensing is Reverse Turing Test which checks for human interaction with
the system. This tactic capitalizes on the fact that sandboxes are automated ma-
chines with no human or operator directly interacting with them. Thus, if a malware
does not observe any human interaction, it presumes to be in a sandbox. The mal-
ware waits indefinitely for any form of user input to test whether it is running on a
real system. In a real system, eventually, a key would be pressed, or the user would
move a mouse. If that occurs a specific number of times, the malware executes its
malicious payload [1].

Unpacking. Packing is a widely used technique in malware development that
allows attackers to conceal their code. Malware is then transmitted in a “scrambled”
form, which is then restored to the original form just before execution using unpack-
ing techniques [5]. Packers use different techniques for obfuscating malicious code.
First, they use multi-level compression to obfuscate the payload of an executable,
making it hard to perform reverse-engineering tasks on the executable [4]. More-
over, packers can achieve malware polymorphism by producing different binaries,
i.e., different hash signatures for the same payload [4, 13]. Encryption is widely
used to conceal some parts of the code, which are then decrypted during unpacking
by using the encryption keys provided within the packed malware; finally, packers
may use techniques like dead code insertion and instruction permutation that aim at
making the unpacked malicious executable more challenging to analyze [13].

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 9

Table 3: Evasion APIs

Category Evasion techniques Evasion API Description
Data access and storage Unpacking MoveFileWithProgressW Move a file or directory, including its children

Environment Sensing NtCreateFile Creates a new file or directory or opens an existing file
Process Injection NtWriteFile Write data to an open file

SetFileAttributesW Sets the attributes for a file or directory
GetDiskFreeSpaceExW Retrieve information about the amount of space available on a disk
GetDiskFreeSpaceW Retrieves information about the specified disk
ShellExecuteExW Perform an operation on a specified file
DeviceIoControl Send a control code directly to a specified device driver

Generic OS queries Environment Sensing GetComputerNameW Retrieve the name of the local computer
NtQuerySystemInformation Retrieve the specified system information

Memory management Unpacking GlobalMemoryStatusEx Retrieve information about the system memory usage
Environment Sensing NtAllocateVirtualMemory Reserve a region of pages within the user-mode virtual address space
Process Injection NtMapViewOfSection Map specified part of Section Object into process memory

NtProtectVirtualMemory Change the protection on a region of committed pages
NtUnmapViewOfSection Unmap a view of a section from the virtual address space
WriteProcessMemory Writes data to an area of memory in a specified process
LdrGetDllHandle Loads a file in memory

Network Unpacking GetAdaptersAddresses Retrieve the addresses associated with the adapters
Environment Sensing InternetOpenA Initialize an application’s use of the WinINet functions

Process Process Injection CreateProcessInternalW Create a new process and its primary thread
NtGetContextThread Return the user-mode context of the specified thread
NtResumeThread Map specified part of Section Object into process memory
NtSetContextThread Set the user-mode context of the specified thread
NtTerminateProcess Terminate a process and all of its threads
Process32NextW Retrieve information about the next process recorded in a snapshot
NtLoadDriver Load a driver into the system

Registry Process Injection NtSetValueKey Create or replaces a registry key’s value entry
Environment Sensing RegOpenKeyExW Open the specified registry key

RegQueryValueExW Retrieve the type and data for the specified value name of a key
RegSetValueExW Set the data and type of a specified value under a registry key
NtCreateKey Create a new registry key or opens an existing one

Security Process Injection CryptGenKey Generate a random cryptographic session key or a key pair
CryptExportKey Export a cryptographic key or a key pair
LookupPrivilegeValueW Retrieve the identifier used to represent the specified privilege name
CryptHashData Add data to a specified hash object

Services Environment Sensing CreateServiceW Create a service object and adds it to the specified service manager
EnumServicesStatusW Enumerate services in the specified service control manager database

UI artifacts Environment Sensing SetWindowsHookExW Install an application-defined hook procedure into a hook chain
FindWindowW Retrieve a handle to the top-level window

In Table 3, APIs that end with W have twin API that ends with A with a similar
goal. The difference in the names is due to the encoding. The APIs that end with W
work with Unicode strings and the ones that end with A work with ANSI strings.
For the sake of brevity, we included only the Unicode ones.

