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Abstract. Synchronized aggregate signature is a special type of signature that all signers have a
synchronized time period and allows aggregating signatures which are generated in the same period.
This signature has a wide range of applications for systems that have a natural reporting period
such as log and sensor data, or blockchain protocol.

In CT-RSA 2016, Pointcheval and Sanders proposed the new randomizable signature scheme. Since
this signature scheme is based on type-3 pairing, this signature achieves a short signature size and
efficient signature verification.
In this paper, we design the Pointchcval-Sanders signature-based synchronized aggregate signa-
ture scheme and prove its security under the generalized Pointcheval-Sanders assumption in the
random oracle model. Our scheme offers the most efficient aggregate signature verification among
synchronized aggregate signature schemes based on bilinear groups.
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1 Introduction

1.1 Background

Aggregate Signature. Aggregate signature originally introduced by Boneh, Gentry, Lynn,
and Shacham [6] allows anyone to compress many signatures produced by different signers on
different messages into a short aggregate signature. The size of an aggregate signature size is
the same as any signature. By verifying an aggregate signature, we can check the validity of all
those individual signatures which are compressed into an aggregate signature.

These attractive features are useful for the internet of things (IoT) system to reduce the stor-
age space for signatures and realize efficient verification of signatures. An aggregate signature
scheme is expected to be used in a wide range of applications such as Border Gateway Proto-
col (BGP) routing [4], certificate chain compression [6], bundling software updates [2], sensor
network data [2], or blockchain protocol [23].

Currently, only three aggregate signature scheme constructions are known. The first con-
struction by Boneh et al. [6] is based on bilinear maps. This scheme can aggregate signatures
as well as already aggregated signatures (i.e., full aggregation) in any order. The security of
this scheme is proven under the co-computational Diffie-Hellman (co-CDH) assumption in the
random oracle model (ROM). However, their scheme has a drawback in that the verification
cost of an aggregate signature is expensive. Concretely, the number of pairing operations in
verification for an aggregate signature is proportional to the number of signatures compressed
into the aggregate signature.

The other schemes are constructed in the standard model (without the ROM). The second
scheme by Hohenberger, Sahai, and Waters [22] is based on multilinear maps. The third scheme
by Hohenberger, Koppula, and Waters [21] is an indistinguishability obfuscation (iO) based

⋆ A preliminary version [41] of this paper is appeared in Information Security and Cryptology ICISC 2022 - 25th
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construction. Since constructing aggregate signature schemes from standard computational as-
sumptions without the ROM is a difficult task, several variants of aggregate signature with
restricted aggregation have been proposed.

Synchronized Aggregate Signature. One variant of aggregate signature is synchronized
aggregate signature. The concept of this signature was proposed by Gentry and Ramzan [16].
They constructed an identity-based aggregate signature that is based on the computational
Diffie-Hellman (CDH) assumption in the ROM.

After their seminal work, Ahn, Green, and Hohenberger [2] revisited their model and pro-
posed a synchronized aggregate signature. In this scheme, all of the signers have a synchronized
time period. For each time period, each signer can sign a message at most once and signa-
tures generated in the same time period only can be compressed into an aggregate signature.
Even though a synchronized aggregate signature scheme has restrictions described above, it is
still useful for systems that have a natural reporting period. (e.g. log data [2], sensor data [2],
blockchain protocols [23])

So far, several synchronized aggregate signature schemes were proposed. Ahn, Green, and
Hohenberger [2] gave a pairing-based based synchronized aggregate signature scheme based on
the CDH assumption without the ROM. Moreover, they also gave an efficient pairing-based based
synchronized aggregate signature scheme whose security is proven under the CDH assumption
in the ROM.

Lee, Lee, and Yung [26] gave a synchronized aggregate signature scheme based on the
Camenisch-Lysyanskaya (CL) signature scheme [9]. The security of this scheme relies on an
interactive assumption called Lysyanskaya-Rivest-Sahai-Wolf (LRSW) assumption [30] in the
ROM. Tezuka and Tanaka [40] revisited their security analysis result and improved it by showing
the security based on a non-interactive assumption called the modified 1-strong Diffie-Hellman-2
(1-MSDH-2) assumption [33] in the ROM.

As for a pairing-free scheme, Hohenberger and Waters [23] proposed the synchronized aggre-
gate signature scheme based on the RSA assumption without the ROM.

Motivation: Efficient Synchronized Aggregate Signature. In pairing-based synchronized
aggregate signature schemes, the scheme by Lee et al. [26] is the most efficient synchronized
aggregate signature scheme. Their scheme offers the smallest number of pairing operations (3
pairing operations) in an aggregate signature verification (See Fig.1). From the viewpoint of the
efficiency of aggregate signature verification, it is desirable to construct a synchronized aggregate
signature scheme with fewer pairing operations for aggregate signature verification.

1.2 Our Result

Our Result. In this paper, we give a new synchronized aggregate signature scheme based on
the Pointcheval-Sanders (PS) signature scheme [32]. The security of our scheme can be proven
under the generalized Pointcheval-Sanders (GPS) assumption [24] in the ROM.

In general, compared to the computation cost of multiplication for elliptic curve points, the
computation of pairing is more costly. To clarify the advantages of our synchronized aggregate
scheme, we compare our scheme with other schemes (See Fig.1).

