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Abstract

Federated learning (FL) has recently emerged as
a popular privacy-preserving collaborative learn-
ing paradigm. However, it suffers from the non-
independent and identically distributed (non-1ID)
data among clients. In this paper, we propose
a novel framework, named Synthetic Data Aided
Federated Learning (SDA-FL), to resolve this non-
IID challenge by sharing synthetic data. Specif-
ically, each client pretrains a local generative ad-
versarial network (GAN) to generate differentially
private synthetic data, which are uploaded to the
parameter server (PS) to construct a global shared
synthetic dataset. To generate confident pseudo la-
bels for the synthetic dataset, we also propose an
iterative pseudo labeling mechanism performed by
the PS. A combination of the local private dataset
and synthetic dataset with confident pseudo labels
leads to nearly identical data distributions among
clients, which improves the consistency among lo-
cal models and benefits the global aggregation.
Extensive experiments evidence that the proposed
framework outperforms the baseline methods by a
large margin in several benchmark datasets under
both the supervised and semi-supervised settings.

1 Introduction

Federated learning (FL) is a privacy-aware paradigm that al-
lows the clients to collaborate to learn a global model with-
out sharing their local data [Zhu er al., 2021]. Particularly,
[McMahan et al., 2017] introduced the Federated Averaging
(FedAvg) algorithm where the clients train the local models
based on the private local data and upload the model updates
to the parameter server (PS) for aggregation.

Despite its success in the independent and identically dis-
tributed (IID) scenarios, FL still suffers from significant
performance degradation when the data distribution among
clients becomes skewed. In particular, different clients learn
from different data distributions in the non-IID scenarios,
which leads to high inconsistency among the local models
and thus degrades the effectiveness of global model aggrega-
tion [Wang et al., 2020b].

Many works have been proposed to alleviate the non-1ID
issue by regularizing the local models with the information
of the global model and local models from other clients [Li
et al., 2020; Karimireddy et al., 2020]. These methods, how-
ever, aim to reduce the local model bias and cannot achieve
a significant improvement in scenarios with extreme non-
IDness [Li et al., 2021]. Recent studies have also attempted
to tackle the non-IID problem with data augmentation tech-
niques [Zhu er al., 2021]. Specifically, [Yoon et al., 2020;
Oh et al., 2020] proposed to generate synthetic samples by
mixing the real samples. Nevertheless, without implementing
a privacy-protection mechanism, these methods are suscepti-
ble to data leakage.

Observing the data heterogeneity problem and the privacy
leakage of the existing data augmentation methods for FL,
we propose a novel framework, named Synthetic Data Aided
Federated Learning (SDA-FL), which resolves the non-IID
issue by sharing the differentially private synthetic data. In
this framework, each client pretrains a local differentially pri-
vate generative adversarial network (GAN) [Goodfellow et
al., 2014] to generate synthetic data, thus avoiding sharing
the raw data. These synthetic data are then collected by the
PS to construct a global synthetic dataset. To generate confi-
dent pseudo labels for the synthetic data, we propose an itera-
tive pseudo label update mechanism, in which the PS utilizes
the received local models to update the pseudo labels in each
training round. As the local models are progressively im-
proved over the FL process, the confidence of pseudo labels is
thus enhanced, which is beneficial for the server updates and
local updates in future rounds and in turn results in a well-
performed global model. It is worth noting that the SDA-FL
framework is compatible with many existing FL. methods and
can be applied in both supervised and semi-supervised set-
tings without requiring labels of the real data, which will be
validated in the experiments. Ablation studies are also con-
ducted to illustrate the impact of the privacy budget and the
effectiveness of the key procedures in SDA-FL.

