
HOCC:An ontology for holistic description of
cluster settings ⋆

Yannis Poulakis1,2[0000−0001−9336−5700], Georgios
Fatouros1,3[0000−0001−6843−089X], and George Kousiouris4

and Dimosthenis Kyriazis1[0000−0001−7019−7214]

1 University of Piraeus, Piraeus, Greece
{gpoul, dimos}@unipi.gr

2 Byte Computer, Athens, Greece
3 Innov-Acts Ltd,Nicosia, Cyprus

gfatouros@innov-acts.com
4 Harokopio University, Athens, Greece

gkousiou@hua.gr

Abstract. Ontologies have become the de-facto information represen-
tation method in the semantic web domain, but recently gained popu-
larity in other domains such as cloud computing. In this context, ontolo-
gies enable service discovery, effective comparison and selection of IaaS,
PaaS and SaaS offerings and ease the application deployment process
by tackling what is known as the vendor lock-in problem. In this paper
we propose a novel ontology named HOCC: holistic ontology for effec-
tive cluster comparison. The ontology design process is based on four
different information categories, namely Performance, SLA, cost and en-
vironmental impact. In addition we present our approach for populating,
managing and taking advantage of the proposed ontology as developed
in a real world Kubernetes cluster setting, as well as instantiating the
ontology with example services and data (namely performance aspects
of a serverless function).

Keywords: ontology · cloud-computing · semantic-web · Kubernetes ·
OWL

1 Introduction

The amount of processing power that modern applications require, calls for in-
frastructures that can handle the workload that is generated, efficiently, in a
fault tolerant manner and with respect to their environmental footprint [14]. To
that end the cloud and edge computing paradigms have emerged, providing the
necessary solutions for resource and service provisioning. Edge specifically, addi-
tionally provides the necessary tools to bring processing and storage close to the

⋆ The research leading to the results presented in this paper has received funding
from the European Union’s funded Project PHYSICS under grant agreement no
101017047.

2 Y. Poulakis et al.

data sources while also adding resource mobility and low energy consumption[8].
Usually such clusters are formed via the use of Kubernetes [15], an open-source
cluster management software that also provides alternative distributions for edge
clusters[16].

The plethora of available cluster composition schemata, calls for distinction
of the accompanying advantages and disadvantages of each one. This holds es-
pecially true in multi-cluster scenarios, where several clusters are managed by a
central hub and the options for application or service deployment vary. To tackle
this problem, we propose a formal cluster description schema that is based on
Web Ontology Language (OWL)[4] and a system that enables automated re-
trieval of information from Kubernetes-based clusters, transformation according
to the ontology definitions into named individuals and storage into a graph
database. In essence the main contributions of this paper can be summarized as
follows:

– Design of a novel ontology that is based on four different pillars of informa-
tion (Performance and Technical Properties, SLA Description, Cost Evalu-
ation, Environmental Impact), necessary for a holistic approach in cluster
comparison.

– An architecture that enables population, management and information re-
trieval of the proposed ontology tested against a real world Kubernetes clus-
ter.

In section 2 we present related works in ontologies for cloud computing.
Section 3 analyses our ontology design rationale and section 4 demonstrates the
ontology population method, evaluation and an example of instantiation. Finally
sections 5 concludes our work while also presenting our future work directions.

2 Related Work

One of the earlier works in ontologies that focuses on depicting information on
cloud resources was that of moSAIC [12] in which authors utilize ontologies
to describe functional and non functional aspects of cloud computing to tackle
service negotiation between provider and consumer. In a similar fashion authors
of [17] use an OWL-based ontology to address several features and concepts that
are directly connected to the cloud computing paradigm while also displaying
how this ontology is populated on an Azure Kubernetes cluster through SPARQL
queries. CL-Ontology[6] extends mOSAIC by incorporating additional semantics
to support interoperability of HPC environments in the cloud.

Service Level Agreement (SLA) document description through a common
vocabulary, has also gained attention in the semantics domain. The EU hori-
zon project SLALOM contributed to a formal description of SLA characteris-
tics extending from the 19086-2 standard of the International Organization for
Standardization (ISO). In [3] the authors propose an ontology schema that is
appropriate for depicting SLA terms and their various properties and relation-
ships and a method of automatic information extraction through SLA public
documents via pattern matching.

HOCC:An ontology for holistic description of cluster settings 3

In [13] and [2] the authors utilize the ontology paradigm to assess the service
discovery in the cloud via semantic cloud service representation. In the latter
authors also display experimental results when compared to google searches of
three different specified queries. In a similar fashion in [10] authors propose
an ontology based system that allows for effective queries when searching the
necessary cloud resources for the deployment of a user specified job.