Comparison with Other Schemes. The scheme BGLS [6] is a full-aggregate signature scheme
that offers optimal public-key size and aggregate signature size. A full-aggregate signature
scheme can be used as a synchronized aggregate signature scheme, with the following trivial
modifications. A message m is changed to a message-period pair (m, t). Aggregation of signa-
tures is only allowed for signatures that are signed in the same time period t. However, if we
use BGLS as a synchronized aggregate signature scheme, n+1 pairing operations are needed for
verifying an aggregate signature where n is the number of aggregated original signatures.
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Scheme Assumption pp pk Agg Agg Ver Pairing CertKey
size size size (Pairing op) type model

ASBGLS
† [6] §3 co-CDH + ROM O(1) 1 2 n+ 1 Type-2 X

SASAGH1 [2] §4 CDH O(k) 1 3 k + 3 Type-3 X

SASAGH2 [2] §A CDH + ROM O(1) 1 3 4 Type-3 X

SASLLY [26] 1-MSDH-2 + ROM O(1) 1 2 3 Type-1 X

SASOurs §4.3 GPS + ROM O(1) 2 2 2 Type-3 X

Fig. 1. Comparison with pairing-based synchronized aggregate signature schemes. In the column of “Assumption”,
“ROM” represents the random oracle model. In the columns of “pp size”, “pk size”, “Agg size” represent the
number of elements in a public parameter pp, a public key pk, and an aggregate signature, respectively. In the
column of “Agg Ver (Pairing op)” represents the number of pairing operations in the verification of an aggregate
signature. In the column of “CertKey model ”, “X” represents that the EUF-CMA security of the corresponding
scheme is proven in the certified-key model.
In ASBGLS, n represents the number of original signatures which are aggregated into an aggregate signature.
ASBGLS can be used as a synchronized aggregate signature scheme, with the following trivial modifications. A
message m is changed to a message-period pair (m, t). Aggregation of signature is only allowed for signatures
that are signed in the same time period t. An aggregate signature of ASBGLS is composed 1 element, but in other
synchronized aggregate signature schemes, information of time period t is included in an aggregate signature.
For fair comparison to other synchronized aggregate signature schemes, we include t into an aggregate signature
and count the number of elements in an aggregate signature as 2. Security of ASBGLS simply can be proven under
the co-CDH assumption in the ROM under the aggregation restriction that signatures for the same message
cannot be aggregated. Without this aggregation restriction, ASBGLS can be used as a multi-signature, however,
it falls victim to the rogue key attack which is known as a notorious attack for multi-signature schemes [5]. In
synchronized aggregate signature has a restriction that each signer issues a signature one-time for each period,
but it allows aggregating signatures on the same message. To prevent the rogue key attack, we should pose the
certified-key model for ASBGLS. In SASAGH1 has a ℓ× k-bits message space (k chunks of ℓ-bits message).

The scheme SASAGH1 [2] is a synchronized aggregate signature scheme in the standard model.
In SASAGH1, message space is ℓ × k-bits message space. (k chunks of ℓ-bits strings). If we set
k = 1 in SASAGH1, k + 3 = 4 pairing operations is needed for verifying an aggregate signature.

The SASAGH2 [2] and SASLLY [26] are synchronized aggregate signature schemes in the random
oracle model. In both schemes, a public key is composed of 1 group element. SASAGH2 needs 4
paring operations and SASLLY needs 3 paring operations for verifying an aggregate signature,
respectively. Although a public key of our scheme is composed of 2 group elements, our scheme
only needs 2 paring operations for verifying an aggregate signature.

Thus, compared with existing paring-based synchronized aggregate signature schemes, our
scheme offers the fewest paring operations in a verification of an aggregate signature. Our scheme
offers the most efficient aggregate signature verification among synchronized aggregate signature
schemes based on bilinear groups.

1.3 Technical Overview

How to Construct Our Signature Scheme. The core idea of our construction is based on the
combination of randomizable signature, the “public-key sharing technique” and the “randomness
re-use technique” [28]. These technique are used to construct variants of aggregate signatures
scheme [28,37,26,11].

Lee et al [26] used these techniques to construct a synchronized aggregate signatures scheme
based on the CL signature scheme which is a randomizable signature scheme. The security of
these schemes can be proven by the security of the original (CL) signature scheme.

Problem in Security Proof. However, it is not clear that it is possible to design a PS
signature-based synchronized aggregate signature scheme with provable security. Since existing
CL signature-based synchronized aggregate signature scheme SASLLY [26] is given in only type-1

3



pairing, a type-3 pairing variant of CL signature-based synchronized aggregate signature scheme
is not known.

Our first attempt is to apply the public-key sharing technique and the randomness re-use
technique to the PS signature scheme which is also a randomizable signature scheme. In fact, we
obtain the PS signature-based synchronized signature scheme but we fail to prove our scheme
from the EUF-CMA security of the original (PS) signature scheme.

Now, we briefly explain the reason why the security proof technique in [26] fails in our
scheme. In SASLLY, a group element of a public-key and group elements of signature belong to
the same group G. This fact allows signature simulation in the security proof of SASLLY scheme.
In the security proof of SASLLY, by using the programmability of the random oracle model, a
signature is generated by computing multiplications of public-key.

By contrast, in our construction, group elements of signature and a group element of signature
belong to different groups (See Fig. 7). Group elements of a public-key (X̃, Ỹ ) belong to the
group G̃ and a group element of signature B belongs to the group G. If we try to generate a
signature by multiplying public-key elements X̃ and Ỹ , the result of the multiplication does not
belong to G. Thus, the security proof technique by [26] cannot be applied to our scheme.

Our Approach for Security Proof. To prove the security of our scheme, we use the general-
ized PS (GPS) assumption [24] which is a variant of the PS assumption [32]. These assumptions
are classified into interactive assumptions. The interactive assumption is that the computa-
tional problem is difficult for all probabilistic polynomial time adversary which tries to solve the
problem even if oracle queries that are related to the problem are allowed.