2 Related Works

Non-IID Challenges in Federated Learning The non-1ID
data distribution has been a fundamental obstacle for FL [Zhu
et al., 2021]. This is because the highly skewed data distri-
bution significantly enlarges the local model divergence and
thus deteriorates the performance of the aggregated model



[Zhao er al., 2018; Li and Zhan, 2021]. To mitigate the client
drift caused by the non-IID data, many works proposed to
modify the local objective function with the additional knowl-
edge from the global model and local models of other clients
[Li et al., 2020; Karimireddy et al., 2020]. Such methods,
however, cannot achieve satisfactory performance in many
non-1ID scenarios [Li ef al., 2021]. In addition to training
the same model structure at clients, some studies proposed
to combat the negative impact of non-IID data by adjusting
the local model structures at individual clients [Arivazhagan
et al., 2019; Liang et al., 2020]. Moreover, another thread of
research addressed the data heterogeneity problem by opti-
mizing the operations at the PS, including model aggregation
[Wang et al., 2020b], client selection [Wang et al., 2020a;
Zhang et al., 2021b], client clustering [Ghosh et al., 2020;
Kopparapu et al., 20201, and classifier calibration [Luo et al.,
2021].

Data Augmentation and Privacy Preserving Recently,
FL methods based on some form of data sharing have re-
ceived increasing attention for their prominent performance
[Zhu et al., 2021; Zhao et al., 2018]. A popular approach
is to leverage the Mixup technique [Zhang et al., 2018] for
data augmentation, so that the clients can share the blended
local data and collaboratively construct a new global dataset
to tackle the non-IID issue [Oh et al., 2020; Shin et al., 2020;
Yoon et al., 2020]. However, frequent data exchange may
be vulnerable to privacy attacks. Alternatively, GAN-based
data augmentation [Zhao er al., 2018; Jeong er al., 2018;
Yoshida er al., 2020] was shown to be effective in reducing
the degree of local data imbalance in FL. The general idea is
to train a good generative model at the server based on a few
seed data samples uploaded by the clients. Then this well-
trained generator is downloaded by all clients for local model
updating. Nevertheless, since sending local data samples to
the server violates the data privacy requirement, FedDPGAN
[Zhang et al., 2021a] suggested all the clients collaboratively
train a global generative model based on the FL framework
to supplement the scarce local data. Unfortunately, the GAN
training process also requires frequent exchange of generative
models, leading to extremely high communication costs and
risks of adversarial attacks [Chen et al., 2020].

3 Preliminary

Federated Learning FedAvg [McMahan et al., 2017] is
a representative training algorithm for FL. In each training
round ¢t = 0,1,...,7 — 1, every client in set S; downloads
the global model w; and updates the local model with the lo-
cal dataset D, = (X, Yy) via stochastic gradient descent
(SGD), i.e., wf + wy —n,VI(wf;Dy), k € S;, where S,
is a subset of clients activated in round ¢ and £(-) is the cross-
entropy loss. The updated local models are then sent back to
the PS for weighted aggregation w41 ﬁ D ke S wk "1
These procedures repeat until all the 7" training rounds are
exhausted.

With the iterative local training and global aggregation pro-
cedures, the PS is expected to obtain a well-performed global
model even without access to any local data. However, the
highly skewed data distribution among clients easily leads to

severe local model divergence and consequently degrades the
global model performance [Li et al., 2021]. To solve this is-
sue and avoid sharing the real data, we exploit the generative
adversarial network (GAN) to generate high-quality synthetic
data that can be shared among clients and used to update the
local models and global model.

Differentially Private Generative Adversarial Network
To avoid the gradient vanishing and mode collapse problems
encountered by conventional GAN models [Arjovsky er al.,
20171, the Wasserstein GAN with gradient penalty (WGAN-
GP) [Gulrajani er al., 20171, which penalizes the gradient
norm of the critic to stabilize the training process of the gen-
erator GG and discriminator D, is adopted. With the real data
distribution p,-(z) and input noise distribution of the gener-
ator p,(z), the objective function of the WGAN-GP is ex-
pressed as follows:

i X By, (0) [D(2)] B, (5 [D (G(2))]
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where D is the set of all L-Lipschitz functions, & is a mixture
of the real sample x and the fake sample G(z), and ~ is a
hyper-parameter.