The work of Borisova et al [5] displays several examples on how the TOSCA
ontology modelling schema can be adapted to describe a variety of Kubernetes
specifics. Focusing on the PaaS offerings specifically, authors of [3] define a PaaS
marketplace that is based on the ontology information representation schema.

Authors of [9] present challenges that are presented when modelling cloud
services with ontologies as emerged from the practical application of the UFO-S
ontology. Finally the recent work [1] presents some of current works in the field
and addresses new opportunities that arise with the use of ontologies in cloud
computing

3 Ontology Design

Ontologies in computer science, provide a structural format in order to repre-
sent information about certain entities and their respective properties and rela-
tionships mainly through classes, subclasses, object and data properties. In the
presented ontology we consider the class :Cluster and :ClusterNode direct sub-
classes of owl:thing to be cornerstone entities of this ontology. Throughout this
section, we use the blank ”:” to state terms that are defined in the designed on-
tology. For a more thorough examination of all entities we suggest visualization
of the ontology as uploaded in our github repository 5.

We expect the produced ontology to be populated and utilized in order to
compare and therefore select clusters for application deployment in a holistic
manner. This realization is the base of our design process and leads us to the
distinction of four different pylons that encapsulate necessary aspects for cluster
description. Namely these aspects are the following: (a) Performance and Tech-
nical Properties (b) SLA Description, (c) Cost Evaluation, (d) Environmental
Impact. All of the ontology formulation process has been realized with the use
of the graphical tool Protégé, a staple in ontology modelling.

3.1 Performance and Technical Properties

First we consider in the ontology design different resource characteristics that
will eventually match certain requirements that are derived from the application
modelling process. These characteristics display hardware information (GPU en-
abled nodes, Ram and CPU capabilities, etc.), software information (OS image,
Hypervisor, etc.) and generic properties (Location, IP, etc.)

5 https://github.com/yannispoulakis/HOCC/blob/main/HOCC-Ontology.owl

4 Y. Poulakis et al.

Typically a cluster’s computational capabilities derive from node aspects,
thus we couple the :ClusterNode class with the appropriate properties. Specifi-
cally, nodes are connected with :VirtualUnit or :PhysicalUnit via the :isHoste-
dOn property. The physical unit class aims to cover bare metal nodes in the form
of edge nodes or on premises bare-metal computers, while the virtual unit can
refer to both private or provided by cloud vendors virtual machines. In addition,
the ”unit” couple of classes are connected to the :RawComputationalResource
class which consists the :Ram, :GPU and :CPU subclasses that include the nec-
essary properties for defining the allocatable respective values. We create a series
of object and data properties that link the classes among them and with real
values describing their capabilities. In addition we incorporate the :benchmark
class that aims to describe certain workloads that tested against a cluster to
provide a performance indication.

3.2 SLA

One additional aspect we consider in the design process is the depiction of infor-
mation that is found in service level agreements (SLA), such as the terms and
conditions to be met cloud providers as stated in the respective public documents
of the services they refer to. Differences in how the cloud providers describe sim-
ilar SLA terms leads to inconsistencies on how services are compared, monitored
and in turn selected for a given task. In the presented ontology we select to
describe SLA terms as different classes with a group of properties that depict
their respective information. This includes the definition of metrics, their target
value and the respective rebate in case of agreement breach.

Fig. 1. Ontology formation of the SlA classes and their accompanying data properties.

More specifically we define the parent class :ServiceLevelAgreement, bind to
:CloudService, that is related with terms via the :hasSLATerm to the presented
terms. Each :ServiceLevelAgreementTerm comes with a set of data properties

HOCC:An ontology for holistic description of cluster settings 5

that define target values, type of measurement and definition as presented in
Figure 1.

3.3 Cost

A clear overview of cluster expenses that come with setup, maintenance and
scaling is a key factor to enable cost optimization. For private and hybrid clouds
that utilize bare metal machines as nodes and certain software units, such as
specific OS or hypervisors, we think as appropriate to capture the cost per ac-
quisition of both software and hardware necessary for the cluster realization. For
clusters that are based fully or partially on cloud provider offerings we declare
a set of classes that capture the various pricing models. To that end we define
the physics:CostSchema class which consists of four different subclasses that
represent the basis of different cost schemata. Table 1 gives a formal overview
of the defined specialized classes. The parent class physics:CostSchema is also
assigned certain properties that define the currency used to measure pricing
model, namely physics:withCurrencyValue and physics:withCurrencyType that
are inherited to all subclasses and are of type rdf:string and rdfs:decimal respec-
tively.

Table 1. Subclasses of the specialized CostSchema parent class

Subclasses Usage

:CostPerAcquisition Acquisition cost of hardware and software units.

:CostPerRequest Cost per request. Used in cases such as storage and serverless.

:CostPerTimePeriod Pricing per units of time . Most commonly measured by hour or seconds.

:CostPerSpecialUnit Special case for defining custom units of pricing measurements.