Briefly, the difference between the PS assumption and the GPS assumption is equipped
oracles (See Assumption 1 and Assumption 2). The GPS assumption is obtained by changing
the oracle equipped with the PS assumption as follows. We divide the computation of the
equipped oracle in the PS assumption into 2 computation steps and replace the equipped oracle
with 2 oracles that compute each step. By using 2 oracles in the GPS assumption, we prove the
security of our scheme under the GPS assumption in the random oracle model.

1.4 Related Works

Variants of Aggregate Signature. An aggregate signature can be categorized into various
types from the point of view of aggregation restriction. The full aggregate signature proposed by
Boneh et. al [6] allows any user to aggregate signatures generated by different signers. Moreover,
this scheme allows us to aggregate individual signatures as well as already aggregated signatures
in any order.

Lysyanskaya, Micali, Reyzin, and Shacham [29] proposed sequential aggregate signature. This
signature scheme allows a signer to add his signature to an aggregate signature in sequential
order.

Synchronized aggregate signature scheme [16,2] allows signers to generate at most one sig-
nature for each period and aggregate signatures generated in the same period into an aggregate
signature.

Chalkias, Garillot, Kondi, and Nikolaenko [10] proposed the notion of half-aggregation. Half-
aggregation allows compressing signatures into an aggregate signature that has half size of the
total signature size.

Hartung, Kaidel, Koch, Koch, and Rup [20] proposed fault-tolerant aggregate signature. In
this signature, as long as the number of invalid signatures aggregated does not exceed a certain
bound, a verification algorithm can determine a subset of all messages belonging to an aggregate
that were signed correctly.

Goyal and Vaikuntanathan [19] proposed locally verifiable aggregate signature. In this scheme,
given an aggregate signature corresponding to the set of M of n messages, a local verification
algorithm can check whether a particular message m is in the set M . Moreover, the runtime of a
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local verification algorithm is independent of N and the local verification algorithm can be run
without knowledge of the entire set M .

Pointcheval-Sanders Signature. The Pointcheval-Sanders (PS) signature scheme [32] is a
randomizable signature scheme that allows anyone to refresh a valid signature σ on a message m
to a new valid signature σ′ on the same message m. Compared to the Camenisch-Lysyanskaya
signature scheme [9] which is also a randomizable signature scheme, this scheme offers a short
signature size.

Security of this signature scheme was proven under the interactive assumption called the
PS assumption [32]. In [33], Pointcheval and Sanders introduced the non-interactive assumption
called the modified q-strong Diffie-Hellman-1 (q-MSDH-1) assumption. They proved the weak-
EUF-CMA security of the PS signature scheme from the q-MSDH-1 assumption.

The PS signature scheme (the PS assumption) and its variant are important starting points
to construct signature schemes with functionalities. (e.g. sequential aggregate signature [32,31],
redactable signature [31,34], threshold signature [3], group signature [13,24,25,35,36], thresh-
old group signature [8], multi-signature [8], updatable signature [12]) Moreover, relationships
between the PS signature and the structure-preserving signature have been studied.

Gardafi [18] introduced the notion of a partially structure-preserving signature. In a structure-
preserving signature scheme [1], all the messages, signatures, and public keys are group elements.
Partially-preserving signature is the same with the exception that the message space is Zn

p where
n is an integer and p is a prime. They further proposed the notion of linear-massage strongly
partially structure-preserving signature where the message is embedded in a linear manner. This
signature class includes the CL signature scheme and the PS signature scheme. They proved some
impossibility results and lower bound results for a linear-massage strongly partially structure-
preserving signature and gave a generic transformation from a linear-massage strongly partially
structure-preserving signature scheme to a structure-preserving signature scheme.

In recent work by Sedaghat, Slamanig, Kohlweiss, and Preneel [38], they introduced the
notion of a message-indexed structure-preserving signature which is a variant of a structure-
preserving signature whose message is parameterized by a message indexing function. They
gave a message-indexed structure-preserving signature scheme whose construction is inspired by
the PS signature scheme and the structure-signature scheme by Ghadafi [17]. Moreover, they
proposed a notion of a structure-preserving threshold signature and gave a construction based
on a message-indexed structure-preserving signature scheme.

1.5 Road Map

In Section 2, we recall pairing groups and a digital signature. In Section 3, we review synchronized
aggregate signature scheme and its security. In Section 4, we review the PS signature scheme,
provide a high-level idea of our construction, and give our synchronized aggregate signature and
prove its security.

2 Preliminaries

In this section, we introduce notations and review pairing groups and the Pointcheval Sanders
assumption. Then, we review a digital signature scheme.

Notations. Let 1λ be the security parameter. A function f is negligible in k if f(k) ≤ 2−ω(log k).

For a positive integer n, we define [n] := {1, . . . , n}. For a finite set S, s
$
←− S represents that an

element s is chosen from S uniformly at random. For a group G, we define G
∗ := G\{1G}. For

an algorithm A, y ← A(x) denotes that the algorithm A outputs y on input x. We abbreviate
probabilistic polynomial time as PPT.
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2.1 Bilinear Group

A pairing group is a tuple BG = (p,G, G̃,GT , e) where G, G̃ and GT are cyclic group of prime
order p and e : G × G̃ → GT is an efficient computable, non-degenerating bilinear map. (i.e., e
satisfies the following properties.)