To provide differential privacy protection for the synthetic
data, we inject Gaussian noise into the GAN training process.
The definition of differential privacy (DP) is given as follows:

Definition 1. (Differential privacy [Dwork et al., 2014]): A
random mechanism A, satisfies (e, 6)-differential privacy if
for any output’s subset (S) and any two adjacent datasets M,
M’ the following probability inequality holds:

P (A, (M) € S) < e -P(A, (M) eS)+5, ()

where 0 > 0 and ¢ is the privacy budget indicating the pri-
vacy level, i.e., a smaller value of ¢ implies stronger privacy
protection.

To satisfy the (e, §)-DP, we follow [Xie et al., 2018] and
add Gaussian noise to the updated gradients at each discrim-
inator training iteration. The relationship between the noise
variance and differential privacy is shown as follows:

on =22, [nglog (1> 3)
€ 1)

where ¢ and ng denote the sample probability for each in-
stance and the total batch number of the local dataset, respec-
tively. Besides, according to the post-processing property of
DP [Dwork er al., 2014], any mapping from the differen-
tially private output also satisfies the same-level DP. In other
words, the gradients of the generator, which are obtained via
the backpropagation from the noisy discriminator output, also
meet the (e, 0)-DP.

Based on the training algorithm of WGAN-GP, it is desir-
able to train the generators with the label information, e.g.,
Auxiliary Classifier Generative Adversarial Network (AC-
GAN) [Odena et al., 2017], so that the synthetic data can
be generated with labels. However, considering the label
scarcity problem in the federated semi-supervised settings,
this form of the conditional generative model is unable to
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Figure 1: Overview of the proposed SDA-FL framework. Before the FL process starts, the synthetic data from all clients are sent to the PS
to construct a global synthetic dataset. In each communication round, every client first downloads the global model and updates the pseudo
labels of the synthetic data for local training. The local models are then uploaded to the PS for pseudo label updating and model aggregation.
Lastly, the PS updates the global model w41 with the updated synthetic dataset.

be trained at clients. Therefore, we resort to a more general
paradigm that trains an unsupervised generator, and propose a
pseudo labeling procedure within the FL process to generate
high-confidence pseudo labels.

Pseudo Labeling To generate confident pseudo labels, fol-
lowing [Sohn et al., 2020], only the class with an extremely
high prediction probability is regarded as the pseudo label.
Specifically, with a predefined threshold 7, class ¢ is deemed
as the label of sample « if the output prediction probability
fe(w; ) is the largest among all the classes and also larger
than the threshold 7. Hence, the pseudo labeling function can
be expressed as follows:

) ¢ if max, f.(w;z) > 7,
v {None otherwise. @
With such a pseudo labeling procedure, only the high-quality
synthetic data can output a high prediction probability by
model w and obtain their pseudo labels. As such, the unqual-
ified synthetic samples are filtered, leaving only the qualified
ones to update the local models.

In our proposed FL framework, the local models are used
to predict the pseudo labels for the synthetic data generated
by the corresponding local generators, and the pseudo labels
are continuously updated with the improved local models dur-
ing the FL process, as will be discussed in the next section.

4 Synthetic Data Aided Federated Learning
(SDA-FL)

We now introduce the SDA-FL framework that adopts GAN-
based data augmentation to alleviate the negative effect of the
non-IID data. The overview of the SDA-FL framework is
shown in Figure 1, and key algorithmic innovations built upon
the classic FL framework are elaborated below.

Global Synthetic Dataset Construction At the start of the
FL process, each client pretrains a local GAN model to gen-
erate synthetic samples based on its local data. Then, the syn-
thetic samples are sent to the PS to construct a global shared
synthetic dataset. To effectively leverage the synthetic dataset

for FL, we perform pseudo labeling for these samples, which
is critical for the effectiveness of the SDA-FL framework.