We consider the case of serverless function offering pricing model, as de-
scribed in the Lambda service of AWS, as a use case to validate our modelling
approach. This type of service, combines charges per request and execution time,
thus we opt to allow classes of table 1 to exist jointly. Furthermore the execution
time rates vary depending on the amount of memory and ephemeral storage con-
figured for the function to be executed. To that end we assign four different data
properties to the :CostSchema class, :withFactor, :withFactorValue, :CostAlter-
ationOperation and :CostAlterationValue. Additionally both of these charging
factors take place after a certain threshold has been exceeded thus we define the
data properties :overThreshold and :underThreshold to define certain lower and
upper limits of the respective measurement unit that start the charging process.

3.4 Environmental Impact

Finally we also believe that it is essential to provide a basis for annotating
clusters with the appropriate indicators of their environmental footprint. To that
end we also include two unique classes, :EnergySchema and :ResourceEfficiency,

6 Y. Poulakis et al.

in the ontology. The former comes with a set of subclasses, namely :EnergyUsage,
which is paired with data properties to depict the min, max and average values,
:EnergySource, :RenewableEnergy to declare the percentage of energy that comes
from sustainable sources and finally :PowerUsageEffectiveness which declare the
actual percentage of power that is used for cluster operations. The latter indicates
resource efficiency by capturing the time that a cluster is utilized against idle
time.

4 Ontology Population and Evaluation

In this section we present our proposed architecture for ontology population and
storage as tested in a real world Kubernetes Cluster.

4.1 Ontology Population Pipeline

Figure 2 presents an overview of our proposed architecture, for ontology popula-
tion from kubernetes clusters.We opt to base our development for compatibility
with the Kubernetes ecosystem, due to its widespread adoption, community sup-
port and efficiency.A developed pod, which is the Kubernetes unit of deployment,
is deployed in each of the available clusters that we aim to extract information
from. Afterwards each pod loads the respective cluster configuration through the
Kubernetes python client and makes calls to the Kubernetes API to extract the
available raw information. Deployment of this pod also includes a set of coupled
permissions that are declared according to the Kubernetes Role-based access
control (RBAC) method.

Afterwards, with the use of OWLReady2 6 we process the output of the Ku-
bernetes API calls and define the produced individuals along with their prop-
erties, while following the guidelines of the proposed ontology. In certain cases
this procedure is straight forward such as checking the computational aspects of
a node via the list-nodes command. In other cases we perform a keyword search
to implicitly identify information. Finally we serialize this kind of information
in the Turtle syntax so it can be stored and further used by semantic reasoners.
To accommodate for information that cannot be accessed via the Kubernetes
API, we also include in our code a graphical interface for manual creation of
individuals.

All of our code is available in our GitHub project repository 7. It contains
both the ontology in a raw XML format and the individuals creation methods
wrapped in a python flask service. Additionally the project repository contains
the necessary files for docker image creation and cluster deployment.

4.2 Ontology Evaluation

In this section we present two different ontology evaluation measures that have
been previously used in the literature [11, 7], namely Relationships Richness

6 https://readthedocs.org/projects/owlready2/downloads/pdf/latest/
7 https://github.com/yannispoulakis/HOCC

HOCC:An ontology for holistic description of cluster settings 7

Fig. 2. Proposed pipeline for extracting and managing Kubernetes cluster specific in-
formation according to the ontology design.

(RR) and Attributes Richness (AR). Formally, these metrics are calculated by
equations 1 and 2. The Relationships Richness metric reflects the diversity of
relationships and is the ratio of existing relationships in the ontology divided by
the number of subclasses and relationships. We report this value to be 0.4 for our
ontology. Additionally the Attributes richness defines how many data properties
on average classes have tied to. It is the ratio of all data properties divided by
the number of classes and the respective value for our ontology is 0.6578, which
is slightly higher than other IT related ontologies (0.65 in [7]). The comparison
of the RR indicates a lower value in our case (0.4 compared to 0.55), owed to the
fact that the four different categories of consideration (energy, cost, performance
and SLA) need to be mapped primarily as subclasses. Unfortunately metrics for
the most similar ontologies defined in Section 2 were not available from the
respective publications.

PR =
|P |

|SC|+ |P |
(1)

AR =
|ATT |
|C|

(2)

4.3 Ontology Mapping to A Benchmark Scenario

Finally in figure 3 we display the interconnections that are formed by defining
a benchmark scenario that results to a certain score. Essentially we define a
concept where a serverless function is used for benchmarking reasons and runs

8 Y. Poulakis et al.

on the OpenWhisk platform deployed on ”Cluster1” , a named individual that
corresponds to the class :cluster.

Fig. 3. Example benchmark scenario representation by individuals forming the respec-
tive relationships asserted by the ontology design.