1. For all X ∈ G, Ỹ ∈ G̃ and a, b ∈ Zp, then e(Xa, Ỹ b) = e(X, Ỹ )ab.

2. For all G ∈ G
∗, G̃ ∈ G̃

∗, e(G, G̃) 6= 1GT
.

Type-3 pairing groups [15] are pairing groups which satisfy G 6= G̃ and there is no efficiently
computable homomophism from G̃ to G.

We introduce a type-3 bilinear group generator. A type-3 bilinear group generator BG is an
algorithm that takes as an input a security parameter 1λ. Then, it returns the descriptions of
an asymmetric pairing BG = (p,G, G̃,GT , e) where p is a λ-bits prime.

Pointcheval and Sanders [32] introduced the interactive assumption called Pointcheval-Sanders
(PS) assumption. This assumption holds in the generic group model [39].

Assumption 1 (PS Assumption [32]). Let BG be a type-3 bilinear group generator and A

be a PPT algorithm. The Pointcheval-Sanders (PS) assumption over BG is defined by the game
PSBG in Fig.2.

GAME PSA
BG(λ) :

Q← {}, BG = (p,G, G̃,GT , e)← BG(1λ), G
$
←− G

∗, G̃
$
←− G̃

∗,

x, y
$
←− Z

∗
p, X̃ ← G̃x, Ỹ ← G̃y, (A∗, B∗,m∗)← AOx,y(·)(BG, G∗, G̃∗, X̃, Ỹ )

If m∗ /∈ Q ∧A∗ 6= 1G ∧B∗ = (A∗)x+m∗·y, return 1. Otherwise, return 0

Ox,y(m) :

Q← Q ∪ {m}, A
$
←− G

∗, return (A,Ax+m·y)

Fig. 2. The game PSA
BG.

The advantage of an adversary A in the game PSBG is defined by AdvPSBG,A(λ) := Pr[1 ⇐

PSABG(λ)]. We say that the PS assumption holds if AdvPSBG,A(λ) is negligible in λ for all PPT
adversaries A.

Kim, Lee, Abdalla, and Park proposed the generalized Pointcheval-Sanders (GPS) assump-
tion [24]. This assumption is a modification of the PS assumption in that the oracle Ox,y(·) in
the PS assumption is divided into the following two oracles. OGPS

0 samples a group element A
and OGPS

1 computes B ← Ax+m·y where (A,m) is given to OGPS
1 as an input.

Assumption 2 (GPS Assumption [24]). Let BG be a type-3 bilinear group generator and A

be a PPT algorithm. The generalized Pointcheval-Sanders (GPS) assumption over BG is defined
by the game GPSBG in Fig.3.

The advantage of an adversary A in the game GPSBG is defined by AdvGPSBG,A(λ) := Pr[1 ⇐

GPSABG(λ)]. We say that the GPS assumption holds if AdvGPSBG,A(λ) is negligible in λ for all PPT
adversaries A.

Kim et al. [24] proved that the GPS assumption holds in the generic group model. Moreover,
Kim, Sanders, Abdalla, and Park [25] analyzed the relationship among the PS assumption, the
GPS assumption, and the symmetric discrete logarithm assumption. More precisely, from their
result, the following facts are clarified.

– If the GPS assumption holds, the PS assumption holds.
– If the symmetric discrete logarithm assumption holds, the GPS assumption holds in the

algebraic group model [14].
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GAME GPSA
BG(λ) :

Q0, Q1 ← {}, BG = (p,G, G̃,GT , e)← BG(1λ), G
$
←− G

∗, G̃
$
←− G̃

∗,

x, y
$
←− Z

∗
p, X̃ ← G̃x, Ỹ ← G̃y , (A∗, B∗,m∗)← AOGPS

0 (),OGPS
1 (·,·)(BG, G, G̃, X̃, Ỹ )

If (·, m∗) /∈ Q1 ∧ A∗ 6= 1G ∧B∗ = (A∗)x+m∗·y , return 1. Otherwise, return 0

OGPS
0 () :

A
$
←− G

∗, Q0 ← Q0 ∪ {A}, return A

OGPS
1 (A,m ∈ Zp) :
If (A /∈ Q0 ∨ (A, ·) ∈ Q1), return ⊥.
B ← Ax+m·y, Q1 ← Q1 ∪ {(A,m)}, return B.

Fig. 3. The game GPSA
BG.

2.2 Digital Signature Scheme

We review a digital signature scheme and its security notion.

Definition 1 (Digital Signature Scheme). A digital signature scheme DS consists of fol-
lowing four algorithms (Setup,KGen,Sign,Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It returns the public
parameter pp. In this work, we assume that pp defines a message space and represents this
space byMpp. We omit a public parameter pp in the input of all algorithms except for KGen.

– KGen(pp) : A key-generation algorithm takes as an input a public parameter pp. It returns a
public key pk and a secret key sk.

– Sign(sk,m) : A signing algorithm takes as an input a secret key sk and a message m. It
returns a signature σ.

– Verify(pk,m, σ) : A verification algorithm takes as an input a public key pk, a message m,
and a signature σ. It returns a bit b ∈ {0, 1}.

Correctness. DS satisfies correctness if for all λ ∈ N, pp ← Setup(1λ) for all m ∈ Mpp,
(pk, sk)← KGen(pp), and σ ← Sign(sk,m), Verify(pk,m, σ) = 1 holds.

We review a security notion called the existentially unforgeable under chosen message attacks
(EUF-CMA) security for digital signature.

Definition 2 (EUF-CMA Security). The existentially unforgeable under chosen message
attacks (EUF-CMA) security of a digital signature scheme DS is defined as Fig. 4.