Unlike the prior work [Jeong er al., 2020] where each client
leverages the local models from other clients to annotate
the unlabeled data that encounters a bottleneck with highly
skewed data distribution, we only utilize the local models
to perform pseudo labeling for the corresponding unlabeled
synthetic data. This is because the local model and the corre-
sponding synthetic data are trained with the same local data at
each client, and only the high-quality synthetic samples can
obtain a high prediction probability with this local model. In
addition, the confidence of the pseudo labels heavily relies on
the local model quality, but the under-trained local models at
the beginning of the FL process fail to accomplish this task.
Therefore, we update the pseudo labels for the global shared
synthetic dataset with the stronger local models in each FL
round. Specifically, after receiving the local model w? " 1 in
round ¢, the PS assigns a pseudo label for each unlabeled
synthetic instance x according to (4), i.e., its maximum class
probability f.(wy, ;) is higher than the predefined thresh-
old 7. In this way, we can gradually generate high-quality
pseudo labels for the synthetic data samples.

Synthetic Data Aided Model Training Augmented by the
samples X and confident pseudo labels Y from the shared
synthetic dataset, the data available for local training at differ-
ent clients are approximately homogeneously distributed. To
make good use of the synthetic data, we leverage the Mixup
method proposed in [Zhang et al., 2018], which utilizes a lin-
ear interpolation between the real batch samples (X Yf»’e)

i,e)
and the synthetic batch samples (X.,Y?), to augment the
real data for client ¢ at round ¢:

X! o= MXe + (1-A)X!

i,e7

Y =Y+ (1-MN)Y!

i,e?

&)

where A; follows the Beta distribution Beta(a, o) for each
batch with a € [0,1]. By combining the cross-entropy loss
£(-), the mixup loss for the local model update becomes:

El = Alf(f(xg,e;wt)v?te) + (1 - Al)e(f(xz,ev wt)7Y§,e)'
(6)



Hospital 0 1 2 3 4 5
Data Normal 2,000 COVID-19 750 Pneumonia 250 Normal 2,000 COVID-19 750 Pneumonia 250
COVID-19 750 Pneumonia 250  Normal 2,000 COVID-19 750 Pneumonia 250  Normal 2,000
Table 1: The distribution of the COVID-19 dataset.
#class/client 1 2 3
Algorithm MNIST FashionMNIST CIFAR-10 SVHN MNIST FashionMNIST CIFAR-10 SVHN MNIST FashionMNIST CIFAR-10 SVHN
FedAvg 83.44 16.50 18.36 14.05 97.61 73.50 61.28 81.11 98.42 82.47 79.33 84.18
FedProx 84.17 57.14 11.24 17.53 97.55 75.76 63.16 86.28 98.38 83.43 79.54 92.15
SCAFFOLD 25.39 56.80 12.81 11.64 94.17 70.82 60.78 73.34 96.89 77.68 79.35 80.13
Naivemix 84.35 66.62 14.39 14.35 84.35 79.54 64.39 84.64 98.11 82.09 78.92 92.30
FedMix 90.96 72.11 13.57 16.78 90.96 82.41 65.76 86.61 98.46 84.65 79.49 92.61
SDA-FL 98.19 85.70 37.70 88.46 98.26 86.87 67.89 90.70 98.50 87.06 84.56 93.16

Table 2: Test accuracy (%) of different methods on various datasets.

Algorithm FedAvg FedProx

SCAFFOLD Naivemix

FedMix FedDPGAN FedAvg (IID) SDA-FL

Accuracy 94.05 95.03 94.30

94.14

94.28 94.57 95.19 96.25

Table 3: Test accuracy (%) on the COVID-19 dataset. FedAvg (IID) represents the scenario where the training samples are distributed to all

the clients by average to achieve the IID distribution.

In addition, since the loss in (6) is fragile at the beginning of
the FL process caused by the unconfident pseudo labels, an-
other cross-entropy loss term is introduced for the real batch
samples (X! |, Y! ) to stabilize the training process:

i,e)

by = 0(f(X] swy), YT ,). (7)
Then, SGD is applied to update the local model as follows:
wyy & wf =0V (6 + Aala), @®)

where ), is a hyper-parameter to control the retention of the
local data.