4.3 Classification

Since each ransomware family has its characteristics, we model the ransomware
detection as a multi-class classification problem, where we have different classes
(i.e., families), and the classifier will determine the belonging to a specific class.
The state-of-the-art classifiers for this problem are Random Forest, Bernoulli Naive
Bayes, k-Nearest Neighbors, and Artificial Neural Networks (ANNs). In this paper,
we use an ANN (see Section 5.2), since it is lightweight and it gives good accuracy.

Our artificial neural network is composed of three layers with ReLu as an ac-
tivation function. We use dropout on the input and hidden layers to drop nodes to

10 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

reduce overfitting randomly. We also add a hidden layer with the Softmax activation
function to the network’s end.

Figure 1 depicts the model architecture.

Fig. 1: Classification Model Architecture

The hyperparameters for this network are the number of epochs (i.e., 50) and the
batch size (i.e., 15): the former identifies how many times the model will iterate over
the whole dataset. At the same time, the latter describes the number of samples after
which the network will adjust its internal parameters.

5 Experimental results

To analyze the ransomware samples, we created an Ubuntu virtual machine on
which we installed; Cuckoo Sandbox (version 2.0.7)10 the sandbox on which
we executed the samples, uses Windows 7 as an operating system with basic soft-
ware like Internet Explorer and Windows Media Player and sample files like Word
documents and PowerPoint slides.

Cuckoo Sandbox is one of the most widely used tools for analyzing the behavior
of a malicious executable. The ransomware is run in a controlled virtual machine
to capture all performed activities during its execution like API calls, files opened,
registry keys, and dumped files. All the behavioral characteristics are then saved to
a comprehensive report in JSON format. The report contains additional informa-
tion about the analysis, such as machine name, operating system, internet access,

10 https://cuckoosandbox.org/

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 11

and many other parameters. All the analyzed ransomware samples had access to
the internet to contact, if required, their C&C servers for downloading additional
malicious payloads.

5.1 Datasets

Our dataset (cfr. Table 2) consists of 5,203 samples distributed across 13 families
(including a benign family). In addition, we have used the dataset provided by [11].
This dataset (described in Table 4) is composed of 2,994 ransomware samples from
5 families and 438 benign samples resulting in a total of 3,432 samples.

Table 4: Description of [11] dataset

Family Reveton TeslaCrypt Cerber Locky Yakes Benign Total
Samples 600 600 600 600 594 438 3432

5.2 Multi-class Classification

As shown in Table 5, we tested several state-of-the-art classifiers (i.e., RF, BNB,
KNN, and ANN). With ANN, we reached good results in terms of accuracy, espe-
cially in top-k accuracy (k = 2). ANN scores 80.00% in accuracy and 90.41% in
top-2 categorical accuracy. For the reported results, we take the weighted average
of all individual scores of the classes (i.e., families) we have. Similarly to [11], we
used the default scikit-learn metrics11.

Table 5: Multi-class classification results

Model Precision Recall F1-Score Accuracy Top-k Acc. (k=2)
Random Forest 81.23% 78.38% 78.28% 78.38% 85.82%
Bernoulli Naı̈ve Bayes 61.41% 56.38% 55.94% 56.38% 67.33%
K-Nearest Neighbors 78.39% 75.98% 76.07% 75.98% 82.03%
Artificial Neural Network 82.00% 80.00% 81.00% 80.00% 90.41%

We then compare our approach with the one presented in [11], since it is the
only work we are aware of that that has a public dataset and source code available

11 https://scikit-learn.org/stable/modules/model evaluation.html

12 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

on GitHub12. We ran their Random Forest classifier model 5 times on their dataset.
In the second step, we took their dataset and used it to train our Artificial Neural
Network model. The results we have obtained are promising since the ANN per-
forms very well even with a completely different dataset. The accuracy is 93.00%,
and the top-2 categorical accuracy is 98.62%. Table 6 summarizes the results of the
comparison.

Table 6: Comparison of our work with [11]

Approach Dataset Precision Recall F1-Score Accuracy Top-k Acc. (k=2)
[11] [11] 92.36% 92.30% 92.19% 92.30% 97.82%

Our approach [11] 93.00% 93.00% 93.00% 93.00% 98.62%
[11] Our approach 79.29% 78.77% 78.78% 78.77% 86.74%

Our approach Our approach 82.00% 80.00% 81.00% 80.00% 90.41%

6 Conclusion

In this paper, we proposed an early-stage ransomware detector based on a neural net-
work model that achieves an accuracy of 80.00% in a challenging, large, and varied
dataset, outperforming the state-of-the-art. The dataset we have compiled consists
of 4753 ransomware samples from 12 different families and 450 benign samples.
To the best of our knowledge, it is the largest dataset available for ransomware de-
tection. We have made publicly available our source code and dataset, to reproduce
the results. This work can be extended in many directions. First, we aim to make a
decentralized version of it that runs over a blockchain. Second, we plan to explore
the effect of adding other features, such as the registry and memory dumps, as input
to our model. Third, we aim to explore other ML techniques, like transformers [15]
that perform well with huge amounts of data.