GAME EUF-CMADS
A :

Q← {}, pp← Setup(1λ), (pk, sk)← KGen(pp), (m∗, σ∗)← AOSign(·)(pp, pk)
If Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q, return 1. Otherwise return 0.

Oracle OSign(m) :
Q← Q ∪ {m}, σ ← Sign(sk,m), return σ.

Fig. 4. The EUF-CMA security game EUF-CMADS
A .

The advantage of an adversary A for the EUF-CMA security game is defined by AdvEUF-CMA
DS,A :=

Pr[EUF-CMADS
A ⇒ 1]. DS satisfies EUF-CMA security if for all PPT adversaries A, AdvEUF-CMA

DS,A

is negligible in λ.

3 Synchronized Aggregate Signature

In this section, we review a synchronized aggregate signature scheme and it security model.

7



3.1 Synchronized Aggregate Signature Scheme

An aggregate signature [6] allows us to compress an arbitrary number of individual signatures
into a short aggregate signature. A synchronized aggregate signature [2] is a variant of aggregate
signature that all signers have a synchronized time clock or has an access to the public current
time period. For each time period t, each signer can sign a message at most once and anyone can
aggregate signatures generated by different signers in the same period t. A generated aggregate
signature is the same size as an individual signature.

Now, we review a definiton of a synchronized aggregate signature.

Definition 3 (Synchronized Aggregate Signature Scheme [2,16]). A synchronized aggre-
gate signature scheme SAS for a bounded number of periods is a tuple of algorithms (Setup,KGen,
Sign,Verify,Agg,AVer).

– Setup(1λ, 1T ) : A setup algorithm takes as an input a security parameter λ and the time
period bound T . It returns the public parameter pp. We assume that pp defines the message
space Mpp. We omit a public parameter pp in the input of all algorithms except for KGen.

– KGen(pp) : A key-generation algorithm takes as an input a public parameter pp. It returns a
public key pk and a secret key sk.

– Sign(sk, t,m) : A signing algorithm takes as an input a secret key sk, a time period t ≤ T ,
and a message m. It returns a signature σ. We assume that the information of time period
t is contained in a signature σ.

– Verify(pk,m, σ) : A verification algorithm takes as an input a public key pk, a message m,
and a signature σ. It returns a bit b ∈ {0, 1}.

– Agg((pki,mi, σi)i∈[ℓ]) : An aggregation algorithm takes as an input a list of tuple (pki,mi, σi)i∈[ℓ].
It return either an aggregate signature Σ or ⊥. We assume that the information of time pe-
riod t is contained in an aggregate signature Σ.

– AVer((pki,mi)i∈[ℓ], Σ) : An aggregate signature verification algorithm takes as an input a list
of tuple (pki,mi)i∈[ℓ] and an aggregate signature Σ. It returns a bit b ∈ {0, 1}.

Correctness. SAS satisfies correctness if for all λ ∈ N, T ∈ N, pp ← Setup(1λ, 1T ), for any
finite sequence of key pairs (pk1, sk1), . . . (pkℓ, skℓ) ← KGen(pp) where pki are all distinct, for
any time period t ≤ T , for any sequence of messages (m1, . . . mℓ) ∈ M

ℓ
pp, σi ← Sign(ski, t,mi)

for i ∈ [ℓ], Σ ← Agg((pki,mi, σi)i∈[ℓ]), we have

Verify(pki,mi, σi) = 1 for all i ∈ [ℓ] ∧ AVer((pki,mi)i∈[ℓ], Σ) = 1.

3.2 Security for Synchronized Aggregate Signature

We review a security model called the existentially unforgeable under chosen message attacks
(EUF-CMA) security in the certified-key model.

Gentry and Ramzan [16] introduced the existentially unforgeable under chosen message
attacks (EUF-CMA) security for synchronized aggregate signature. In this security model, a
public parameter pp and a challenge public key pk∗ are given to an adversary which tries to
forge an aggregate signature without secret key sk∗. For each period t, the adversary allows
to access signing oracle OSign and obtain a signature for an arbitrary message. This security
guarantees that it is hard for an adversary to forge an aggregate signature that is valid and non-
trivial. Gentry and Ramzan [16] constructed an identity-based synchronized aggregate signature
scheme.

Ahn, Green, and Hohenberger [2] introduced the certified-key model for a synchronized
aggregate signature. In this model, signers must prove that a tuple of keys (pk, sk) is generated
honestly by an algorithm KGen. To prove the honest generation of a public key pk, the signer
(adversaries for EUF-CMA) must submit a tuple (pk, sk) to the certification oracle OCert. Now,
we review the EUF-CMA security in the certified-key model.
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Definition 4 (EUF-CMA Security in the Certified-Key Model [2,26]). The existentially
unforgeable under chosen message attacks (EUF-CMA) security of a synchronized aggregate
signature scheme SAS in the certified-key model is defined as Fig. 5.

GAME EUF-CMASAS
A :

Q← {}, L← {}, t← 1, pp← Setup(1λ), (pk∗, sk∗)← KGen(pp),

((pk∗i ,m
∗
i )i∈[ℓ∗], Σ

∗)← AOCert(·,·),OSign(·,·)(pp, pk∗)
If (SAS.AVer((pk∗i ,m

∗
i )i∈[ℓ∗], Σ

∗) = 1)
∧ (for all i ∈ [ℓ∗] such that pk∗j 6= pk∗, pk∗j ∈ L)
∧ (pk∗j∗ = pk∗ ∧m∗

j∗ /∈ Q for some j∗ ∈ [ℓ∗]), return 1.
Otherwise return 0.