In contrast to traditional FL. where the PS does not have
access to any data to update the global model, the PS in our

framework keeps the entire global synthetic dataset D, and
uses it to train the global model. Particularly, since there is
no real data in the PS, two batches of synthetic samples are
used to update the global model with (8) at each iteration.

Interplay between Model Training and Synthetic Dataset
Updating In each FL round, the aid of synthetic data im-
proves the local models. Since the updated local models are
used for pseudo labeling and the global synthetic dataset con-
struction at the PS, the confidence of the pseudo label is thus
boosted. With the enhanced synthetic dataset, the PS can re-
fine the global model and all the clients can improve their
local models subsequently at the next round. Therefore, the
interplay between model training and synthetic dataset up-
dating at every training round is critical to achieving a well-
performed global model.

SDA-FL vs. Traditional F. From the above descrip-
tions, the proposed SDA-FL framework introduces additional
operations at both the clients and PS. These main inno-
vations contribute to performance improvement with non-
IID data. In traditional FL algorithms [Li et al., 2020;
Karimireddy et al., 2020], clients update their models based
only on the local data, which easily leads to performance
degradation when data are heterogeneous over clients. In
our framework, the local dataset is augmented by the GAN-
based synthetic samples to alleviate the non-IID problem.
Furthermore, the PS in traditional FL algorithms only per-
forms simple model aggregation. In contrast, the PS in the

SDA-FL updates the global model with the high-confidence
synthetic data, which further improves the global model per-
formance. Overall, with a shared synthetic dataset and an it-
erative pseudo labeling mechanism, SDA-FL overcomes the
heterogeneous data distributions among clients and enhances
the global model at the PS. We envision that this framework
can be extended to develop other data augmentation-based
methods for both federated supervised learning and federated
semi-supervised learning.

5 Experiments

In this section, we evaluate the proposed SDA-FL framework
in the presence of non-IID data for both federated supervised
learning and federated semi-supervised learning. The exper-
imental results on different benchmark datasets shall demon-
strate the superiority of the proposed framework over the
baseline methods. Ablation studies are also conducted to il-
lustrate the effectiveness of key procedures in SDA-FL.

5.1 Experiment Setup

Datasets We use four benchmark datasets, including
MNIST [LeCun et al., 1998], FashionMNIST [Xiao et al.,
20171, CIFAR-10 [Krizhevsky, 2009], and SVHN [Netzer et
al., 2011], to evaluate the proposed method. In all the ex-
periments, we equally divide the training samples and assign
them to the clients. Specifically, given the number of classes
per client as C' and total K clients, the whole training dataset
is split into K * C subsets, and each subset only has a single
class. Then all the subsets of data are randomly shuffled and
distributed to the clients. We assume two classes of Fashion-
MNIST data at each client in the ablation studies.

To guarantee the effectiveness of SDA-FL, we set the
hyper-parameters 7y, Ao, and threshold 7 to be 10.0, 1.0, and
0.95, respectively. We deploy ten clients in the experiments,
and all of them are selected in each round. To generate high-
quality synthetic data, we pretrain the generator and discrimi-
nator with 36,000 iterations for CIFAR-10 and 18,000 for the
other datasets in both the federated supervised experiments
and federated semi-supervised experiments. Each client up-
loads 4,000 synthetic samples to the PS to construct the global
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Figure 2: Test accuracy of different methods for federated semi-supervised learning on the MNIST, FashionMNIST, and CIFAR-10 datasets.

synthetic dataset. There are 200 rounds for all the methods.
In each round of SDA-FL, the PS utilizes the synthetic dataset
to update the global model with 10 iterations for CIFAR-10
and 50 iterations for the other datasets. Besides, we set the lo-
cal step size £ = 90 in the federated supervised experiments
and £ = 40 in the federated semi-supervised experiments,
and select the SGD with learning rate o« = 0.03 as the opti-
mizer. In each iteration, the clients update the local models
with batch size B = 64 for the federated supervised exper-
iments and B = 80, including 16 labeled samples and 64
unlabeled samples, for the federated semi-supervised experi-
ments.