Acknowledgements

The authors would like to thank the authors of [11] for their responsiveness and
support. In addition, we would like to thank VirusTotal, VirusShare, and Bazaar for
providing us with the ransomware samples.

This work has received funding from the Marie Skłodowska-Curie Innovative
Training Network Real-time Analytics for Internet of Sports (RAIS), supported

12 https://github.com/Rmayalam/Ransomware Paranoia

Early-stage Ransomware Detection based on Pre-Attack Internal API Calls 13

by the European Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 813162. Additionally, it has been partially supported by
CONCORDIA, the Cybersecurity Competence Network supported by the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No 830927. The content of this paper reflects the views only of their author(s) and
the European Commission/Research Executive Agency are not responsible for any
use that may be made of the information it contains.

References

[1] Amir Afianian et al. “Malware dynamic analysis evasion techniques: A sur-
vey”. In: ACM Computing Surveys (CSUR) 52.6 (2019), pp. 1–28.

[2] Seong Il Bae, Gyu Bin Lee, and Eul Gyu Im. “Ransomware detection using
machine learning algorithms”. In: Concurrency and Computation: Practice
and Experience 32.18 (2020), e5422.

[3] Thomas Barabosch and Elmar Gerhards-Padilla. “Host-based code injection
attacks: A popular technique used by malware”. In: 2014 9th International
Conference on Malicious and Unwanted Software: The Americas (MAL-
WARE). IEEE. 2014, pp. 8–17.

[4] S Sibi Chakkaravarthy, D Sangeetha, and V Vaidehi. “A survey on malware
analysis and mitigation techniques”. In: Computer Science Review 32 (2019),
pp. 1–23.

[5] Kevin Coogan et al. “Automatic static unpacking of malware binaries”.
In: 2009 16th Working Conference on Reverse Engineering. IEEE. 2009,
pp. 167–176.

[6] Ivan Nunes Da Silva et al. “Artificial neural networks”. In: Cham: Springer
International Publishing 39 (2017).

[7] Hajredin Daku, Pavol Zavarsky, and Yasir Malik. “Behavioral-based classi-
fication and identification of ransomware variants using machine learning”.
In: 2018 17th IEEE international conference on trust, security and privacy in
computing and communications/12th IEEE international conference on big
data science and engineering (TrustCom/BigDataSE). IEEE. 2018, pp. 1560–
1564.

[8] Nihad A Hassan. “Ransomware Families”. In: Ransomware Revealed. Springer,
2019, pp. 47–68.

[9] Jinsoo Hwang et al. “Two-stage ransomware detection using dynamic analy-
sis and machine learning techniques”. In: Wireless Personal Communications
112.4 (2020), pp. 2597–2609.

[10] Amin Kharraz et al. “Cutting the gordian knot: A look under the hood of
ransomware attacks”. In: International conference on detection of intrusions
and malware, and vulnerability assessment. Springer. 2015, pp. 3–24.

14 Filippo Coglio, Ahmed Lekssays, Barbara Carminati, and Elena Ferrari

[11] Ricardo Misael Ayala Molina et al. “On Ransomware Family Attribution Us-
ing Pre-Attack Paranoia Activities”. In: IEEE Transactions on Network and
Service Management (2021).

[12] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural net-
works”. In: arXiv preprint arXiv:1511.08458 (2015).

[13] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. “Camouflage in
malware: from encryption to metamorphism”. In: International Journal of
Computer Science and Network Security 12.8 (2012), pp. 74–83.

[14] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions
in neural networks”. In: towards data science 6.12 (2017), pp. 310–316.

[15] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[16] Bin Zhang et al. “Ransomware classification using patch-based CNN and
self-attention network on embedded N-grams of opcodes”. In: Future Gener-
ation Computer Systems 110 (2020), pp. 708–720.

[17] Hanqi Zhang et al. “Classification of ransomware families with machine
learning based onN-gram of opcodes”. In: Future Generation Computer Sys-
tems 90 (2019), pp. 211–221.