Oracle OCert(pk, sk) :
If the key pair (pk, sk) is valid, L← L ∪ {pk} and return “accept”.
Otherwise, return “reject”.

Oracle OSign(inst,m) :
If inst = skip, t← t+ 1.
Otherwise, Q← Q ∪ {m}, σ ← SAS.Sign(sk∗, t,m), t← t+ 1, return σ.

Fig. 5. The EUF-CMA security game in the certified-key model EUF-CMASAS
A .

The advantage of an adversary A for the EUF-CMA security game in the certified-key model
is defined by AdvEUF-CMA

SAS,A := Pr[EUF-CMASAS
A ⇒ 1]. SAS satisfies EUF-CMA security in the

certified-key model if for all PPT adversaries A, AdvEUF-CMA
SAS,A is negligible in λ.

4 PS Signature-Based Synchronized Aggregate Signature

In this section, we review the Pointcheval-Sanders (PS) signature scheme [32]. Then, we give a
high-level idea of our synchronized aggregate signature scheme from the PS signature scheme
and give our synchronized aggregate signature scheme. Finally, we prove the security of our
scheme from the EUF-CMA security of the PS signature scheme in the ROM.

4.1 Pointcheval-Sanders Signature Scheme [32]

Pointcheval and Sanders [32] proposed a short randomizable signature scheme. We review the
single-message Pointcheval-Sanders (PS) signature scheme DSPS = (SetupPS,KGenPS,SignPS,VerifyPS).
The construction of their scheme is described in Fig.6.

SetupPS(1
λ) :

BG = (p,G, G̃,GT , e)← BG(1λ), return pp← BG.
KGenPS(pp) :

G̃
$
←− G̃

∗, x, y
$
←− Z

∗
p, X̃ ← G̃x, Ỹ ← G̃y, return (pk, sk)← ((G̃, X̃, Ỹ ), (x, y)).

SignPS(sk = (x, y),m) :

A
$
←− G

∗, B ← Ax+m·y, return σ ← (A,B).

VerifyPS(pk = (G̃, X̃, Ỹ ),m, σ = (A,B)) :

If A 6= 1G ∧ e(A, X̃Ỹ m) = e(B, G̃), return 1. Otherwise return 0.

Fig. 6. The single-message PS signature scheme DSPS.

Theorem 1 ([32]). If the Pointcheval-Sanders (PS) assumption holds, DSPS satisfies the EUF-CMA
security.
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4.2 High-Level Idea of Our Construction

We give a high-level idea of our synchronized-aggregate signature construction from the PS
signature scheme DSPS. Let (pki, ski) = ((G̃i, X̃i, Ỹi), (xi, yi)) be a key pair of the signer i in
DSPS. The signature σi on a message mi signed by ski is formed as σi = (Ai, Bi = Axi+mi·yi

i )

where Ai
$
←− G

∗.
To construct our synchronized-aggregate signature, we apply the “public-key sharing tech-

nique” and the “randomness re-use technique” [28]. These techniques are used to construct
variants of aggregate signatures [28,37,26,11,40]. We explain how to apply these techniques to
DSPS.

First, we consider applying the “public-key sharing technique”. In this technique, one of
element in public key of underlying scheme is replaced by the public parameter. We change
pki as (X̃i, Ỹi) and force signers to use same G̃i. That is, we include G̃ = G̃i into the public
parameter of the scheme.

Second, we consider applying the “randomness re-use technique”. This technique forces all
signers to use the same randomness to sign a message. If all of signer share same Ai, a signature
σ on a message mi by each signer i is formed as (A,Bi = Axi+mi·yi). Then, we can compress

signatures {σi}i∈[ℓ] into an aggregate signature Σ = (A,
∏

i∈[ℓ]Bi = A
∑

i∈[ℓ] (xi+mi·yi)).
To share the same randomness A to all signers for each time period t, we change A to H1(t)

where H1 : [T ] → G
∗ is a hash function. Hashing the time as group element has been used to

construct variants of aggregate signature schemes [26,27]. Moreover, to prove the security, we
modify mi to H2(t,mi) where H2 : [T ]× {0, 1}

∗ → Zp is a hash function.

4.3 Our Synchronized Aggregate Signature Scheme

We describe our synchronized aggregate signature scheme SASOurs = (SetupOurs,KGenOurs,SignOurs,
VerifyOurs,AggOurs,AVerOurs). The construction of our synchronized aggregate signature scheme
is described in Fig.7.

SetupOurs(1
λ, 1T ) :

BG = (p,G, G̃,GT , e)← BG(1λ), G̃
$
←− G̃

∗.
Choose hash functions: H1 : [T ]→ G

∗, H2 : [T ]× {0, 1}∗ → Zp.

Return pp← (BG, G̃,H1,H2).
KGenOurs(pp) :

x, y
$
←− Z

∗
p, X̃ ← G̃x, Ỹ ← G̃y , return (pk, sk)← ((X̃, Ỹ ), (x, y)).

SignOurs(sk = (x, y), t,m) :

m′ ← H2(t,m), B ← H1(t)
x+m′·y, return (B, t).

VerifyOurs(pk = (X̃, Ỹ ),m, σ) :
m′ ← H2(t,m), parse σ as (B, t).

If e(H1(t), X̃Ỹ m′

) = e(B, G̃), return 1. Otherwise return 0.
AggOurs((pki, mi, σi)i∈[ℓ]) :

For i = 1 to ℓ, parse σi as (Bi, ti).
If there exists i ∈ {2, . . . , ℓ} such that ti 6= t1, return ⊥.
If there exists (i, j) ∈ [ℓ]× [ℓ] such that i 6= j ∧ pki = pkj , return ⊥.
If there exists i ∈ [ℓ] suth that VerifyOurs(pki,mi, σi) 6= 0, return ⊥.