Moreover, to evaluate the proposed SDA-FL in practical
applications, we also test all the methods on realistic COVID-
19 dataset [Wang er al., 2020c]. Because of the scarcity of
Pneumonia samples, we only assume six clients in this ex-
periment, each of which has two classes of data as shown in
Table 1. We train the GAN models locally with 4,500 itera-
tions, and update the local models with 30 iterations and the
global model with 10 iterations.

Baselines For the federated supervised experiments, we
compare the SDA-FL framework with FedAvg [McMahan et
al., 20171, FedProx [Li et al., 2020], SCAFFOLD [Karim-
ireddy et al., 2020], Naivemix, and FedMix [Yoon er al.,
2020] on the MNIST, FashionMNIST, CIFAR-10, SVHN,
and COVID-19 datasets. For the COVID-19 dataset, we
also adopt FedDPGAN [Zhang et al., 2021a] for compari-
son, which trains a global GAN to solve the non-IID issue
for medical applications. We report the best results by tun-
ing the hyperparameter p of the regularization term for Fed-
Prox and the mixup ratio A for FedMix. Besides, we ex-
tend our framework to the semi-supervised learning setting on
MNIST, FashionMNIST, and CIFAR-10 datasets by perform-
ing pseudo labeling for the local unlabeled data. We compare
the SDA-FL framework with SemiFL [Diao et al., 2021], Lo-
cal Fixmatch [Sohn er al., 2020], and Local Mixup [Zhang et
al., 2018] to show its effectiveness.

Models We adopt a simple CNN model that consists of two
convolutional layers and two fully-connected layers for the
MNIST and FashionMNIST classification tasks. Meanwhile,
ResNet18 [He et al., 2016] is used for classifying the CIFAR-
10, SVHN, and COVID-19 datasets. To generate qualified
synthetic samples, we use a generator with four deconvolu-
tion layers and a discriminator with four convolutional layers
followed by a fully-connected layer.

5.2 Evaluation

Performance in Federated Supervised Learning With
varying numbers of classes per client, the experimental re-
sults in Table 2 show that our framework outperforms the
baselines by a significant margin, which attributes to the
GAN-based data augmentation that mitigates the detrimen-
tal effects of the data heterogeneity on FL. In the CIFAR-10
experiments, our framework is superior to the Naivemix and
FedMix algorithms at least by 5.0% with three classes of data
at each client, which verifies the competence of the GAN-
based data compared with the mixing data.

In the COVID-19 experiments, besides the better perfor-
mance over the above-mentioned baselines, SDA-FL also sur-
passes FedDPGAN by 1.68% in accuracy. This demonstrates
that the individually trained GANSs generate synthetic data of
higher quality than the global GAN trained based on the FL
framework. Furthermore, in addition to resolving the non-1ID
issue, we find that SDA-FL even outperforms FedAvg (IID)
by 1.14% in accuracy, which shows its advantages for medi-
cal applications.

Performance in Federated Semi-Supervised Learning
The results in Figure 2 show that the SDA-FL framework
achieves faster convergence and better performance than
other algorithms in the federated semi-supervised setting, in-
dicating its robustness and generalizability. Particularly, com-
pared with Semi-FL, our method improves the accuracy by
almost 10% on the FashionMNIST classification task. In the
CIFAR-10 dataset, the baseline methods are not able to train
a usable global model (i.e., with a test accuracy below 40%),
while the proposed framework converges in this challenging
scenario and improves the test accuracy significantly. This
is because the proposed pseudo labeling mechanism can pro-
vide high-quality labels for the synthetic and unlabeled sam-
ples, which are beneficial to the FL process.