5 Conclusions and Future Work

Throughout this work we have presented a novel ontology design for the char-
acterization of cloud computing services and clusters based on four different
information categories. We have also showcased our approach for populating the
ontology in a real-world scenario that considers Kubernetes formed clusters. We
believe the usage of ontologies in cloud and edge computing for multi dimen-
sional characterization of clusters will play a critical role in selecting services
and cloud resources in a holistic manner. Future work may include optimiza-
tions and extraction methods that may provide further information on cluster
hardware, as well as specific software or configuration abilities of a given cluster.
These may include for example specific policies followed by the cluster owner,
like scheduling or priority capabilities.

References

1. Agbaegbu, J., Arogundade, O.T., Misra, S., Damaševičius, R.: Ontologies in cloud
computing—review and future directions. Future Internet 13(12), 302 (2021)

2. Ali, A., Shamsuddin, S.M., Eassa, F.E.: Ontology-based cloud services represen-
tation. Research Journal of Applied Sciences, Engineering and Technology 8(1),
83–94 (2014)

3. Bassiliades, N., Symeonidis, M., Gouvas, P., Kontopoulos, E., Meditskos, G., Vla-
havas, I.P.: Paasport semantic model: An ontology for a platform-as-a-service se-
mantically interoperable marketplace. Data Knowl. Eng. 113, 81–115 (2018)

HOCC:An ontology for holistic description of cluster settings 9

4. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., Stein, L.A., et al.: Owl web ontology language reference.
W3C recommendation 10(2), 1–53 (2004)

5. Borisova, A., Shvetcova, V., Borisenko, O.: Adaptation of the tosca standard model
for the kubernetes container environment. In: 2020 Ivannikov Memorial Workshop
(IVMEM). pp. 9–14. IEEE (2020)

6. Castañé, G.G., Xiong, H., Dong, D., Morrison, J.P.: An ontology for heterogeneous
resources management interoperability and hpc in the cloud. Future Generation
Computer Systems 88, 373–384 (2018)

7. Hasan, M.M., Kousiouris, G., Anagnostopoulos, D., Stamati, T., Loucopoulos,
P., Nikolaidou, M.: CISMET: A Semantic Ontology Framework for Regulatory-
Requirements-Compliant Information Systems Development and Its Application
in the GDPR Case. International Journal on Semantic Web and Information Sys-
tems (IJSWIS) 17(1), 1–24 (January 2021)

8. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: A
survey. Future Generation Computer Systems 97, 219–235 (2019)

9. Livieri, B., Guarino, N., Zapattore, M., Guizzardi, G., Bochicchio, M., Longo,
A., Nardi, J., Quirino, G., Barcelos, M., Falbo, R.: Ontology-based modeling of
cloud services: Challenges and perspectives. In: Proceedings of Short and Doctoral
Consortium Papers Presented at the 8th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modelling (PoEM 2015), Valencia, Spain, November 10-12,
2015. vol. 1497, pp. 61–70. RWTH (2015)

10. Ma, Y.B., Jang, S.H., Lee, J.S.: Ontology-based resource management for cloud
computing. In: Nguyen, N.T., Kim, C.G., Janiak, A. (eds.) Intelligent Information
and Database Systems. pp. 343–352. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

11. Mazzola, L., Kapahnke, P., Vujic, M., Klusch, M.: Cdm-core: A manufacturing
domain ontology in owl2 for production and maintenance. In: KEOD. pp. 136–143
(2016)

12. Moscato, F., Aversa, R., Di Martino, B., Fortiş, T.F., Munteanu, V.: An analysis
of mosaic ontology for cloud resources annotation. In: 2011 federated conference on
computer science and information systems (FedCSIS). pp. 973–980. IEEE (2011)

13. Rekik, M., Boukadi, K., Ben-Abdallah, H.: Cloud description ontology for service
discovery and selection. In: 2015 10th International Joint Conference on Software
Technologies (ICSOFT). vol. 1, pp. 1–11. IEEE (2015)

14. Siddik, M.A.B., Shehabi, A., Marston, L.: The environmental footprint of data
centers in the united states. Environmental Research Letters 16(6), 064017 (2021)

15. Thurgood, B., Lennon, R.G.: Cloud computing with kubernetes cluster elastic
scaling. In: Proceedings of the 3rd International Conference on Future Networks
and Distributed Systems. pp. 1–7 (2019)

16. Xiong, Y., Sun, Y., Xing, L., Huang, Y.: Extend cloud to edge with kubeedge.
In: 2018 IEEE/ACM Symposium on Edge Computing (SEC). pp. 373–377. IEEE
(2018)

17. Zhang, Q., Haller, A., Wang, Q.: Cocoon: cloud computing ontology for iaas price
and performance comparison. In: International semantic web conference. pp. 325–
341. Springer (2019)