B′ ←
∏ℓ

i=1 Bi, return Σ ← (B′, t).
AVerOurs((pki,mi)i∈[ℓ], Σ) :

There exists (i, j) ∈ [ℓ]× [ℓ] such that i 6= j ∧ pki = pkj , return 0.
For i = 1 to ℓ, m′

i ← H2(t,mi).
Parse Σ as (B′, t).

If e(H1(t), (
∏ℓ

i=1 X̃iỸi

m′
i)) = e(B′, G̃), return 1. Otherwise return 0.

Fig. 7. Our synchronized aggregate signature scheme SASOurs.
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Correctness. We confirm the correctness of our scheme SASOurs. Let pp ← SetupOurs(1
λ, 1T ),

t ∈ [T ], (pki, ski) ← KGenOurs(pp) for i ∈ [ℓ] and σi ← SignOurs(ski, t,mi) for i ∈ [ℓ] where
pki are all distinct. First, we check the correctness of a non-aggregated signature. For each
i ∈ [ℓ], Bi = H1(t)

xi+H2(t,mi)·yi holds where σi = (Bi, t) and ski = (xi, yi). By these fact,

e(H1(t), X̃iỸi

H2(t,mi)
) = e(Bi, G̃) holds where pki = (X̃i, Ỹi). Thus, we can see that the correct-

ness of a non-aggregated signature σi holds.
Next, we check the correctness of an aggregate signature. LetΣ = (B′, t)← AggOurs((pki,mi, σi)i∈[ℓ]).

Then, B′ =
∏ℓ

i=1Bi =
∏ℓ

i=1(H1(t)
xi+H2(t,mi)·yi) = H1(t)

∑ℓ
i=1(xi+H2(t,mi)·yi) holds. By these fact,

e(H1(t),
∏ℓ

i=1(X̃iỸi

H2(t,mi)
)) = e(H1(t), G̃

∑ℓ
i=1(xi+H2(t,mi)·yi)) = e(Bi, G̃) holds. Thus, we can see

that the correctness of aggregate signature Σ holds.

4.4 Security Analysis

As explained in Section 1.3, security proof technique by Lee et al. [26] cannot be applicable.
Instead, we prove the EUF-CMA security of our scheme SASOurs from the GSP assumption.

Theorem 2. Let H1,H2 be a hash function of SASOurs in Fig.6 and T is a polynomial in λ. If
the GPS assumption holds and H1,H2 are modeled as the random oracle, our scheme SASOurs

satisfies the EUF-CMA security in the certified-key model.

Proof. Let A be an EUF-CMA security game adversary of the SASOurs scheme with qH2 hash
queries to OH2 . We construct an adversary B for the GPS security game of BGGPS by using A.
The construction of B is given in Fig.8.

We confirm that if B does not abort, B simulates the EUF-CMA game for SASOurs. Now, we
discuss the distribution of pp∗, pk∗, output of oracles OCert, OH1 , OH2 , and OSign

– Distribution of pp∗ and pk∗: It is clear that B simulates pp and pk in the EUF-CMA game
for the SASOurs.

– Output of OCert: It is clear that B simulates OCert in the EUF-CMA game for the SASOurs

in the certified-key model.
– Output of OH1: In the original game, hash values of H1 are chosen from G

∗ uniformly
at random. In the simulation of B, the hash value H(ti) is set by Ai ← O

GPS
0 . Since OGPS

0

samples Ai from G
∗ uniformly at random, B perfectly simulates OH1 .

– Output of OH2: It is clear that B simulates OH2 .
– Output of OSign: In the simulation of B, by the programming of OH1 and OH2 , H1(t) =

A and H2(t,mj) = m′
(t,j) hold. If B 6= ⊥, OGPS

1 (A,m′
(t,j)) returns B = Ax · A

m′
(t,j)

·y
=

H1(t)
x+H2(t,mj )·y. Thus if B does not abort, B simulate OSign.

From the above discussion, we can see that B does not abort, B can simulate the EUF-CMA
game for SASOurs.

Second, we confirm that if A successfully output a valid forgery ((pk∗i ,m
∗
i )i∈[ℓ∗], Σ

∗) of
SASOurs, B can extract a solution for the GPS problem. Let ((pk∗i ,m

∗
i )i∈[ℓ∗], Σ

∗) be a valid
forgery output by A. Then there exists j∗ ∈ [ℓ∗] such that pk∗j∗ = pk∗. By the verification of
AVerOurs,

e(H1(t
∗), (

ℓ∏

i=1

X̃iỸi

H2(t∗,m∗
i ))) = e(B∗′, G̃)

holds. If B does not abort in the procedure If m∗
j∗

′ ∈ C, then abort. in Fig.8, m∗
j∗

′ ∈ C has not

been queried to OGPS
1 .