Tradeoff between the Privacy Budgets and Model Perfor-
mance To investigate the impact of the privacy budgets,
we evaluate the model performance of the SDA-FL frame-
work under different values of e. The Fréchet inception dis-
tance (FID) is used to measure the quality of the generated
samples, where a smaller FID score indicates better image
quality. As illustrated in Figure 3, a strict privacy budget
€ = b5 increases the FID score compared with that in the
protection-free scenario, which implies quality degradation
of the generated samples. This negative impact on the syn-
thetic samples also leads to around 0.61% and 2.59% accu-
racy drop on the MNIST and FashionMNIST datasets, re-



Datasets FashionMNIST

CIFAR-10 (2class/client)

CIFAR-10 (3class/client)

Algorithms WGAN-GP AC-WGAN-GP WGAN-GP AC-WGAN-GP WGAN-GP AC-WGAN-GP
FID 217.81 220.39 114.56 154.27 129.25 162.16
Accuracy (%) 83.76 82.03 67.89 67.22 84.56 83.53
Table 4: Test accuracy and FID comparison with AC-WGAN-GP on various datasets.
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Figure 3: Test accuracy and FID score with respect to the privacy budget. We run three trails and report the mean and the standard deviation
of the test accuracy. The FID score of the real samples on MNIST, FashionMNIST, and CIFAR-10 are 10.54, 23.17, and 42.70, respectively,

which are much larger than those of the synthetic data.
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spectively. The CIFAR-10 classification task follows a simi-
lar trajectory. Please note that although the proposed SDA-FL
framework is trained under strict privacy requirements, com-
pared with the results in Table 2, it still maintains supreme
performance.

Effectiveness of Server Update and Pseudo Label Update
In comparison to the traditional FL, our framework updates
the global model with the synthetic data at the PS, which has
the potential to further improve the performance. The results
in Figure 4(a) show that the model performance on Fashion-
MNIST reduces by nearly 3% without any server updates.
Nevertheless, updating the global model too much by the PS
may degrade the performance because of the excessive in-
volvement of synthetic data. Empirical results show that the
model trained solely with the synthetic data (i.e., the server
updates the global model for co steps) can only obtain an ac-
curacy of 66.0%, which highlights the necessity of judicious
utilization of the synthetic and local data for model training.
Besides, keeping updating pseudo labels in each round
adopted by the SDA-FL framework for the synthetic data im-
proves the model performance. As illustrated in Figure 4(b),
the accuracy increases with the number of rounds for pseudo
label updating, which demonstrates that the SDA-FL frame-

work can improve the confidence level of the pseudo labels
over the training process. Note that since our framework only
transmits the pseudo labels instead of the samples, the extra
communication overhead is negligible.

Performance Comparison with Auxiliary Classifier
WGAN-GP (AC-WGAN-GP) We can also include the
label information in the GAN training to generate synthetic
data with labels in the federated supervised experiments.
As such, we compare the performance of SDA-FL with
WGAN-GP and AC-WGAN-GP [Odena et al., 2017] on
the FashionMNIST and CIFAR-10 datasets. As shown in
Table 4, with the same number of training iterations for
the generators, WGAN-GP achieves higher synthetic data
quality as implied by the higher FID scores. Although
AC-WGAN-GP can generate labeled synthetic data, WGAN-
GP still performs better in accuracy performance with the
higher-quality synthetic data. This is because our proposed
pseudo labeling mechanism provides confident pseudo labels
for the synthetic data.

6 Conclusions and Discussions

We proposed a new data augmentation method to resolve the
heterogeneous data distribution problem in federated learn-
ing by sharing the differentially private GAN-based syn-
thetic data. To effectively utilize the synthetic data, a novel
framework, named Synthetic Data Aided Federated Learning
(SDA-FL), was developed, which generates and updates con-
fident pseudo labels for the synthetic data samples. Exper-
iment results showed that SDA-FL outperforms many exist-
ing baselines by remarkable margins in both supervised learn-
ing and semi-supervised learning under strict differential pri-
vacy protection. In this study, we limit our attention to the
WGAN-GP and AC-WGAN-GP in SDA-FL. Despite their
performance improvements compared with the baselines, it
is necessary to investigate other GAN structures. In addi-
tion, WGAN-GP requires significant computational resources
at clients. Therefore, to improve the applicability of SDA-FL,
it is important to develop a computation-efficient GAN-based
structure for clients in future research.
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