We can see that B∗′ = A′
∑ℓ∗

i=1(x
∗
i+y∗i ·m

∗
i
′) holds where (xi, yi) = sk∗i is a secret key corre-

sponding to pk∗i . In the certified-key model, since B knows all {sk∗i }i∈[ℓ∗]\{j∗}, B can compute
the following.
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BOGPS
0 (),OGPS

1 (·,·)(BG, G, G̃, X̃∗, Ỹ ∗)
T1 ← {}, T2 ← {}, Q← {}, C ← {}, L← {}, K ← {},

pp∗ ← (BG, G̃), pk∗ ← (X̃∗, Ỹ ∗), t← 1

((pk∗i ,m
∗
i )i∈[ℓ∗], Σ

∗)← AOCert(·,·),OH1 (·),OH2 (·,·),OSign(·,·)(pp∗, pk∗)
If AVerOurs((pk

∗
i ,m

∗
i )i∈[ℓ∗], Σ

∗) 6= 1, then abort.
If there exists j ∈ [ℓ∗] such that pk∗j 6= pk∗ ∧ pk∗j /∈ L, then abort.
If there is no j∗ ∈ [ℓ∗] such that pk∗j∗ = pk∗ ∧m∗

j∗ /∈ Q, then abort.
Set j∗ ∈ [ℓ∗] such that pk∗j∗ = pk∗ ∧m∗

j∗ /∈ Q, Σ∗ ← (B∗′, t∗).
m∗

j∗
′ ← H2(t

∗,m∗
j∗)

If m∗
j∗

′ ∈ C, then abort.

Retrive (xi, yi)← sk∗i of pk∗i from K for i ∈ [ℓ∗]\{j∗}.
A′ ← H1(t

∗), m′
i ← H2(t

∗,m∗
i ) for i ∈ [ℓ∗]\{j∗},

B′ ← B∗′ ·
(
A′

∑
i∈[ℓ∗]\{j∗}(xi+m′

i·yi)
)−1

.

Return (m∗
j∗ , A

′, B′).

OCert(pk = (X̃, Ỹ ), sk = (x, y)) :

If (X̃ = G̃x) ∧ (Ỹ = G̃y), L← L ∪ {pk}, K ← K ∪ {(pk, sk)}, return “accept”.
Otherwise return “reject”.

OH1(ti) :
If there is an entry (ti, Ai) for some Ai ∈ G

∗ in T1, return Ai.
Ai ← O

GPS
0 (), T1 ← T1 ∪ {(ti, Ai)}, return Ai.

OH2(ti,mj) :
If there is an entry (ti,mj , m

′
(ti,j)

) for some m′
(ti,j)

∈ Zp in T2, return m′
(ti,j)

.

m′
(ti,j)

$
←− Zp, T2 ← T2 ∪ {(ti,mj ,m

′
(ti,j)

)}, return m′
(ti,j)

.

OSign(“inst”,mj) :
t /∈ [T ], return ⊥.
If “inst” = “skip”, t← t+ 1.
If “inst” = “sign”,

If there is no entry (t, ·) in T1, run O
H1(t).

If there is no entry (t,mj , ·) in T2, run O
H2(t,mj).

Retrieve entries (t, A) and (t,mj ,m
′
(t,j)) from T1 and T2, respectively.

B ← OGPS
1 (A,m′

(t,j)).

If B = ⊥, abort the simulation.
Q← Q ∪ {mj}, C ← C ∪ {m′

(t,j)}, return σ ← (B, t), t← t+ 1.

Fig. 8. The reduction B.
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B′ = A′xj∗+m′
j∗

·yj∗ = B∗′ ·
(
A′

∑
i∈[ℓ∗]\{j∗}(xi+m′

i·yi)
)−1

Therefore, if B does not abort, and B a solution (m∗
j∗

′, A′, B′) for the GPS problem.

We analyze the probability that B succeeds in forging a signature of PS. First, we consider
the probability that B aborts at the simulation of signatures. B aborts the simulation of OSign if B
queries same A at least twice for OGPS

1 (A,m′
(t,j)). To give an upper bound of this probability, it is

sufficient to consider the probability that collision is found in H1. We can bound the probability
that B fails simulating a signature for each signing query by qs/|G

∗| = qs/(p − 1) where qs is
the number of queries to OSign from A. By taking union bound, the probability that B fails
simulating signatures through the EUF-CMA game is upper bounded by q2s/(p − 1)

Next, we consider the probability that B aborts at If m∗
j∗

′ ∈ C, then abort. in Fig.8. This

probability can be bounded by the probability that a collision is found in H2. We can bound
this probability by qH2/|Zp| = qH2/p where qH2 is the number of queries to OH2 .

Finally, we summarize the above discussion. Let AdvEUF-CMA
SASOurs,A

be the advantage of the EUF-CMA
game for the SASOurs scheme of A. The advantage of the GPS game B is

AdvGPSBG,A ≥ AdvEUF-CMA
SASOurs,A

−
q2s

p− 1
−

qH2

p
.

Therefore, we can conclude Theorem 2. ⊓⊔

5 Conclusion

In this paper, we construct the PS signature-based synchronized aggregate signature scheme
which offers the most efficient aggregate signature verification among existing synchronized ag-
gregate signature schemes. As for the security proof of our scheme, since the reduction technique
by Lee et a., [26] could not be applied in the security proof of our scheme, we prove its security
by using the GPS assumption in the ROM as a new approach.

If we apply the public-key sharing technique and the randomness re-use technique to the CL
signature scheme on type-3 pairing, we will obtain the CL signature-based synchronized aggre-
gate signature scheme on type-3 pairing. However, as with our PS signature-based synchronized
aggregate signature scheme, group elements of a public key and group element in a signature
belong to different groups G̃ and G respectively, the reduction technique by Lee et al, [26] would
not be applied. Fortunately, similar to the GPS assumption, the generalized LRSW (GLRSW)
assumption [7] that is a variant of the LRSW assumption [30] was proposed. We leave a future
task to confirm whether our reduction technique can be applied to the CL signature-based syn-
chronized aggregate signature scheme on type-3 pairing and prove its security from the GLRSW
assumption.
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